用户名: 密码: 验证码:
云南省富乐分散元素多金属矿床地球化学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
富乐分散元素多金属矿床位于扬子地块西南缘、川滇黔多金属成矿带东南部。该矿床是一个伴生大型镉、锗、硒矿床、小型镓矿床的中型铅锌矿床。该矿床富含四种分散元素,是一个典型的分散元素矿床。矿床的研究程度很低。
     矿床赋存于下二叠统茅口组中段白云岩、灰岩中,矿体呈似层状、透镜状,矿石发育角砾状构造、块状构造和粗粒结构,矿物主要为闪锌矿、方铅矿、白云石、方解石。本次工作系统研究了常量元素、微量元素、稀土元素、稳定同位素地球化学特征和成矿流体特征,主要取得以下成果:
     1.查明了分散元素的分布特征:分散元素Cd、Ge、Se、Ga主要赋存在闪锌矿中,它们在闪锌矿中的平均含量为Cd 16183ppm,Se 163ppm,Ge 135ppm,Ga 86 ppm。Cd、Ge以类质同象形式代替Zn的位置,Se以类质同象形式代替S的位置,Ga在闪锌矿中有类质同象和显微吸附两种存在形式。Cd富集在深色闪锌矿中,Ge富集在浅色闪锌矿中,Ga在黄棕色闪锌矿中的含量最高,而Se在深浅不同颜色闪锌矿中的含量没有明显的变化。闪锌矿中Zn与Cd负相关,与Ge正相关,与Se相关性不明显。
     2.探讨了闪锌矿颜色成因:闪锌矿晶体内部的颜色是不均匀的,裸眼观察到的闪锌矿颜色是晶体内部紫色、红色、黄色、无色的综合效应。闪锌矿颜色是Ni、Cu、Tl、Ga、Hg、Fe、Cr等多种元素共同引起的,其中最主要的元素是Ni、Cu、Ga。Ni使闪锌矿呈紫色,Cu使闪锌矿呈红色,Ga使闪锌矿呈黄色。分散元素Cd之所以在深色闪锌矿中相对富集,是因为Cd与引起闪锌矿颜色变深的Ni、Cu正相关,Ni、Cu、Cd含量越高,闪锌矿颜色也就越深。
     3.查明了矿床地球化学特征:矿石稀土含量很低,(∑REE=2.66~10.19ppm),相对富集轻稀土并显示Eu负异常。成矿流体δD=-76~-60‰,δ~(18)O=10.8~14.7‰,δ~(13)C=-19.1~-2.6‰。白云石、方解石δ~(18)O=16.64~19.91‰,δ~(13)C=1.12~3.02‰。闪锌矿δ~(34)S=12.97~14.91‰,方铅矿δ~(34)S=7.91~11.14‰。硫化物铅同位素~(206)pb/~(204)pb=18.470~18.586,~(207)pb/~(204)pb=15.542~15.707,~(208)pb/~(204)pb=38.283~38.643。成矿流体主要来自建造水,但有油田卤水的参与。
The Fule dispersed element-polymetallic deposit is located in the southwestern margin of the Yangtze block, at the southeastern part of the Sichuan-Yunnan-Guizhou Zn-Pb polymetallic district. The deposit is a medium-scale Zn-Pb associated with large-scale Cd, Ge, Se and small-scale Ga deposit. The deposit is poorly studied.The deposit occurs in dolomite and limestone of the Lower Permian Maokou Formation. The ore bodies are typically layer- or lens-like. The ore consists of sphalerite, galena, dolomite and calcite typically shows massive or brecciated structures and coarse-grained texture. Based on systematic studies on geochemistry of major elements, trace elements, rare earth elements and stable isotopes as well as characteristics of ore-forming fluids, the following achievements have been obtained:1. The distribution characteristics of dispersed elements. Cd, Ge, Se, and Ga exist principally in sphalerite, with average contents of 16183 ppm Cd, 163 ppm Se, 135 ppm Ge and 86 ppm Ga. Cd, Ge, and Se occur in crystal lattice of sphalerite, where Cd and Ge occupy the position of Zn and Se occupies the position of S. Ga partially exists in crystal lattice of sphalerite and partially is adsorbed in lattice defect as micro-adsorption form. Cd enriches in dark color sphalerite, Ge in light color sphalerite, and Ga in yellow-brown sphalerite, while the content of Se in sphalerite does not change with color. In sphalerite Zn is negatively correlated with Cd, positively correlated with Ge, but insignificantly correlated with Se.2. The color genesis of sphalerite. The color of sphalerite is uneven internally, varying from purple, red, yellow to blank. The color seen by naked eyes is a synthetic effect of inside crystal and caused by Ni, Cu, T1, Ga, Hg, Fe, Cr, etc., of which the most important elements are Ni, Cu, Ga. Ni induces purple, Cu red and Ga yellow. Cd enriches in dark color sphalerite because its
    positive correlation with Ni and Cu.3. Ore deposit geochemistry. The ores have a low total content of rare earth elements (£REE=2.66—10.19 ppm), relatively enriched light rare earths and a negative Eu anomaly. The hydrogen, carbon and oxygen isotopic compositions of ore fluids are 5 D=-76~-60%o, 6 18O= 10.8—14.7%o and 8l3C=-19.1—-2.6%. Carbon and oxygen isotopic compositions of dolomite and calcite are 518O= 16.64-19.91% and 513C=1.12-3.02%. 6 34S values vary from 12.97 to 14.91 %o for sphalerite and from 7.91 to 11.14% for galena. The lead isotopic compositions of sulfides are 206Pb/204Pb= 18.470-18.586, 2O7Pb /204Pb = 15.542-15.707, and 208Pb/204Pb = 38.283—38.643. It was mainly derived from evolved formation water with slight amounts of oil-field brines. Sulfate reduction in the strata was the main source of sulfur for sulfide precipitation. CO2 came mainly from carbonates dissolution and partly from oxidatin of CH4.4. Discussion on ore genesis. The Mile—Shizong fracture zone may serve as an ore conductive fault, while the interlayer faults at the core of the Tuoniu-Duza anticline are favorable ore-hosting structures. The deposit contains abundant fluid inclusions. The ore-forming fluid has a medium-low temperature (160-240 °C)i a low salinity (4.5~10 wt%NaCl), and a low pressure (52.9~60.1 MPa). The ore-forming elements may have been derived from several sources, among which the sedimentary rock cover was the main source, especially the Permian Maokou Formation and the Carboniferous Baizuo Formation. The ore precipitated in a slightly alkalic and reducing environment with medium sulfur fugacity. The driving force for ore fluids was tectonic stress. This deposit belongs to the Mississippi Valley-type lead-zinc deposit and its metallogenic epoch is Yanshanian. Favorable source beds and oil-field brines were important for the deposit to enrich in dispersed elements.
引文
1.常向阳,朱炳泉,孙大中,等.东川铜矿床同位素地球化学研究:Ⅰ.地层年代学与铅同位素化探应用.地球化学,1997,26(2):32-38.
    2.陈丰.矿物颜色的本质.地质地球化学,1979,5(4):10.
    3.陈进.麒麟厂铅锌硫化矿矿床成因及成矿模式探讨.有色金属矿床与勘查,1993,2(2):85-89.
    4.陈武,季寿元.矿物学导论.北京:地质出版社,1985.
    5.陈永亨,王道德.陨石中Ge的宇宙地球化学.地质地球化学,1993,19(3):57-61.
    6.陈毓川,毛景文.四川大水沟碲(金)矿床地质和地球化学.北京:原子能出版社,1996.
    7.邓海琳.中国滇东北乐马厂独立银矿床成矿地球化学——兼论水—岩反应.中国科学院博士论文.贵阳:中国科学院地球化学研究所.1997.
    8.方正,Cesser,H.煤烟尘中镓的酸浸及一种泡沫海面的提取.中南矿冶学院学报,1994,25(6):762-766.
    9.冯彩霞,刘家军.鄂西南双河渔塘坝硒矿区硅质岩地球化学特征.吉林大学学报(地球科学版),2002,32(1):21-25.
    10.冯彩霞.扬子地块周边寒武、二叠硅岩建造中硒的富集机理对比研究——以渔塘坝、紫阳富硒区为例.中国科学院博士学位论文.贵阳:中国科学院地球化学研究所.2004.
    11.付绍洪.扬子地块西南缘铅锌成矿作用于分散元素镉镓锗富集规律.成都理工大学博士学位论文.成都:成都理工大学.2004.
    12.高振敏,李朝阳.分散元素矿床地球化学.资源环境与可持续发展.北京:科学出版社,1999.
    13.高子英.云南主要铅锌矿床的铅同位素特征.云南地质,1997,16(4):359-367.
    14.谷团,李朝阳.分散元素隔的资源该矿及其研究——来自牛角塘铅锌矿的线索,地质地球化学,1998,26(4):38-42.
    15.谷团.牛角塘独立镉矿床初步研究.中国科学院硕士学位论文.贵阳:中国科学院地球化学研究所,1999.
    16.顾雪祥,王乾,付绍洪,等.分散元素超常富集的资源与环境效应:研究现状与发展趋势.成都理工大学学报(自然科学版),2004,31(1):16-21.
    17.韩润生,刘丛强,黄智龙,等.论云南会泽富铅锌矿床成矿模式.矿物学报,2001,21(4):674-680.
    18.胡华斌,牛树银,毛景文,等.鲁西平邑磨坊沟碲金型金矿的地质特征及成因机制.地球学报,2004,25(5):523-528.
    19.胡瑞忠,毕献武,叶造军,等.临沧锗矿床成因初探.矿物学报,1996,16(2):97-102.
    20.胡瑞忠,苏文超,戚华文,等.锗的地球化学、赋存状态和成矿作用.矿物岩石地球化学通报,2000,19(4):215-217.
    21.胡瑞忠,毕献武,苏文超,等.对煤中锗矿化若干问题的思考.矿物学报,1997,17(4):364-368.
    22.胡耀国.贵州银厂坡银多金属矿床银的赋存状态、成矿物质来源与成矿机制.中国科学院博士学位论文.贵阳:中国科学院地球化学研究所,2000.
    23.黄智龙,陈进,韩润生,等.云南会泽超大型铅锌矿床地球化学及成因.地质出版社,2004.
    24.贾殿武,符增友,张惠文.我国首次发现的镉银黝铜矿.矿物学报,1988,8(2):136-137.
    25.黎彤.地壳元素丰度的若干统计学特征.地质与勘探.1992,28(10):1-7
    26.李迪恩,彭明生.闪锌矿的吸收光谱和颜色的本质.矿物学报,1990,10(1):29-34.
    27.李连举,刘洪滔,刘继顺.滇东北铅、锌、银矿床矿源层问题探讨.有色金属矿产与勘查,1999,8(6):333-339.
    28.李文博.会泽超大型铅锌矿床成矿时代及地球化学.中国科学院博士学位论文.贵阳:中国科学院地球化学研究所,2004.
    29.李振寰.元素性质数据手册.石家庄:河北人民出版社.1985.
    30.廖文.滇东、滇西Pb-Zn金属区S、Pb同位素组成特征与成矿模式探讨.地质与勘探,1984,20(1):1-6.
    31.林方成.康滇地轴东缘铅锌矿床铅同位素组成特征及其成因意义.特提斯地质,1995,19:131-139.
    32.刘宝瑶.沉积岩石学.北京:地质出版社.1980.
    33.刘家军,郑明华,刘建明,等.西秦岭寒武系金矿床中硒的富集规律及其找矿前景.地质学报,1997,71(3):266-273.
    34.刘家军,刘建明,卢文全,等.邛莫金矿床中的硒辉锑矿.矿物学报,1998,18(4):445-449.
    35.刘家军,郑明华.首次发现锑的硒—硫化物系列.科学通报,1992,37(9):864.
    36.刘家军,冯彩霞,刘燊,等.鱼塘坝硒矿硅质岩的地球化学特征及成因。沉积学报.2002,20(4):727-732.
    37.刘建明,刘家军,顾雪祥.沉积盆地中的流体活动及其成矿作用.岩石矿物学杂志,1997,16(4):341-351.
    38.刘建明,刘家军.滇黔桂金三角区微细浸染型金矿床的盆地流体成因模式.矿物学报。1997.17(4):448-456.
    39.刘平.五论贵州之铝土矿—黔中—川南成矿带铝土矿成矿岩系.贵州地质,1995,12(3):185-203.
    40.刘铁庚,裘愉卓,叶霖.闪锌矿的颜色成分和硫同位素之间的密切关系.矿物学报,1994,14(2):199-205.
    41.刘铁庚,张乾,叶霖,等.自然界中ZnS-CdS完全类质同象系列的发现和初步研究.中国地质,2004a,31(1):40-45.
    42.刘铁庚,张乾,叶霖,等.贵州牛角塘锌矿床中发现原生硫镉矿.矿物学报,2004b,24(2):191-196.
    43.刘英俊,曹励明,李兆麟,等。元素地球化学.北京:科学出版社,1984.
    44.刘英俊,曹励明.元素地球化学导论.北京:地质出版社,1987.
    45.刘玉平,李朝阳,谷团,等.都龙锡锌多金属矿床成矿物质来源的同位素示踪.地质地球化学,2000,26(4):75-82.
    46.刘中凡,杜雅君.我国铝土矿资源综合分析.轻金属,2000,12:8-12.
    47.柳贺昌,林文达.滇东北铅锌银矿床规律研究.昆明:云南大学出版社.1999.
    48.柳贺昌.峨眉山玄武岩与铅锌成矿.地质与勘探,1995,31(4):1-6.
    49.卢焕章,李秉伦,沈昆,等.包裹体地球化学.北京:地质出版社,1990.
    50.卢家烂,庄汉平,傅家谟,等.临沧超大型锗矿床的沉积环境、成岩过程和热液作用与锗的富集.地球化学,2000,29(1):36-42.
    51.骆耀南,曹志敏,温春齐,等.大水沟独立碲矿床.成都:西南交通大学出版社,1996.
    52.骆耀南,曹志敏.四川发现世界首例独立碲矿床.中国地质,1994,21(2):27-29.
    53.毛景文,陈毓川,周剑雄,等.四川省石棉县大水沟碲矿床地质、矿物学和地球化学.地球学报:1995,4(3):617-624.
    54.毛景文,王志良,李厚民,等.云南鲁甸地区二叠纪玄武岩中铜矿床的碳氧同位素对成矿过程的指示.地质论评,2003,49(6):610-615.
    55.南京大学地质系.地球化学.北京:科学出版社,1984.
    56.戚华文.陆相热水沉积与超大型锗矿床的成因.中国科学院博士学位论文.贵阳:中国科学院地球化学研究所,2002.
    57.戚华文,胡瑞忠,苏文超,等.陆相热水沉积成因硅质岩与超大型锗矿床的成因—以临沧锗矿床为例.中国科学(D辑),2003,33(3):236-246.
    58.邱检生.牛树桂.我国首例碲金型浅成低温热液金矿床—山东平邑归来庄金矿床.地质与勘探,1994,30(1):7-12.
    59.全国矿产储量委员会办公室.矿产工业要求参考手册.北京:地质出版社,1987.
    60.沈苏,金明霞,陆远发,等.西昌—滇中地区主要矿产成矿规律及找矿方向.重庆:重庆出版社.1988.
    61.沈渭洲.稳定同位素地球化学.北京:原子能出版社,1987.
    62.宋成祖.鄂西南渔塘坝沉积型硒矿化区概况.矿床地质,1989,8(3):81-89.
    63.涂光炽,高振敏,胡瑞忠,等.分散元素地球化学及成矿机制.北京:地质出版社,2003.
    64.涂光炽.分散元素可以形成独立矿床一个有待开拓深化的新矿产领域.中国矿物岩石地球化学研究新进展.兰州:兰州大学出版社,1994.
    65.涂光炽.中国层控矿床地球化学(第二卷).北京:科学出版社,1984.
    66.涂光炽.中国层控矿床地球化学(第三卷).北京:科学出版社,1988.
    67.王登红.地幔柱的概念、分类、演化与大规模成矿:对中国西南部的探讨.地学前缘,2001,8(3):67-72.
    68.王濮.系统矿物学(下册).北京:地质出版社.1989.
    69.王小春.康滇地轴中段东缘震旦系灯影组层控铅锌矿床成矿机理——以天宝山和大梁子矿床为例.硕士学位论文.成都:成都地质学院,1988.
    70.王小春.四川大梁子铅锌矿床的成因分析.矿产与地质,1991,5(3):151-156.
    71.王小春.天宝山铅锌矿床成因分析.成都地质学院学报,1992,19(3):10-20.
    72.王中刚.稀土元素地球化学.北京:科学出版社.1989.
    73.温汉捷,肖化云.硒矿物综述.矿物岩石学杂志,1998,17(3):260-265.
    74.姚林波,高振敏,龙洪波.分散元素硒的地球化学循环及其富集作用.地质地球化学,1999,27(3):62-67.
    75.姚林波,高振敏.恩施双河渔塘坝硒矿床成因探讨.矿物岩石地球化学通报,2000,19(4):350-352.
    76.张宝贵,王三学,胡静,等.贵州滥木厂铊矿床和烂泥沟(含铊)金矿床稀土铊多金属初步研究.中国科学院矿床地球化学开放研究实验室年报.贵阳:贵州科技出版社,2001.
    77.张宝贵,张忠.滥木厂独立铊矿床主要地球化学特征.资源环境与可持续发展.北京:科学出版社。1999.
    78.张理刚,陈振胜,刘敬秀,等.两阶段水—岩同位素交换理论及其勘查应用.北京:地质出版社。1995.
    79.张淑苓,尹金双,王淑英.云南帮卖盆地煤中锗存在形式的研究.沉积学报,1988,6(3):29-40.
    80.张位及.试论滇东北Pb-Zn矿床的沉积成因和成矿规律.地质与勘探,1984,20(7):11-16.
    81.张云湘,骆耀南,杨崇喜。攀西裂谷.北京:地质出版社,1988.
    82.赵伦山,张本仁.地球化学.北京:高等学校出版社,1988.
    83.赵振华.微量元素地球化学原理.北京:科学出版社,1997.
    84.郑宝山,洪业汤,赵伟,等.鄂西的富硒炭质硅质岩与地方性硒中毒.科学通报,1992,37(11):1027-1029.
    85.郑永飞,陈江峰.稳定同位素地球化学.北京:科学出版社,2000.
    86.中国大百科全书编写组.中国大百科全书(地质卷).北京:中国大百科全书出版社,1993.
    87.中国科学院地球化学研究所.高等地球化学.北京:科学出版社,1998.
    88.中国科学院地球化学研究所.简明地球化学手册.北京:科学出版社,1977.
    89.中国科学院矿床地球化学开放研究实验室.矿床地球化学.北京:地质出版社,1997.
    90.周朝宪,魏春生,叶造军.密西西比河谷型铅锌矿床.地质地球化学,1997,23(1):65-75.
    91.周朝宪.滇东北麟麒厂锌铅矿床成矿金属来源、成矿流体特征和成矿机理研究.中国科学院硕士学位论文.贵阳:中国科学院地球化学研究所,1996.
    92.周卫宁,傅金宝.广西大厂矿田铜坑—长坡矿区闪锌矿的标型特征.矿物岩石,1989。9(2):66-72
    93.朱炳泉.地球科学中同位素体系理论与应用——兼论中国大陆壳幔演化.北京:科学出版社,1998.
    94.庄汉平,刘金钟,傅家谟,等.临沧超大型锗矿床有机质与锗矿化的地球化学特征.地球化学,1997,26(4):44-52.
    95.庄汉平,卢家烂,傅家谟,等.临沧超大型锗矿床锗赋存状态研究.中国科学(D辑),1998,28(增刊):37-42.
    96. Anderson G M. Mississippi Valley Type Ore deposit. Ore deposit Workshop, 1979. 1-13.
    97. Anderson G M. Organic maturation and Ore precipitation in Southeast Missouri. Economic Geology, 1991, 86(5): 909-926.
    98. Anderson G M. Precipitation of Mississippi Valley-Type ores. Economic Geology, 1975, 70: 937-942.
    99. Anderson I K, Andrew C J, Ashton J H, Boyce A J, Caulfield J B D, Fallick A E, Russell M J. Preliminary sulfur isotope data of diagenetic and vein sulfides in the Lower Palaeozoic strata of Ireland and southern Scotland: Implications for Zn+Pb+Ba mineralization. Geol Soc London J, 1989, 146: 715-720.
    100. Anderson I K, Ashton J H, Boyce A J, Fallick A E, Russell M J. Ore depositional processes in the Navan Zn+Pb deposit, Ireland. Econ Geol, 1998, 93: 535-563.
    101. Bastin E S. Contributions to a Knowledge of the Lead and Zinc Deposits of the Mississippi Valley Region. Geological Society of America, Special Papre. 1939, 24: 156.
    102. Bautar J R J C, Emeleus H J, Nyholm R. Comprehensive inorganic chemistry (2). Oxford. Pergamon Pree Ltd. 1973.
    103. Bethke C M, Marshak S. Brine migration across North America? The plate tectonics of ground water. Ann. Rev. of Earth and planet Sci., 1990, 18: 287-315.
    104. Bjorlykke A, Sangster D F. An overview of sandstone-lead deposits and their ralation to red-bed copper and carbonate-hosted lead-zinc deposits. Economic Geology, 1981, 75th Anniversary Volume: 179-213.
    105. Boynton W V. Cosmochemistry of the rare earth elements: meteorite studies. Dev Geochem, 1984, 2: 63-114.
    106. Brannon J C, Podosek F A, MeLimans R K. Alleghenian age of the Upper Mississippi Valley-Type zinc-lead deposit determined by Rb-Sr dating of sphalerite. Nature, 1992, 356: 509-511.
    107. Cameron A G W. Abundance of the elements in solar sustem. Space Sci. Reb., 1973, 15: 121-146.
    108. Cherty D, Frimmel H E. The role of evaporties in the genesis of base metal sulphide materialization in the Northern Platform of the Pan-Africa Damara Balt, Namibia: Geochemical and fluid inclusion evidence from carbonate wall rock alteration. Mineralium Deposota, 2000, 35: 364-376.
    109. Chung S L, John B M. Plume-lithosphere interaction in generation of the Emeishan flood basalts at the Permian-Triassic boundary. Geology, 1995, 23: 889-892.
    110. Conzemius F J. Elementary partitioning in fie ash depositories and materiall balances for a coal burring facility by spark source mass-spectrometry. Environ. Sci. Teehnoi., 1984, 18: 12-18.
    111.Deb M.印度西北部拉爱斯坦帮拉吉普拉—达里博带层状zn—Pb—Cu硫化物矿床硫碳同位素组成及成矿模式.地质地球化学,1987,13(11):11.
    112. Dejonghe J, Boulegue J, Demaffe D, Letolle R. Isotope geochemistry (S, C, O, Sr, Pb) of the Chaudfontaine mineralization (Belgium). Mineral. Deposita, 1989, 24: 132-134.
    113. Dixon G, Davidson G J. Stable isotope evidence for thermochemieal sulfate reduction in the Dugald River (Australia) strata-bound shale-hosted zinc-lead deposit. Chem Geol, 1996, 129: 227-246.
    114. Gao Zhenmin, Li Chaoyang, Yao Linbo. Independent ore deposits of dispersed elements. Chinese Science Bulletin, 1999, 44(suppl.2): 208-210.
    115. Garven G, Ge S, Person M A. Genesis of stratabound ore deposits in the mid continental bsins of North America. Ⅰ. The role of regional ground water flow. American journal of Science, 1993, 293: 497-568.
    116. Ghazban F, Schwartz H P, Ford D C. Carbon and sulfur isotope evidence for in situ reduction of sulfate in Nanisivik zinc-lead deposits, Northwest Territories, Baffin Island, Canada. Econ Geol, 1990, 85: 360-375.
    117. Gustafson L B, Williams N. Sediment-hosted stratiform deposits of copper, lead and zinc. Economic Geology, 75~(th) Anniversary Volume, 1981:139-178.
    118. Hu Ming-An, Disnar J R, Surean J F. Organic geochemical indicators of biological sulphate reduction in early diagenetic Zn-Pb mineralization: the Bois-Madame deposit (Gard, France). Applied Geochem, 1995,10(4): 419-435.
    119. Hu Ruizhong, Bi Xianwu, Su Wenchao, et al. Ge-rich hydrothermal solution and abnormal enrichment of germanium incoal. Chinese Science Bulletin, 1999,44(2): 257-258.
    120. Jorgenson B B, Isaksen M F, Jannasch H W. Bacterial sulfate reduction above 100℃ in deep sea hydrothermal vent sediments. Science, 1992,258: 1756-1757.
    121. Kamana A F, Levequw J, Friedrich G. and Haack U. Lead isotopes of the carbonate-hosted Kabwe, Tsumeb, and Kipushi Pb-Zn-Cu Sulphide deposits in relationt to Pan Africen orogenesis in the Damaran-Lu? Lian Fold Belt of Central Africal. Mineralium Deposita, 1999, 34:273-283.
    122. Leach D L, Sangster D F. Mississippi Valley-type lead-zinc deposits. In: Kirkham R V, Sinclair W D, Thorpe R I, Duke J M (eds) Mineral deposit modeling. Geol Assoc Can Spec Pap, 1993,40:289-314.
    123. Leach D L, Bradley D, Lewchuk M T, et al. Mississippi valley-type lead-zinc deposits through geological time: implications from recent age-dating research. Mineralium Deposita, 2001a, 36: 711-740.
    124. Leach D L, Premo W, Lewchuk M T, et al. Evidence for Mississippi Valley-type lead-zinc mineralization in the Cevenne region, southern France, during Pyrenees orogeny. In: Mineral Deposits at the Beginning of the 21~(st) Centry. Balkema, Rotterdam. 2001b: 157-160.
    125. Leach D L, Rowan E L. Genetic link between Ouachita foldbelt tectonism and the Mississippi Valley-type lead-zinc deposits of the Ozarks. Geology, 1986,14:931-935.
    126. Liu Tiegeng, Ye Lin, Chen Guoyong. Geochemical characteristics of independent cadmium deposit, Niujiaotang, Duyun, Guizhou. Chinese Science Bulletin, 1999,44(suppl.2): 61-63.
    127. Lo C -H, Chung S -L, Lee T -Y, Wu G Y. Age of the Emeishan flood magmatism and relations to Permian-Triassic boundary events. Earth Planet Sci Lett, 2002,198:449-458.
    128. Machel H G Relationships between sulphate reduction and oxidation of organic compounds to carbonate diagenesis, hydrocarbon accumulations, salt domes, and metal sulphide deposits. Carbonates Evaporites, 1989,4:137-151.
    129. Matthews A and Kata A. Oxygen isotopic fractionation during the dolomitization of calcium carbonate. Geochem.cosmochim. Acta, 1977,41:1431-1438.
    130. Michalel O. Schwartz Cadmium in Zinc Deposit: Economic Geology of a Polluting Element. International geology Review. 2000,42:445-469.
    131. Novgorodova M I, et al. Native Cadmium from southern Vrkhoyan. International Geology Review, 1983,25(3): 357-367.
    132. Ohle E L. Some considerations in determining the origin of ore deposits of the Mississippi Valley type. Part32. Economic Geology, 1980, 75:161-172.
    133. Ohmoto H, Kaiser C J, Geer K A. Systematics of sulphur isotopes in recent marine sediments and ancient sediment-hosted base metal deposits. In: H. K Herbert and S. E. Ho (Editors), Stable isotopes and Fluid Processes in Mineralisation. Geol. Dep. Univ. Extens., Univ. of Western Australia, 1990, 23: 70-120.
    134. Ohmoto H, Goldhaber M B. Sulfer and carbon isotopes. In: Geochemistry of Hydrothermal deposits(ed H L Barnes), 3rd Edition, John Wiley and Sons, New York, 1997, 517-614.
    135. Ohmoto H. Systematics of sulfur and carbon isotopes in hydrothermal ore deposits. Econ Geol, 1972, 67: 551-579.
    136. Oliver J. Fluid expelled tectonieally from orogenic belts: Their role in hydrocarbon migration and other geologic phenomena. Geology, 1986, 14: 99-102.
    137. Pattriek Richard A D. Microprobe analyses of cadmium-rich tetrahedrites from Tyndrum, Pethshire, Scotland. Minralogical magzine, 1978, 42: 286-288.
    138. Pokrovski G S, Sehott J. Thermodynamic properties of aqueous Ge(Ⅳ)hydroxide complexes from 25 to 350℃: Implications for behavior of germanium and the Ge/Si ratio in hydrothermal fluids. Geochem. Cosmochem. A cta, 1998a, 62(9): 1631-1642.
    139. Pokrovski G S, Sehott J. Experimental study of the eomplexation of silicon and germanium with aqueous organic species: Implications for germanium and silicon transport and Ge/Si ratio in natural waters. Geoehem. Cosmoehem. Acta, 1998b, 62(21/22): 3414-3428.
    140. Rene T M. Manganoan-Cadmium tetrahedrite for the Tunaberg Cu-Co deposit, Bergagen, central Sweden. Mineralogical Magine, 1992, 56, 382, 113-115.
    141. Ribbe T H. Sulfide mineralogy, Blacksbury, Va., Southern Ptinting Co., 1974, Various Pagings, illus Rsf. (Mineralogisecal Society of Amefieai shaft course notes, Ⅵ).
    142.SangesterD F.密西西比河谷型与沉积喷气型矿床的对比(张秋明译).国外地质科技,1991,15(8):5-20.
    143. Sangster D E Mississippi Valley-type deposits: a geological melange. In: Kisvarsanyi G, Grant S K, Pratt WP, Koenig J W (eds) International conference on Mississippi Valley-type lead-zinc deposits. University of Missouri Press, Rolla, Missouri, 1983.
    144. Sangster D F. Mississippi Valley-type lead-zinc. In: Geology of Canadian Mineral Deposit Types (eds. O. R. Eekstrand, W. D. Sinclair, and R. I. Thorpe): Geological Survey of Canada, 1996, 8: 253-261.
    145. Sangster D F. Mississippi Valley-type and SEDEX deposits: Acomparative examination. Institution of Mining and Metallurgy, Transactions, Section B, 1990, 99: B21-B42.
    146. Sawkins F J. The significance of Na/K and Cl/SO_4 ratios in fluid inclusions and surface waters with respect to the genesis of Mississippi Valley-type deposits. Economic Geology, 1968, 63: 1057-1068.
    147. Schwartz M O. Cadmium in zinc deposits: Economic geology of apolluting element. International Geology Review, 2000, 42: 445-469.
    148. Song X Y, Zhou M F, Hou Z Q, Cao Z M, Wang Y L, Li Y G. Geochemical Constraints on the Mantle Source of the Upper Permian Emeishan Continental Flood Basalts, Southwestern China. Inter Geol Rev, 2001, 43: 213-225.
    149. Stein H J, Kish S A. The significance of Rb-Sr glauconites ages, Bormeterre Formation Missouri: Late Devonian-Early Mississippian brine migration in the mid-continent, USA. J Geol., 1991, 99: 1468-1481.
    150. Stein H J, Kish S A. The timing of ore formation in Southeast Missouri: Rb-Sr glauconite dating at the Magmont Mine, Viburnum Trend. Economic Geology, 1985, 80: 739-753.
    151. Su Wenchao, Hu Ruizhong. Geochemistry of ceousrocks and germanium materialization of Lin-cang super largeger manium depositin Yunnan Province. Chinese Science Bulletin, 1999, 44(2): 156-157.
    152. Sverjensky D A. Genesis of Mississippi Valley-Type lead-zinc eposit. Ann. Rev. Earth Planet Sci., 1986,14:177-199.
    153. Sverjensky D A. Oil field brines as ore-forming solution. Economic Geology, 1984, 79: 23-37.
    154. Szymanski J T. The Crystal structure of cernyite, Cu_2CdSnS_4, A cadmium analogue of stannite. Canadian Mineralogist, 1978,116: 147-151.
    155. Taylor Jr H P. The application of oxygen and hydrogen isotope studies to ptoblems of hydrothermal alteration and ore deposition. Econ Geol, 1974,69: 843-883.
    156. Taylor S R, McClennan S M. The continental crust: its composition and evolution. Blackwell Scientific Publications, 1985,67.
    157. Toulmin N P. et al. Commetary on sphalerite geobarmeter. Ammer. Min., 1991, 75(5-6): 1038.
    158. Vlasov K A. Geochemistry and mineralogy of rare elements and genetic types of their deposits, v. 1: Jeruysalem, Israel Program for Scientific Translations, 1966:688.
    159. Wedepohl K H, ed. Handbook of geochemistry. Berlin: Speringer, 1972.
    160. Wen Hanjie, Qiu Yuzhou.Geological setting of some selenium-bearing formations in China.Chinese Science Bulletin, 1999a, 44(suppl.2): 184-185.
    161. Wen Hanjie, Qiu Yuzhou. Organic and in organic oc- currence of seleniumin Laerma Se-Au deposit, China. Science In China, 1999b, 42(6): 662-669.
    162. White D E. Environment of generation of some base metal deposits. Economic Geology, 1968,63:301-335.
    163. Xu Y G, Chung S L, Jahn B M, Wu G Y. Petrologic and geochemical constraints on the petrogenesis of Pennian-Triassic Emeishan flood basalts in southwestern China. Lithos, 2001, 58:145-168.
    164. Ye Lin, Liu Tiegeng. Existing state of Cd in Niujiaotang Cd-rich zinc deposit, Guizhou, China. Chinese Science Bulletin, 1999c, 44(suppl.2): 182-183.
    165. Ye Lin, Liu Tiegeng. Simulating experiment on soaking and leaching of Cd in theNiujiaotang Cd-rich zinc deposit, Guizhou, China. Chinese Science Bulletin, 1999a, 44(suppl.2): 190-193.
    166. Ye Lin, Liu Tiegeng. Sphelerite chemistry of Niujiaotang Cd-rich zinc deposit, Guizhou, southwest China.Chinese Journal of Geochemistry, 1999b, 18(1): 62-68.
    167. Zartman R E, Doe B R. Plumbotectonics—The model. Tectonophysics, 1981 (75): 135-162.
    168. Zhang Qian. Trace elements in galena and sphalerrite and their geochemical significance in distinguishing the genetic type of Pb-Zn ore deposits. Geochemistry, 1987, 6(2): 177-190.
    169. Zhang Zhong, Chen Guoli, Zhang Baogui, et al. The Lanmuchang Tl deposit and its environmental geo-chemistry. Science in China, 2000,43(1): 51-52.
    170. Zhang Zhong, Zhang Baogui, Tang Chunjing, et al. The main geochemical biological and reworking met-allogenic models of the Lanmuchang independence Tl deposit deposit. Chinese Journal of Geochemistry, 2000, 19(1): 45-51.
    171. Zheng Fang, Gesser H D., recovery of gallium from coal fly ash. Hydrometallurgy, 1996, 41: 187-200.
    172. Zhou M F, Malpas J, Song X Y, Robinson P T, Sun M, Kennedy A K, Lesher C M, Keays R R. A temporal link between the Emeishan large igneous province (SW China) and the end-Guadalupian mass extinction. Earth Planet Sci Lett, 2002,196: 113-122.
    173.Zhuang Hanping, Lu Jiacan, Fu Jiamo, et al. Lin-cang super large germanium deposit in Yunnan Province, China: Sedimentation, diagenesis, hy-drotherma lprocess and materialization. Journal of China University of Geosciences, 1998, 9(2): 129-136.
    174. Zhuang Hanping, Lu Jiacan. Germanium occurrence in Lincang superlarge deposit in Yunnan, China. Science in China, 1998,41(suppl.): 21-27.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700