用户名: 密码: 验证码:
铜基多元半导体的电子结构和光学性质
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
类金刚石结构的铜基三元半导体Cu-III-VI_2(III=Ga、In; VI=S、Se、Te)和四元半导体Cu_2-II-IV-VI_4(II=Zn、Cd; IV=Ge、Sn; VI=S、Se)及其固熔体(例如CuIn_xGa_(1-x)S_(2y)Se_(2(1-y))和Cu_2ZnSnS_(4x)Se_(4(1-x)))因其优良的光学性质而被广泛地用作光伏电池的吸收层材料,无论在基础理论还是在应用研究领域中都受到重视。该类材料由多种元素构成,这为材料设计和性能优化提供了更多的自由度,但增加了晶体结构和电子结构性质的复杂性。
     基于局域密度近似(Local density approximation,LDA)和广义梯度近似(Generalized gradient approximation,GGA)的各种第一性原理计算方法在研究凝聚态电子结构性质方面取得了巨大成功,目前已有大量采用该方法的铜基多元半导体的相关研究。禁带宽度参数是光伏电池吸收层材料最重要的参数之一,而对铜基三元材料,即使采用基于多体微扰理论的GW方法得到的禁带宽度也严重偏离可靠的实验结果。所以,理论上迫切需要探索造成这种困难的原因,提出解决方案,进而理论上预测具有潜在应用价值但更加复杂的铜基四元材料。另外,由于上述电子结构性质研究上的困难和光学性质计算方法本身的复杂性,目前已有的光学性质的理论研究往往忽略了激子效应对光学性质的影响。所以,从理论上获得准确的电子结构性质和光学性质信息,这将为相关实验研究提供重要的参考信息。
     本文对比类金刚石结构的二元材料ZnS,采用密度泛函理论并结合基于格林函数的多体微扰方法GW和Bethe-Salpeter Equation(BSE)方法研究铜基三元半导体Cu-III-VI_2和四元半导体Cu_2-II-IV-VI_4的晶体结构性质、电子结构性质和光学性质。本文的研究发现:(1)造成理论研究困难的原因来自于Cu d电子的特殊性质。Cu d电子在价带顶附近有大量态密度分布,并且它具有双重性质:一方面Cu d电子与VI p电子强烈杂化,在很大的能量区间形成共价键;另一方面Cu作为过渡金属,Cu d电子本质上是局域的。(2)理论方法上,Heyd-Scuseria-Ernzerhof(HSE)势函数由于包含了部分真实的Fock-exchange势函数,比LDA和GGA更好地给出了阴离子位置偏移参数μ,进而得到更加合理的晶体结构参数;而且,在LDA+U(U=4eV)近似基础上的多体微扰修正G_0W_0方法(即LDA+U+G_0W_0),很好地描述了Cu d的双重性质。本文计算得到的铜基三元材料的禁带宽度与可靠的实验结果相比误差在±0.2eV范围以内,而态密度也很好的符合了实验X射线光电子谱测量结果。(3)研究铜基四元材料的晶体结构和能带结构性质,给出了八种材料黄锡矿和锌黄锡矿结构的可靠的禁带宽度信息。并发现由于Cu_2ZnSnS_4、Cu_2CdSnS_4、Cu_2ZnGeSe_4和Cu_2CdGeSe_4具有合适的禁带宽度值从而可以被用作光伏电池吸收层材料。(4)对以CuGaS_2和CuInS_2为例的铜基材料光学性质的研究表明,光吸收过程中材料的激子效应通常被有效抑制,所以独立粒子近似给出的介电函数谱很好地符合了实验结果;导致不同铜基材料光学性质存在差异的关键影响因素是带边附近导带的电子结构性质,Cu_2GeS_3、Cu_2GeSe_3和Cu_2SnS_3具有较好的太阳照射光谱响应性质,是具有潜在应用价值的光伏电池吸收层材料。
     铜基半导体材料比其它薄膜太阳电池材料(如GaAs和CdTe)具有更高的吸收系数,有利于提高光伏电池的光电流进而光伏电池的光电转换效率。在铜基材料本征禁带宽度中间引入新的被电子部分占据的能带,则可以进一步吸收能量小于本征禁带宽度的光子,成为提高这类材料的光吸收能力的一种有效方法。对于体块材料通常采用杂质掺杂的方法获得中间能级,相关研究无论是在实验上还是理论上都处于初步探索阶段。根据中间能带光伏电池(Intermediateband solar cell,IBSC)材料的功能特点,从理论上进行材料设计与性质研究有助于促进相关的实验研究。
     根据对铜基材料电子结构和光学性质研究得到的信息和建立的理论研究方法,本文设计了两种基于铜基半导体的中间能带材料,并研究了它们的电子结构性质和光学性质及作为光伏电池材料的可行性。在CuGaS_2基体材料中掺杂Sn或者Fe元素,从而在CuGaS_2本征禁带宽度中间引入了与杂质电子态相关的中间能级。结果表明:Cu_8Ga_7SnS_(16)满足了IBSC材料设计的基本要求,是一种非常具有潜力的光伏电池材料;Cu_8Ga_7FeS_(16)材料中从价带到中间能带的光吸收能力非常强,但是从中间能带到导带的光吸收效率较低从而限制了其应用。
     综上所述,本文首先理论研究类金刚石结构的铜基光伏电池材料的基本性质,指出Cu d电子具有成键和局域性双重性质,并影响了晶体结构性质、电子结构性质和光学性质。理论方法上,建立了计算精确晶体结构、电子结构和光学性质的流程,即首先采用HSE势函数优化晶体结构,然后采用LDA+U+G_0W_0(U=4eV)方法计算能带结构性质,采用独立粒子近似计算光学性质。给出了铜基四元材料的晶体结构和能带结构性质的系统信息,相关信息为实验研究提供了重要参考依据。基于上述研究结果,本文设计了Cu_8Ga_7SnS_(16)和Cu_8Ga_7FeS_(16)两种中间能带材料,Cu_8Ga_7SnS_(16)满足了IBSC材料设计的基本要求,是一种具有潜在应用价值的光伏电池材料;而Cu_8Ga_7FeS_(16)材料中从中间能带到导带的光吸收效率较低从而限制了其应用。
Adamantine Cu-based ternary semiconductors Cu-III-VI_2(with III=Al, Ga,and In; VI=S, Se, and Te), quaternary semiconductors Cu_2-II-IV-VI_4(with II=Znand Cd; IV=Ge and Sn; VI=S and Se), as well as their solid solutions (e.g.,CuIn_xGa_(1-x)S_(2y)Se_(2(1-y))and Cu_2ZnSnS_(4x)Se_(4(1-x))) have been intensively studied owing totheir desired optical properties for photovoltaic application. These materials arecomposed of multinary elements. As a result, although it is widely recognized that thechemical flexibility of these systems provide a vast space for materials design andoptimization, this flexibility inevitably comes at the cost of complexity.
     The first principles calculation methods that based on the local densityapproximation (LDA) and generalized gradient approximation (GGA) functionalsare widely used for electronic properties of solids. There are also lots of reports thatstudying the electronic and optical properties Cu-based semiconductors. However,these methods usually seriously underestimate the band gap of a semiconductor,which is one of the most important parameters for photovoltaic applications. Eventhe advanced many-body method of GW fails to produce reliable band gaps ofCu-based ternary semiconductors. So, it is of great importance to investigate theseunresolved theoretical issues and to investigate the electronic properties of Cu-basedquaternary semiconductors in order to find new candidates for photovoltaicapplications. Besides the electronic properties, the investigation of optical propertiesare further complicated because of the computation methods, especially when theexcitonic effect is involved. So, reliable information of their electronic and opticalproperties from theoretical investigation is strongly needed for experiments.
     This thesis deals with structural, electronic, and optical properties of Cu-basedmultinary semiconductors using the GW and Bethe-Salpeter Equation (BSE).Because of the similarity, we also compare with binary analogy of ZnS. We find that:(1) the difficulties for theoretical research come from the dual nature of Cu d states.Cu d states are only slightly shallower than VI p and contribute to the strong pdhybridization, leading to the interplay of strong pd hybridization and intrinsicallylocalization of Cu d states;(2) The established procedure that firstly relax the crystalstructures in the Heyd-Scuseria-Ernzerhof (HSE) functional and then calculate theband structures in the methods of LDA+U (U=4eV) and GW (i.e., LDA+U+G_0W_0)can give reasonable anion displacement μ and electronic band structures,respectively. The error bar for band gaps of ternary semiconductors are within±0.2eV compared with measured values and the calculated density of states agree wellwith X-ray photoelectron spectroscopy;(3) The structural and band structures of quaternary semiconductors are also investigated. The band gaps of both the stanniteand kesterite structures are calculated, which show that Cu_2ZnSnS_4、Cu_2CdSnS_4,Cu_2ZnGeSe_4, and Cu_2CdGeSe_4have suitable band gaps for photovoltaic applications;(4) Taking CuGaS_2and CuInS_2as examples, we study the optical properties ofCu-based semiconcutors. Results show that the excitonic effect is effectivelysupressed in real experiments. As a consequence, the dielectric function is welldescriped in independent partical approximation. The differences of opticalproperties of Cu-based semiconductors are induced by the near-edge conductionstates. Cu_2GeS_3, Cu_2GeSe_3, and Cu_2SnS_3are potential candidates for photovoltaicapplications because of their excellent properties for the sun irradiation.
     The optical absorption coefficient of Cu-based semiconductors are much higherthan other thin film materials (e.g., GaAs and CdTe), which is of great advantage toimprove the photocurrent and thus the efficiency of solar cell. By impurity doping,intermediate bands which are partially occupied by electrons can be introduced intothe intrinsic band gap of the host material. As a result, the photons with energiessmaller than the intrinsic band gap can also be absorbed via two-step transition. Theresearch of intermediate band solar cell (IBSC) materials is in its infancy stagewhich calls for theoretical studies to guide the experiments.
     Based on the above obtained information about electronic and opticalproperties and the established calculating methods, we design two IBSC materials.Intermediate bands are observed by doping Sn or Fe element into host CuGaS_2material. Our results manifest that Cu_8Ga_7SnS_(16)is a suitable candidate as an IBSCmaterial. The absorption from the valence band to the intermediate band is quitestrong in Cu_8Ga_7FeS_(16). However, it is rather weak for absorption from theintermediate band to the conduction band which limits the potential usage.
     In summary, we theoretically study several properties of Cu-based multinarysemiconductors, which are found to be sensitively influenceed by dual nature of Cud states, i.e., hybridization and localization. This thesis also establises a procedurethat using the HSE functional, LDA+U+G_0W_0(U=4eV) method, and independentpartical approximation for the reliable structural, electronic, and optical properties.The structural and electronic band structructure of Cu-based quaternarysemiconductors are investigated, which provided useful and informative guidancefor future material design and selection. Based on above findings, we design twoIBSC materials, i.e., Cu_8Ga_7SnS_(16)and Cu_8Ga_7FeS_(16), which show that Cu_8Ga_7SnS_(16)is a suitable candidate as an IBSC material and that the weak absorption from theintermediate band to the conduction band limits the potential usage of Cu_8Ga_7FeS_(16).
引文
[1] Kodigala S R. Cu(In1-XGax)Se2Based Thin Film Solar Cells[M], Burlington:Elsevier Inc.,2010.
    [2] Shay J L and Wernick J H. Ternary Chalcopyrite Semiconductors: Growth,Electronic Properties, and Applications[M], Oxford: Pergamon Press,1975.
    [3] Green M A. Third Generation Photovoltaics[M], Berlin: Springer,2003.
    [4] Shockley W and Queisser H J. Detailed Balance Limit of Efficiency of p-nJunction Solar Cells[J]. J. Appl. Phys.,1961,32(3):510.
    [5] Jackson P, Hariskos D, Lotter E, et al. New World Record Efficiency forCu(In,Ga)Se2Thin-Film Solar Cells Beyond20%[J]. Prog. Photovoltaics Res.Appl.,2011:894.
    [6] Goodman C H L. The Prediction of Semiconducting Properties in InorganicCompounds[J]. J. Phys. Chem. Solids,1958,6(4):305.
    [7] Pamplin B R. Super-Cell Structure of Semiconductors[J]. Nature,1960,188(4745):136.
    [8] Pamplin B R. A Systematic Method of Deriving New SemiconductingCompounds by Structural Analogy[J]. J. Phys. Chem. Solids,1964,25(7):675.
    [9] Nitsche R, Sargent D F, and Wild P. Crystal Growth of Quaternary122464Chalcogenides by Iodine Vapor Transport[J]. J. Cryst. Growth,1967,1(1):52.
    [10] Schleich D M and Wold A. Optical and Electrical Properties of QuarternaryChalcogenides[J]. Mater. Res. Bull.,1977,12(2):111.
    [11] Katagiri H. Cu2ZnSnS4Thin Film Solar Cells[J]. Thin Solid Films,2005,480-481:426.
    [12] Scragg J J, Dale P J, Peter L M, et al. New Routes to Sustainable Photovoltaics:Evaluation of Cu2ZnSnS4as an Alternative Absorber Material[J]. Phys. StatusSolidi (b),2008,245(9):1772.
    [13] Matsushita H, Maeda T, Katsui A, et al. Thermal Analysis and Synthesis fromthe Melts of Cu-Based Quaternary Compounds Cu-III-IV-VI4andCu2-II-IV-VI4(II=Zn, Cd; III=Ga, In; IV=Ge, Sn; VI=Se)[J]. J. Cryst. Growth,2000,208(1-4):416.
    [14] Adhi Wibowo R, Soo Lee E, Munir B, et al. Pulsed Laser Deposition ofQuaternary Cu2ZnSnSe4Thin Films[J]. Phys. Status Solidi (a),2007,204(10):3373.
    [15] Nakayama N and Ito K. Sprayed Films of Stannite Cu2ZnSnS4[J]. Appl. Surf.Sci.,1996,92:171.
    [16] Jaffe J E and Zunger A. Theory of the Band-Gap Anomaly in ABC2Chalcopyrite Semiconductors[J]. Phys. Rev. B,1984,29(4):1882.
    [17] Persson C and Zunger A. Anomalous Grain Boundary Physics inPolycrystalline CuInSe2: The Existence of a Hole Barrier[J]. Phys. Rev. Lett.,2003,91(26):266401.
    [18] Siebentritt S, Sadewasser S, Wimmer M, et al. Evidence for a NeutralGrain-Boundary Barrier in Chalcopyrites[J]. Phys. Rev. Lett.,2006,97(14):146601.
    [19] Abou-Ras D, Schaffer B, Schaffer M, et al. Direct Insight into Grain BoundaryReconstruction in Polycrystalline Cu(In,Ga)Se2with Atomic Resolution[J].Phys. Rev. Lett.,2012,108(7):075502.
    [20] Maeda T and Wada T. First-Principles Calculation of Defect Formation Energyin Chalcopyrite-Type CuInSe2, CuGaSe2and CuAlSe2[J]. J. Phys. Chem.Solids,2005,66(11):1924.
    [21] Chen S, Gong X G, Walsh A, et al. Defect Physics of the Kesterite Thin-FilmSolar Cell Absorber Cu2ZnSnS4[J]. Appl. Phys. Lett.,2010,96(2):021902.
    [22] Bauknecht A, Blieske U, Kampschulte T, et al. Band Offsets at theZnSe/CuGaSe2(001) Heterointerface[J]. Appl. Phys. Lett.,1999,74(8):1099.
    [23] Li Y-H, Walsh A, Chen S, et al. Revised ab initio Natural Band Offsets of AllGroup IV, II-VI, and III-V Semiconductors[J]. Appl. Phys. Lett.,2009,94(21):212109.
    [24] Haight R, Barkhouse A, Gunawan O, et al. Band Alignment at theCu2ZnSn(SxSe1x)4/CdS Interface[J]. Appl. Phys. Lett.,2011,98(25):253502.
    [25] Wei S-H and Zunger A. Calculated Natural Band Offsets of All II--VI andIII--V Semiconductors: Chemical Trends and the Role of Cation d Orbitals[J].Appl. Phys. Lett.,1998,72(16):2011.
    [26] Ahn S, Jung S, Gwak J, et al. Determination of Band Gap Energy (Eg) ofCu2ZnSnSe4Thin Films: On the Discrepancies of Reported Band GapValues[J]. Appl. Phys. Lett.,2010,97(2):021905.
    [27] Persson C. Electronic and Optical Properties of Cu2ZnSnS4and Cu2ZnSnSe4[J].J. Appl. Phys.,2010,107(5):053710.
    [28] Chen S, Gong X G, Walsh A, et al. Crystal and Electronic Band Structure ofCu2ZnSnX4(X=S and Se) Photovoltaic Absorbers: First-Principles Insights[J].Appl. Phys. Lett.,2009,94(4):041903.
    [29] Botti S, Kammerlander D, and Marques M A L. Band Structures of Cu2ZnSnS4and Cu2ZnSnSe4from Many-Body Methods[J]. Appl. Phys. Lett.,2011,98(24):241915.
    [30] Haight R, Barkhouse A, Gunawan O, et al. Band Alignment at theCu2ZnSn(SxSe1-x)4/CdS Interface[J]. Appl. Phys. Lett.,2011,98(25).
    [31] Luque A and Martí A. Increasing the Efficiency of Ideal Solar Cells by PhotonInduced Transitions at Intermediate Levels[J]. Phys. Rev. Lett.,1997,78(26):5014.
    [32] Luque A, Marti A, and Stanley C. Understanding Intermediate-Band SolarCells[J]. Nat Photon,2012,6(3):146.
    [33] Lucena R, Aguilera I, Palacios P, et al. Synthesis and Spectral Properties ofNanocrystalline V-Substituted In2S3, a Novel Material for More Efficient Useof Solar Radiation[J]. Chem. Mater.,2008,20(16):5125.
    [34] Wang W, Lin A S, and Phillips J D. Intermediate-Band Photovoltaic Solar CellBased on ZnTe:O[J]. Appl. Phys. Lett.,2009,95(1):011103.
    [35] López N, Reichertz L A, Yu K M, et al. Engineering the Electronic BandStructure for Multiband Solar Cells[J]. Phys. Rev. Lett.,2011,106(2):028701.
    [36] Tablero C. Electronic and Optical Properties of the Group IV Doped CopperGallium Chalcopyrites[J]. Thin Solid Films,2010,519(4):1435.
    [37] Tablero C. Electronic and Magnetic Properties of the Fe-Doped CuInS2[J].Chem. Phys. Lett.,2010,499(1–3):75.
    [38] Osorio R, Lu Z W, Wei S H, et al. First-Principles Phase Diagrams ofPseudoternary Chalcopyrite-Zinc-Blende Alloys[J]. Phys. Rev. B,1993,47(15):9985.
    [39] Wei S-H, Ferreira L G, and Zunger A. First-Principles Calculation of theOrder-Disorder Transition in Chalcopyrite Semiconductors[J]. Phys. Rev. B,1992,45(5):2533.
    [40] Jaffe J E and Zunger A. Electronic Structure of the Ternary ChalcopyriteSemiconductors CuAlS2, CuGaS2, CuInS2, CuAlSe2, CuGaSe2, and CuInSe2[J].Phys. Rev. B,1983,28(10):5822.
    [41] Jaffe J E and Zunger A. Electronic Structure of the Ternary PnictideSemiconductors ZnSiP2, ZnGeP2, ZnSnP2, ZnSiAs2, and MgSiP2[J]. Phys. Rev.B,1984,30(2):741.
    [42] Han S-H, Persson C, Hasoon F S, et al. Optical Properties and ElectronicStructures of (4CuInSe2)y(CuIn5Se8)1-y[J]. Phys. Rev. B,2006,74(8):085212.
    [43] Continenza A, Massidda S, Freeman A J, et al. Structural and ElectronicProperties of Narrow-Gap ABC2Chalcopyrite Semiconductors[J]. Phys. Rev. B,1992,46(16):10070.
    [44] Chen S, Gong X G, and Wei S-H. Ground-State Structure of CoherentLattice-Mismatched Zinc-Blende A1-xBxC Semiconductor Alloys (x=0.25and0.75)[J]. Phys. Rev. B,2008,77(7):073305.
    [45] Jaffe J E and Zunger A. Anion Displacements and the Band-Gap Anomaly inTernary ABC2Chalcopyrite Semiconductors[J]. Phys. Rev. B,1983,27(8):5176.
    [46] Guo Q, Hillhouse H W, and Agrawal R. Synthesis of Cu2znsns4Nanocrystal Inkand Its Use for Solar Cells[J]. J. Am. Chem. Soc.,2009,131(33):11672.
    [47] Todorov T K, Reuter K B, and Mitzi D B. High-Efficiency Solar Cell withEarth-Abundant Liquid-Processed Absorber[J]. Adv. Mater.(Weinheim, Ger.),2010,22(20): E156.
    [48] Heyd J, Scuseria G E, and Ernzerhof M. Hybrid Functionals Based on aScreened Coulomb Potential[J]. J. Chem. Phys.,2003,118(18):8207.
    [49] Paier J, Marsman M, Hummer K, et al. Screened Hybrid Density FunctionalsApplied to Solids[J]. J. Chem. Phys.,2006,124(15):154709.
    [50] Shay J L and Kasper H M. Direct Observation of Cu d Levels in I-III-VI2Compounds[J]. Phys. Rev. Lett.,1972,29(17):1162.
    [51] Shaukat A, Hussain K, Meloni F, et al. Band Gap Anomaly in TernaryChalcopyrite Semiconductors, the Role of p-d Hybridization[J]. IL NuovoCimento D,1987,9(2):163.
    [52] Fishman G and Sermage B. Structure of the d Level and the p-d Coupling inI-III-VI2Chalcopyrite Compounds[J]. Phys. Rev. B,1978,18(12):7099.
    [53] Shay J L, Tell B, Kasper H M, et al. p-d Hybridization of the Valence Bands ofI-III-VI2Compounds[J]. Phys. Rev. B,1972,5(12):5003.
    [54] Rowe J E and Shay J L. Extension of the Quasicubic Model to TernaryChalcopyrite Crystals[J]. Phys. Rev. B,1971,3(2):451.
    [55] J.J H. Fine Structure in the Optical Absorption Edge of Anisotropic Crystals[J].J. Phys. Chem. Solids,1960,15(1–2):97.
    [56] Shay J L, Buehler E, and Wernick J H. Negative Crystal-Field Splitting of theValence Bands in CdSnP2[J]. Phys. Rev. Lett.,1970,24(23):1301.
    [57] Chen S, Gong X G, Walsh A, et al. Electronic Structure and Stability ofQuaternary Chalcogenide Semiconductors Derived from CationCross-Substitution of II-VI and I-III-VI2Compounds[J]. Phys. Rev. B,2009,79(16):165211.
    [58] Paier J, Asahi R, Nagoya A, et al. Cu2ZnSnS4as a Potential PhotovoltaicMaterial: A Hybrid Hartree-Fock Density Functional Theory Study[J]. Phys.Rev. B,2009,79(11).
    [59] Vidal J, Botti S, Olsson P, et al. Strong Interplay between Structure andElectronic Properties in CuIn(S,Se)2: A First-Principles Study[J]. Phys. Rev.Lett.,2010,104(5):056401.
    [60] Tell B, Shay J L, and Kasper H M. Electrical Properties, Optical Properties, andBand Structure of CuGaS2and CuInS2[J]. Phys. Rev. B,1971,4(8):2463.
    [61] Rincón C, González J, and Pérez G S. Reflectance and Absorption Spectra nearthe Band Gap in CuInSe2[J]. Solid State Commun.,1983,48(12):1001.
    [62] Mudryi A, Yakushev M, Tomlinson R, et al. Optical Spectroscopy of ExcitonicStates in CuInSe2[J]. Semiconductors,2000,34(5):534.
    [63] Ahuja R, Auluck S, Eriksson O, et al. Calculated Optical Properties of a SolarEnergy Material: CuGaS2[J]. Sol. Energy Mater. Sol. Cells,1998,53(3-4):357.
    [64] Alonso M I, Wakita K, Pascual J, et al. Optical Functions and ElectronicStructure of CuInSe2, CuGaSe2, CuInS2, and CuGaS2[J]. Phys. Rev. B,2001,63(7):075203.
    [65] Levcenko S and et al. Optical Spectra and Energy Band Structure of SingleCrystalline CuGaS2and CuInS2[J]. J. Phys.: Condens. Matter,2007,19(45):456222.
    [66] Aguilera I, Vidal J, Wahnón P, et al. First-Principles Study of the BandStructure and Optical Absorption of CuGaS2[J]. Phys. Rev. B,2011,84(8).
    [67] Adachi S and Taguchi T. Optical Properties of ZnSe[J]. Phys. Rev. B,1991,43(12):9569.
    [68] Janowitz C, Günther O, Jungk G, et al. Dielectric Function and Critical Pointsof Cubic and Hexagonal CdSe[J]. Phys. Rev. B,1994,50(4):2181.
    [69] Wahnón P and Tablero C. ab initio Electronic Structure Calculations forMetallic Intermediate Band Formation in Photovoltaic Materials[J]. Phys. Rev.B,2002,65(16):165115.
    [70] Yu K M, Walukiewicz W, Wu J, et al. Diluted II-VI Oxide Semiconductors withMultiple Band Gaps[J]. Phys. Rev. Lett.,2003,91(24):246403.
    [71] Yu K M, Walukiewicz W, Ager J W, et al. Multiband GaNAsP QuaternaryAlloys[J]. Appl. Phys. Lett.,2006,88(9):092110.
    [72] Palacios P, Aguilera I, Sánchez K, et al. Transition-Metal-Substituted IndiumThiospinels as Novel Intermediate-Nand Materials: Prediction andUnderstanding of Their Electronic Properties[J]. Phys. Rev. Lett.,2008,101(4):046403.
    [73] Koteski V, Doka-Yamigno S, Hofstetter J, et al. Germanium Doping ofWider-Band-Gap CuGaSe2Chalcopyrites: Local and Electronic Structure[J].Phys. Rev. B,2010,81(24).
    [74] Hohenberg P and Kohn W. Inhomogeneous Electron Gas[J]. Phys. Rev.,1964,136(3B): B864.
    [75] Kresse G and Furthmuller J. Efficient Iterative Schemes for ab initioTotal-Energy Calculations Using a Plane-Wave Basis Set[J]. Phys. Rev. B,1996,54(16):11169.
    [76] Perdew J P, Burke K, and Ernzerhof M. Generalized Gradient ApproximationMade Simple[J]. Phys. Rev. Lett.,1996,77(18):3865.
    [77] Perdew J P and Wang Y. Accurate and Simple Analytic Representation of theElectron-Gas Correlation Energy[J]. Phys. Rev. B,1992,45(23):13244.
    [78] Kohn W and Sham L J. Self-Consistent Equations Including Exchange andCorrelation Effects[J]. Phys. Rev.,1965,140(4A): A1133.
    [79] Perdew J P and Zunger A. Self-Interaction Correction to Density-FunctionalApproximations for Many-Electron Systems[J]. Phys. Rev. B,1981,23(10):5048.
    [80] Hedin L. On Correlation Effects in Electron Spectroscopies and the GWApproximation[J]. J. Phys.: Condens. Matter,1999(42): R489.
    [81] Franchini C, Bayer V, Podloucky R, et al. Density Functional Theory Study ofMnO by a Hybrid Functional Approach[J]. Phys. Rev. B,2005,72(4):045132.
    [82] Hummer K, Harl J, and Kresse G. Heyd-Scuseria-Ernzerhof Hybrid Functionalfor Calculating the Lattice Dynamics of Semiconductors[J]. Phys. Rev. B,2009,80(11):115205.
    [83] Wrobel J, Kurzydlowski K J, Hummer K, et al. Calculations of ZnO PropertiesUsing the Heyd-Scuseria-Ernzerhof Screened Hybrid Density Functional[J].Phys. Rev. B,2009,80(15):155124.
    [84] Paier J, Marsman M, Hummer K, et al. Erratum:"Screened Hybrid DensityFunctionals Applied to Solids''[J. Chem. Phys.124,154709(2006)][J]. J.Chem. Phys.,2006,125(24):249901.
    [85] Silva J L F D, Ganduglia-Pirovano M V, Sauer J, et al. Hybrid FunctionalsApplied to Rare-Earth Oxides: The Example of Ceria[J]. Phys. Rev. B,2007,75(4):045121.
    [86] Oba F, Togo A, Tanaka I, et al. Defect Energetics in ZnO: A HybridHartree-Fock Density Functional Study[J]. Phys. Rev. B,2008,77(24):245202.
    [87] Hybertsen M S and Louie S G. Electron Correlation in Semiconductors andInsulators: Band Gaps and Quasiparticle Energies[J]. Phys. Rev. B,1986,34(8):5390.
    [88] Wilfried G. Aulbur L J, and John W. Wilkins. Quasiparticle Calculations inSolids[J]. Solid State Phys.,2000,54:1.
    [89] Adler S L. Quantum Theory of the Dielectric Constant in Real Solids[J]. Phys.Rev.,1962,126(2):413.
    [90] Wiser N. Dielectric Constant with Local Field Effects Included[J]. Phys. Rev.,1963,129(1):62.
    [91] Palummo M, Pulci O, Sole R D, et al. The Bethe-Salpeter Equation: AFirst-Principles Approach for Calculating Surface Optical Spectra[J]. J. Phys.:Condens. Matter,2004(39): S4313.
    [92] Onida G, Reining L, and Rubio A. Electronic Excitations: Density-FunctionalVersus Many-Body Green's-Function Approaches[J]. Reviews of ModernPhysics,2002,74(2):601.
    [93] Jiang F D and Feng J Y. Electronic Modification of Cu-Based ChalcopyriteSemiconductors Induced by Lattice Deformation and Composition Alchemy[J].Semicond. Sci. Technol.,2008,23(2):025001.
    [94] Hopfdeld J J. Fine Structure in the Optical Absorption Edge of AnisotropicCrystals[J]. J. Phys. Chem. Solids,1960,15(1-2):97.
    [95] Kawashima T, Adachi S, Miyake H, et al. Optical Constants of CuGaSe2andCuInSe2[J]. J. Appl. Phys.,1998,84(9):5202.
    [96] Anisimov V I, Zaanen J, and Andersen O K. Band Theory and Mott Insulators:Hubbard U Instead of Stoner I[J]. Phys. Rev. B,1991,44(3):943.
    [97] Ley L, Pollak R A, McFeely F R, et al. Total Valence-Band Densities of Statesof III-V and II-VI Compounds from X-Ray Photoemission Spectroscopy[J].Phys. Rev. B,1974,9(2):600.
    [98] Zakharov O, Rubio A, Blase X, et al. Quasiparticle Band Structures of Six II-VICompounds: ZnS, ZnSe, ZnTe, CdS, CdSe, and CdTe[J]. Phys. Rev. B,1994,50(15):10780.
    [99] Miyake T, Zhang P, Cohen M L, et al. Quasiparticle Energy of Semicore DElectrons in ZnS: Combined LDA+U and GW Approach[J]. Phys. Rev. B,2006,74(24):245213.
    [100] Kioupakis E, Zhang P, Cohen M L, et al. GW Quasiparticle Corrections to theLDA+U/GGA+U Electronic Structure of bcc Hydrogen[J]. Phys. Rev. B,2008,77(15):155114.
    [101] Jiang H, Gomez-Abal R I, Rinke P, et al. First-Principles Modeling ofLocalized d States with the GW@LDA+U Approach[J]. Phys. Rev. B,2010,82(4):045108.
    [102] Jiang H, Gomez-Abal R, Rinke P, et al. Localized and Itinerant States inLanthanide Oxides United by GW@LDA+U[J]. Phys. Rev. Lett.,2009,102(12).
    [103] Inorganic Crystal Structure Database,(ICSD),http://www.fiz-karlsruhe.de/icsd.html.
    [104] Pohl J and Albe K. Thermodynamics and Kinetics of the Copper Vacancy inCuInSe2, CuGaSe2, CuInS2, and CuGaS2from Screened-Exchange HybridDensity Functional Theory[J]. J. Appl. Phys.,2010,108(2):023509.
    [105] Shih B-C, Zhang Y, Zhang W, et al. Screened Coulomb Interaction ofLocalized Electrons in Solids from First Principles[J]. Phys. Rev. B,2012,85(4):045132.
    [106] Aryasetiawan F, Imada M, Georges A, et al. Frequency-Dependent LocalInteractions and Low-Energy Effective Models from Electronic StructureCalculations[J]. Phys. Rev. B,2004,70(19):195104.
    [107] Kamoun N, Bouzouita H, and Rezig B. Fabrication and Characterization ofCu2ZnSnS4Thin Films Deposited by Spray Pyrolysis Technique[J]. Thin SolidFilms,2007,515(15):5949.
    [108] Tanaka T, Nagatomo T, Kawasaki D, et al. Preparation of Cu2ZnSnS4ThinFilms by Hybrid Sputtering[J]. J. Phys. Chem. Solids,2005,66(11):1978.
    [109] Seol J-S, Lee S-Y, Lee J-C, et al. Electrical and Optical Properties ofCu2ZnSnS4Thin Films Prepared by Rf Magnetron Sputtering Process[J]. Sol.Energy Mater. Sol. Cells,2003,75(1-2):155.
    [110] Sekiguchi K, Tanaka K, Moriya K, et al. Epitaxial Growth of Cu2ZnSnS4ThinFilms by Pulsed Laser Deposition[J]. Phys. Status Solidi (c),2006,3(8):2618.
    [111] Moriya K, Watabe J, Tanaka K, et al. Characterization of Cu2ZnSnS4ThinFilms Prepared by Photo-Chemical Deposition[J]. Phys. Status Solidi (c),2006,3(8):2848.
    [112] Scragg J J, Dale P J, and Peter L M. Towards Sustainable Materials for SolarEnergy Conversion: Preparation and Photoelectrochemical Characterization ofCu2ZnSnS4[J]. Electrochem. Commun.,2008,10(4):639.
    [113] Katagiri H, Saitoh K, Washio T, et al. Development of Thin Film Solar CellBased on Cu2ZnSnS4Thin Films[J]. Sol. Energy Mater. Sol. Cells,2001,65(1-4):141.
    [114] Ito K and Nakazawa T. Electrical and Optical Properties of Stannite-TypeQuaternary Semiconductor Thin Films[J]. Jpn. J. Appl. Phys.,1988,27(11):2094.
    [115] Rife J C, Dexter R N, Bridenbaugh P M, et al. Optical Properties of theChalcopyrite Semiconductors ZnGeP2, ZnGeAs2, CuGaS2, CuAlS2, CuInSe2,and AgInSe2[J]. Phys. Rev. B,1977,16(10):4491.
    [116] Yamamoto N, Horinaka H, Okada K, et al. Excitonic Structure ofCuGaS2xSe2(1-x)and CuAlS2xSe2(1-x)[J]. Jpn. J. Appl. Phys.,1977,16:1817.
    [117] Shay J L, Tell B, Kasper H M, et al. Electronic Structure of AgInSe2andCuInSe2[J]. Phys. Rev. B,1973,7(10):4485.
    [118] Neumann H, H rig W, Reccius E, et al. Growth and Optical Properties ofCuGaTe2Thin Films[J]. Thin Solid Films,1979,61(1):13.
    [119] Ishizaki T, Saito N, and Fuwa A. Electrodeposition of CuInTe2Film from anAcidic Solution[J]. Surf. Coat. Technol.,2004,182(2-3):156.
    [120] Contreras M A, Ramanathan K, AbuShama J, et al. Diode Characteristics inState-of-the-Art ZnO/CdS/Cu(In1xGax)Se2Solar Cells[J]. Prog. PhotovoltaicsRes. Appl.,2005,13(3):209.
    [121] Chen S, Walsh A, Luo Y, et al. Wurtzite-Derived Polytypes of Kesterite andStannite Quaternary Chalcogenide Semiconductors[J]. Phys. Rev. B,2010,82(19):195203.
    [122] Babu G S, Kumar Y B K, Bhaskar P U, et al. Effect of Post-DepositionAnnealing on the Growth of Cu2ZnSnSe4Thin Films for a Solar Cell AbsorberLayer[J]. Semicond. Sci. Technol.,2008,23(8):085023.
    [123] Matsushita H, Ichikawa T, and Katsui A. Structural, Thermodynamical andOptical Properties of Cu2-II-IV-VI4Quaternary Compounds[J]. J. Mater. Sci.,2005,40(8):2003.
    [124] Davidyuk G E, Parasyuk O V, Semenyuk S A, et al. Electrical and OpticalProperties of Cu2CdGeS4Single Crystals[J]. Inorg. Mater.,2003,39(9):919.
    [125] Liu M-L, Chen I-W, Huang F-Q, et al. Improved Thermoelectric Properties ofCu-doped Quaternary Chalcogenides of Cu2CdSnSe4[J]. Adv. Mater.(Weinheim, Ger.),2009,21(37):3808.
    [126] Schorr S, Hoebler H-J, and Tovar M. A Neutron Diffraction Study of theStannite-Kesterite Solid Solution Series[J]. Eur. J. Mineral.,2007,19:65.
    [127] Davydyuk G Y, Parasyuk O V, Romanyuk Y E, et al. Single Crystal Growthand Physical Properties of the Cu2CdGeS4Compound[J]. J. Alloys Compd.,2002,339(1-2):40.
    [128] Nagoya A, Asahi R, Wahl R, et al. Defect Formation and Phase Stability ofCu2ZnSnS4Photovoltaic Material[J]. Phys. Rev. B,2010,81(11):113202.
    [129] Wang K, Shin B, Reuter K B, et al. Structural and Elemental Characterizationof High Efficiency Cu2ZnSnS4Solar Cells[J]. Appl. Phys. Lett.,2011,98(5):051912.
    [130] Kumar Y B K, Bhaskar P U, Babu G S, et al. Effect of Copper Salt andThiourea Concentrations on the Formation of Cu2ZnSnS4Thin Films by SprayPyrolysis[J]. Phys. Status Solidi (a),2010,207(1):149.
    [131] Levcenko S, Duran L, Gurieva G, et al. Optical Constants of Cu(In1-xGax)5Se8Crystals[J]. J. Appl. Phys.,2010,107(3):033502.
    [132] Adachi S. Model Dielectric Constants of GaP, GaAs, GaSb, InP, InAs, andInSb[J]. Phys. Rev. B,1987,35(14):7454.
    [133] Kleinman L and Bylander D M. Efficacious Form for ModelPseudopotentials[J]. Phys. Rev. Lett.,1982,48(20):1425.
    [134] Marini A, Onida G, and Del Sole R. Plane-Wave DFT-LDA Calculation of theElectronic Structure and Absorption Spectrum of Copper[J]. Phys. Rev. B,2001,64(19).
    [135] Zakutayev A, Kykyneshi R, Schneider G, et al. Electronic Structure andExcitonic Absorption in BaCuChF (Ch=S, Se, and Te)[J]. Phys. Rev. B,2010,81(15):155103.
    [136] Tablero C. Ionization Levels of Doped Sulfur and Selenium Chalcopyrites[J].J. Appl. Phys.,2009,106(7):073718.
    [137] Tablero C. Ionization Levels of Doped Copper Indium SulfideChalcopyrites[J]. The Journal of Physical Chemistry A,2012,116(5):1390.
    [138] Luque A, Martí A, Antolín E, et al. Intermediate Bands Versus Levels inNon-Radiative Recombination[J]. Physica B: Condensed Matter,2006,382(1–2):320.
    [139] Shockley W and Read W T, Jr. Statistics of the Recombinations of Holes andElectrons[J]. Phys. Rev.,1952,87(5):835.
    [140] Aguilera I, Palacios P, and Wahnón P. Understanding Ti Intermediate-BandFormation in Partially Inverse Thiospinel MgIn2S4through Many-BodyApproaches[J]. Phys. Rev. B,2011,84(11):115106.
    [141] Marsen B, Klemz S, Landi G, et al. Phases in Copper–Gallium–Metal–SulfideFilms (Metal=Titanium, Iron, or Tin)[J]. Thin Solid Films,2011,519(21):7284.
    [142] Kondo K i, Teranishi T, and Sato K. Optical Absorption of CuFeS2andFe-doped CuAlS2and CuGaS2[J]. J. Phys. Soc. Jpn.,1973,36:311.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700