用户名: 密码: 验证码:
GdBa_2Cu_3O_(7-δ)高温超导体微结构与临界电流密度研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用元素替代引入磁通钉扎中心是简单有效的方法,适合于实际应用。GdBa_2Cu_3O_(7-δ)(Gd123)超导体中由于Gd~(3+)替代Ba~(2+)形成的固溶体在磁场中可以作为有效的钉扎中心,从而显示了比YBa_2Cu_3O_(7-δ)超导体更高的捕获场和临界电流密度,并且Gd123单畴块材超导体的制备比YBa_2Cu_3O_(7-δ)相对简单,因此成为近代超导块材应用的主要候选者。研究Gd123超导体的微结构及其超导性能对优化其应用性能有着重要的指导意义。同时中子辐照方法可以人为的控制引入的钉扎中心的大小和密度,藉此可以研究高温超导体的钉扎磁通机制。因此我们首先使用粉末熔化生长法(PMP)制备了一系列的Gd123单畴块材超导体,接着研究了Gd123超导体单畴块材的微结构特性、磁通动力学和临界电流密度,以及中子辐照对Gd123超导体单畴块材的微结构和临界电流密度的影响。
     第一章:介绍了提高高温超导体临界电流密度的两种主要方法,即元素替代和辐照方法。重点介绍了REBa_2Cu_3O_(7-δ)(RE=Nd,Eu,Sm,Gd)超导体的RE~(3+)对Ba~(2+)替代形成的固溶体的形貌及其产生的特殊的磁通钉扎特点。另外介绍了辐照的主要反应方式,以及辐照对高温超导体的微结构和临界电流密度的影响。
     第二章:使用PMP法制备了不同名义组份的Gd_(1+2x)Ba_(2+x)Cu_(3+x)O_(7-δ)(x=0,0.1,0.2,0.3,0.4)单畴超导体块材,观察了其微结构特性以及Gd_2BaCuO_5(Gd211)相的添加量(即x值)对形成Gd_(1+y)Ba_(2-y)Cu_3O_(7-δ)固溶体的影响。块材的晶格c轴参数随x的增大几乎线形下降,表明即使添加40%Gd211也没有使样品中Gd~(3+)对Ba~(2+)的替代达到饱和。
     第三章:对不同名义组份的Gd_(1+2x)Ba_(2+x)Cu_(3+x)O_(7-δ)(x=0,0.1,0.2,0.3,0.4)单畴超导体块材进行了磁测量和输运测量,这种块材中存在Gd123(包含Gd_(1+y)Ba_(2+y)Cu_3O_(7-δ)固溶体)和Gd211相。Gd211相粒子贡献于低场下的磁通钉扎,因此常在制备过程中有目的的添加一些Gd211粒子。然而Gd~(3+)对Ba~(2+)替代形成的固溶体提供了高场下的钉扎中心。我们发现当x=0.2时Gd_(1.4)Ba_(2.2)Cu_(3.2)O_(7-δ)块材具有最高的捕获场。所有样品临界电流密度随磁场变化的曲线都出现显著的鱼尾峰,其中Gd_(1.4)Ba_(2.2)Cu_(3.2)O_(7-δ)样品具有最高的鱼尾峰值场。电阻随温度降低的曲线出现了第二个超导转变,这是由于弱超导性的Gd_(1+y)Ba_(2-y)Cu_3O_(7-δ)固溶体引起的。这些固溶体分散在Gd123基体中,在高的磁场中贡献于δT_c磁通钉扎,提高了高场下的临界电流密度,因此导致了鱼尾峰效应。x=0.2时的样品具有最佳的磁通钉扎特性。
     第四章:观察了中子辐照对名义组份Gd_(1.4)Ba_(2.2)Cu_(3.2)O_(7-δ)和Gd_(1.8)Ba_(2.4)Cu_(3.4)O_(7-δ)单畴块材超导体微结构及临界电流密度的影响。使用相同剂量的中子辐照不同Gd含量的超导样品,发现由于Gd_(1.8)Ba_(2.4)Cu_(3.4)O_(7-δ)高的Gd含量导致了严重的中子辐照损伤及相分解,证明了中子辐照过程中Gd与中子的反应发挥着重要的影响。辐照的Gd_(1.4)Ba_(2.2)Cu_(3.2)O_(7-δ)样品超导性能的严重退化是由于发生了相分解及大的微结构缺陷,即使经再退火其超导性能也不能恢复到辐照前的状态。
     第五章:研究了中子辐照对名义组份GdBa_2Cu_3O_(7-δ)单畴块材超导体的微结构及临界电流密度的影响。发现中子辐照抑制了磁滞回线中的鱼尾效应,然而在退火后显示了高的鱼尾峰值,且超过了辐照前样品的鱼尾峰值,说明辐照后退火使样品中产生了新的钉扎中心,提高了样品的磁通钉扎能力。
In the viewpoint of practical application, element substitution is a simple approach to introduce the flux pinning centers. For GdBa_2Cu_3O_(7-δ) (Gd123) superconductor, the Gd_(1+y)Ba_(2-y)Cu_3O_(7-δ) solid solution due to the substitution of Ba~(2+) by Gd~(3+) can act as strong flux pinning centers and are highly effective in increasing the flux pinning capability. And consequently Gd123 superconductor exhibits higher trapped fields and higher critical current density compared with those of YBa_2Cu_3O_(7-δ) superconductor. Moreover, the preparation process for Gd123 superconductor is simpler than that for YBa_2Cu_3O_(7-δ) superconductor. So Gd123 superconductor is very attractive for various industrial applications.
     In addition, neutron irradiation is a controlled way for the introduction of flux pinning centers and provides a feasible route to investigate the flux pinning mechanisms in superconductor. In this dissertation, firstly, we have grown Gd123 single domain bulks by a powder melt process (PMP). Secondly we investigated their microstructure, flux pinning properties and critical current density with the aim of optimizing the applied properties. Finally, we studied the effect of neutron irradiation on microstructure and critical current density of Gd123 superconductor.
     In chapter one, two methods, element substitution and neutron irradiation, for the enhancement of critical current density were introduced. The microstructure of the solid solution by RE (RE = Nd, Eu, Sm, Gd) substitution for Ba in the REBa_2Cu_3O_(7-δ) superconductor and the flux pinning characteristic of the REBa_2Cu_3O_(7-δ) superconductor were summarized. The main interactions between neutron and the atoms of the high T_c superconductor (HTS) and the effects of the neutron irradiation on the microstructure and the critical current density of the HTS were also introduced.
     In chapter two, a series of the nominal Gd_(1+2x)Ba_(2+x)Cu_(3+x)O_(7-δ) (x = 0, 0.1, 0.2, 0.3, 0.4) single domain superconductors were synthesized by PMP. The microstructures of the single domains were observed and the effects of the Gd211 addition on the Gd_(1+y),Ba_(2-y)Cu_3O_(7-δ) solid solutions were investigated. The steady reduction of c of single domain bulks with increasing x means that the occupation of Gd~(3+) ions in Ba~(2+) sites dose not reach the maximum amount even Gd211 addition high up to 40 mol%, i.e. x = 0.4.
     In chapter three, the superconducting properties of the nominal Gd_(1+2x),Ba_(2+x)Cu_(3+x)O_(7-δ) (x = 0, 0.1, 0.2, 0.3, 0.4) single domain bulks which consist of Gd123, Gd_2BaCuO_5 (Gd211) and Gd_(1+y),Ba_(2-y)Cu_3O_(7-δ), have been investigated through magnetization and resistivity measurements. The Gd211 particles in the bulk sample can pin simultaneously several vortices and usually are added to increase pinning in low magnetic fields. However, the Gd_(1+y),Ba_(2-y)Cu_3O_(7-δ) solid solution due to the substitution of Ba~(2+) by Gd~(3+) can act as strong flux pinning centers and are highly effective in increasing the flux pinning capability in high magnetic fields. With increasing Gd211 content x, the trapped magnetic field reaches a maximum for the sample x = 0.2. The second peak in the critical current density J_c vs magnetic field B curve shifts toward high magnetic regime for the sample x = 0.2 compared with that for the sample x = 0, but decreases to low magnetic field for the samples x > 0.2. Two superconducting transitions in resistivityρ_(ab) indicate that the low-T_c clusters, i.e. Gd_(1+y),Ba_(2-y)Cu_3O_(7-δ) solid solutions, intersperse in GdBa_2Cu_3O_(7-δ) superconducting matrix. TheδT_c-pinning resulting from the compositional fluctuations should be responsible for the enhancement of J_c and trapped field for the sample x = 0.2.
     In chapter four, the effects of neutron irradiation on the microstructure and critical current density of the nominal Gd_(1.4),Ba_(2.2)Cu_3O_(7-δ) and Gd_(1.8),Ba_(2.4)Cu_3O_(7-δ) single domain superconductors were investigated. It is found that the more serious irradiation damage was produced by the interactions of the neutrons and the Gd atoms in Gd_(1.8),Ba_(2.4)Cu_(3.4)O_(7-δ) sample than in Gd_(1.4),Ba_(2.2)Cu_(3.2)O_(7-δ). For the nominal Gd_(1.4),Ba_(2.2)Cu_(3.2)O_(7-δ) superconductor, the fishtail can not reappear after annealing the irradiated sample due to the large irradiation damage and the dissolution of Gd123 (containing Gd_(1+y),Ba_(2-y)Cu_3O_(7-δ) solid solutions) by irradiation.
     In chapter five, the effects of neutron irradiation on the microstructure and critical current density of the nominal GdBa_2Cu_3O_(7-δ) single domain superconductor were studied. It is found that the fishtail in magnetization curve was repressed in the irradiated sample. However, the fishtail was enhanced in annealed irradiated sample and the J_c value was higher than that of nonirradiated sample.
引文
1. J.G. Bednorz, K. A. Muller, Z. Phys. B 64 (1986) 198.
    2. M.K. Wu, J. R. Asnbum, C. J. Torng, P.H. Hor, R. L. Meng, L. Gao, Z. J. Huang, Y. Q. Wang, C. W. Chu, Phys. Rev. Lett. 58 (1987) 908.
    3.赵忠贤,科学通报,32(1987)66.
    4. N.H. Babu, Y. Shi, K. Iida, D. A. Cardwell, Nature Mater. 4 (2005) 476.
    5. D.A. Cardwell, N. Hari Babu, Physica C 445-448 (2006)1.
    6. B.J. Kin, S. W. Lin, H. J. Kim, G. W. Hong, H. G. Lee, Physica C 445-448 (2006)582.
    7. A. Ibi, H. Fukushima, Y. Yamada, S. Miyata, R. Kuriki, K. Takahashi, Y. Shiohara, Supercond. Sci. Technol. 19 (2006) 1229.
    8. K. Takahashi, H. Kobayashi, Y. Yamada, A. Ibi, H. Fukushima, M. Konishi, S. Miyata, Y. Shiohara, T. Kato, T. Hirayama, Supercond. Sci. Technol. 19 (2006) 924.
    9. M. Matsui, S. Nariki, N. Sakai, K. Iwafuchi, M. Murakami, Supercond. Sci. Technol. 19 (2006)S601.
    10. Y. Ogama, Y. Nakamura, Supercond. Sci. Technol. 19 (2006) S455.
    11. H. Ikuta, T. Yamada, M. Yoshikawa, Y. Yanagi, Y. Itoh, B. Latha, U. Mizutami, Supercond. Sci. Technol. 19 (2006) S119.
    12. Y. Shi, N. Hari Babu, D. A. Cardwell, Supercond. Sci. Technol. 18 (2005) L13.
    13. K. Salama, V. Selvamanickam, L. Gao, K. Sun, Appl. Phys. Lett. 54 (1989) 2352.
    14. A. K. Pradhan, M. Muralidhar, M. R. Koblischka, M. Murakami, K. Nakao, N. Koshizuka, J. Appl. Phys. 86 (1999) 5705.
    15. L. Zhou, S. K. Chen, K. G. Wang, X. Z. Wu, P. X. Zang, Y. Feng, Physica C 363 (2001) 99.
    16. W. Gawalek, T. Habisreuther, M. Zeisberger, D. Litzkendorf, O. Surzhenko, S. Kracunovska, T. A. Prikhna, B. Oswald, L. K. Kovalev, W. Canders, Supercond. Sci. Technol. 17 (2004) 1185.
    17. S. Meslin, K. Iida, N. Hari Babu, D. A. Cardwell, J. G. Noudem, Supercond. Sci. Technol.19 (2006) 711.
    18. P.Diko, M. Sefcikova, K. Zmorayova, S. Haindl, H. W. Weber, G. Krabbes, Supercond. Sci. Technol. 19 (2006) S525.
    19. M. Murakami, Supercond. Sci. Technol. 13 (2000) 48.
    20. T. M. Mulcahy, J. R. Hull, K. L. Uherka, R. C. Niemann, R. G. Abboud, J. P. Juna, J. A. Lockwood, IEEE Trans. Appl. Supercond. 9(2) (1999) 297.
    21. Q. Jiang, M. Majoros, Z. Hong, A. M. Cambell, T. A. Coombs, 19 (2006) 1164.
    22. L. Kovalev, G. Krabbes, L. Fisher, H. C. Freyhardt, Supercond. Sci. Technol. 18 (2005)S24.
    23. P. T. Putaman, Y. X. Zhou, H. Fang, A. Klawitter, K. Salama, Supercond. Sci. Technol. 18(2005)S6.
    24.肖玲,任洪涛,焦玉磊,郑明辉,低温物理学报,25(2003)309.
    25. J. S. Wang, S. Y. Wang, Z.Y. Ren, H. Jiang, M. Zhu, X.R. Wang, X. M. Shen, H. H. Song, Physica C 386 (2003) 431.
    26. S. Stavrev, F. Grilli, B. Dutoit, S, Ashworth, Journal of Physics: conference series 43 (2006) 581.
    27. Z. N. Jiang, N. Amemiya, Supercond. Sci. Technol. 19 (2006) 742.
    28. Y. L. Cheung, I. P. Iones, J. S. Abell, T. W. Botton, E.F.Maher, Supercond. Sci. Technol. 20(2007)216.
    29. S. Takacsm, Supercond. Sci. Technol. 20 (2007) 180.
    30. J. Hanisch, N. Kozlova, C. Cai, K. Nenkov, G. Fuchs, B. Holzapfel, 20 (2007) 228.
    31. L. F. Fu, N. D. Browning, W, Ramadam, S. B. Ogale, D. C. Kundaliya, T. Ven Katesan, J. Phys. D: Appl. Phys. 40 (2007) 187.
    32. E. Demencik, P. Usak, S. Takacs, I. Vavra, M. Polak, G. A. Levin, P. N. Bames, 20 (2007) 87.
    33. P. S. Shankar, J. P.Singh, B. Ma, R. Koritala, B. L. Fisher, U. Balachandran, 19 (2006) 930.
    34. J. Xiong, Y. Chen, Y. Qiu, B. W. Tao, W. F.Qin, X. M. Cui, J. L. Tang, Y. R. Li, 19 (2006) 1068.
    35. A. Vannozzi, A. Rufolo, G, Celentano, A, Augieri, L. Ciontea, F. Fabbri, V. Galluzzi, U. Gambardella, A. Mancini, T. Petrisor, 19 (2006) 1240.
    36. J. Mannhart, D. A. Muller, Nature Material 4 (2005) 431.
    37. M. Qiu, Z. C. Zhang, Y. Q. Cao, X. H. Li, Y. Zhang, J. Fang, L. Z. Lin, L. Y. Xiao, Supercond. Sci. Technol. 20 (2007) 162.
    38. L. Rostila, J. Lehtonen, M. Mashi, R. Mikkonen, Supercond. Sci. Technol. 19 (2006) 756.
    39. B. Akram, M. Fardmanesh, J, Schubert, W, Zander, M. Banzet, D. Lomparski, M. Schmidt, H. J. Krause, Supercond. Sci. Technol. 19 (2006) 821.
    40. M. I. Faley, U. Poppe, K. Urban, D. N. Paulson, R. L. Fagaly, Journal of Physics: conference series 43 (2006) 1199.
    41. Y. Shi, N. Hari Babu, K. Iida, D. A. Cardwell, Supercond. Sci. Technol. 20 (2007) 38.
    42. M. Sugano, K. Osamura, W. Prusselt, R. Semerad, K. Itoh, T. Kiyoshi, Supercond. Sci. Technol. 18 (2005) S344.
    43. X. H. Zeng, X. Yao, J. Phys.: Condens. Mater 17 (2005) 4731.
    44. J. Hu, X. Yao, Z. Q. Fu, X. H. Zeng, X. Zhang, Supercond. Sci. Technol. 18 (2005) 587.
    45. P. C. Hsieh, S. Y. Chen, I. G. Chen, M. K. Wu, Supercond. Sci. Technol. 18 (2005) S111.
    46. X. Yao, A. Hu, Supercond. Sci. Technol. 17 (2004) L47.
    47. S. H. Wee, A. Goyal, P. M. Martin, J. Li, M. Paranthaman, L. Heatherly, Supercond. Sci. Technol. 19 (2006) L42.
    48. J. S. Bae, I. S. Yang, W. Jo, S. H. Wee, S. T. Yoo, Supercond. Sci. Technol. 19 (2006) 102.
    49. S. Nariki, N. Sakai, M. Kita, M. Fujikura, M. Murakami, I. Hirabayashi, Supercond. Sci. Technol. 19 (2006)S500.
    50.周午纵,梁维耀,《高温超导基础研究》,上海科学技术出版社(1999).
    51. Y. Zhao, C. H. Cheng, J. S. Wang, Supercond. Sci. Technol. 18 (2005) S43.
    52. Y. X. Zhou, W. Lo, T. B. Tang, K. Salama, Supercond. Sci. Technol. 15 (2002) 722.
    53. A. Li, Y. N. Wang, X. N. Ying, Q. M. Zhang, W. M. Chen, Supercond. Sci. Technol. 12 (1999) 645.
    54. L. Shlyk, G. Krabbes, G. Fuchs, K. Nenkov, B. Schupp, Supercond. Sci. Technol. 18 (2005) S10.
    55. Y. X. Zhou, S. Scruggs, K. Salama, Supercond. Sci. Technol. 19 (2006)S556.
    56. M. Muralidhar, T. Kono, M. Jirsa, N. Sakai, M. Murakami, I. Hirabayashi, Supercond. Sci. Technol. 19 (2006)S550.
    57. M. Muralidhar, T. Kono, M. Jirsa, N. Sakai, M. Murakami, I. Hirabayashi, Supercond. Sci. Technol. 19(2006)L25.
    58. R. Cabre, J. Gavalda, J. Massons, R. Sole, M. Aguilo, F. Diaz, Supercond. Sci. Technol. 13 (2000) 1252.
    59. Y. Feng, A. K. Pradhan, Y. Zhao, Y. Wu, N. Koshizuka, L. Zhou, Supercond. Sci. Technol. 14 (2001) 224.
    60. J. I. Shimoyama, Y. Tazaki, Y. Shii, T. Nakashima, S. Horii, K. Kishio, Journal of Physics: Conference Series 43 (2006) 235.
    61. J. I. Shimoyama, Supercond. Sci. Technol. 13 (2000) 43.
    62. Y. Kimishima, K. Inagaki, K. Tanabe, Y. Ichiyanagi, Supercond. Sci. Technol. 13 (2000) 295.
    63. K. X. Xu, J. H. Qiu, L. Y. Shi, Supercond. Sci. Technol. 19 (2006) 178.
    64. X. Y. Song, G. Daniels, D. Matt Feldmann, A. Gurevich, D. Larbalestier, Nature Mater. 4 (2005)470.
    65.周午纵,梁维耀,《高温超导基础研究》,上海科学技术出版社(1999).
    66.梁敬魁,车广灿,陈小龙,《高T_c氧化物超导体系的相关系和晶体结构》,科学出版社(1994).
    67. Y. Li, Y. Liu, R. Duan, X. T. Xiong, B. Y. Wang, G. Cao, L. Wei, D. N. Zheng, Z. X. Zhao, Joseph H Ross Jr., Physica C 402(2004)179.
    68. F. Giovannelli, M. Ferretti, J. F. Bardeau, M. Hervieu, I. Monot-Laffez, Supercond. Sci. Technol. 17 (2004) 8.
    69. M. Murakami, N. Sakai, T. Higuchi, S. I. Yoo, Supercond. Sci. Technol. 9(1996) 1015.
    70. Wu Ting, T. Egi, K. Kuroda, N. Koshizuka, S. Tanaka, Appl. Phys. Lett. 70 (1997)770.
    71. M. R. Koblischka, M. Winter, A. Hu, U. Hartmann, M. Murakami, Journal of Physics: Conference Series 43 (2006) 337.
    72. A. Hu, M. R. Koblischka, X. Yao, H. Zhou, M. Winter, U, Hartmann, M. Murakami, Supercond. Sci. Technol. 19 (2006)S580.
    73. A. Hu, N. Chikumoto, H. Zhou, N. Sakai, M. Murakami, Supercond. Sci. Technol. 18 (2005)S131.
    74. A. Hu, N. Sakai, H. Zhou, M. Murakami, I. Hirabayashi, Int. J. Condens. Phys. 19 (2005) 159.
    75. M. R. Koblischka, M. Muralidhar, M. Murakami, Mater. Sci. Eng. B65 (1999) 58.
    76. A. Hu, I. Hirabayashi, M. Winter, M. R. Koblischka, U. Hartmarm, H. Zhou, Appl. Phys. Lett. 86 (2005) 092505.
    77. A. Hu, X. Yao, M. Winter, H. Zhou, N. Sakai, M. R. Koblischka, I. Hirabayashi, Physic C, 426-431 (2005) 441.
    78. A. Hu, N. Sakai, M. Murakami, I. Hirabayashi, Supercond. Sci. Technol. 18 (2005)S52.
    79. X. Yao, A. Hu, Supercond. Sci. Technol. 17 (2004) L47.
    80. M. R. Koblischka, M. Winter, A. Hu, M. Muralidhar, U. Hartmann, M. Murakami, Phys. Satus. Solidic. 2 (2005) 1720.
    81. K. Iida, N. H. Babu, Y. Shi, D. A. Cardwell, Supercond. Sci. Technol. 19 (2006) S478.
    82. M. Miki, S. Tokura, H. Hayakawa, H. Inami, M. Kitano, H. Matsuzaki, Y. Kimura, I. Ohtani, E. Morita, H. Ogata, M. Izumi, H. Sugimoto, T. Ida, Supercond. Sci. Technol. 19 (2006) S494.
    83. F. Koyama, S. Akiyama, M. Murakami, Supercond. Sci. Technol. 19 (2006) S572.
    84. E. Morita, H. Matsuzaki, Y. Kimura, I. Ohtani, H. Ogata, M. Izumi, Y. Nonaka, M. Murakami, T. Ida, H. Sugimoto, M. Miki, M. Kitano, Supercond. Sci. Technol. 19 (2006)S486.
    85. M. Kita, S. Nariki, N. Sakai, I. Hirabayashi, Supercond. Sci. Technol. 19 (2006) S491.
    86. C. X. Xu, A. Hu, N. Sakai, M. Izumi, I. Hirabayashi, Supercond. Sci. Technol. 18 (2005) 229.
    87. K. Iida, N. H. Babu, Y. H. Shi, D. A. Cardwell, M. Murakami, Supereond. Sci. Technol. 19 (2006) 641.
    88. S. Nariki, N. Sakai, M. Murakami, Supereond. Sci. Teehnol. 18 (2005) S126.
    89. Y. Kimura, H. Matsuzaki, I. Ohtani, E. Mofita, M. Izumi, N. Sakai, I. Hirabayashi, M. Miki, M. Kitano, Y. Ida, Supercond. Sci. Teehnol. 19 (2006) S466.
    90. N. Chikumoto, M. Konzykowski, T. Terai, M. Murakami, Supereond. Sci. Technol. 14 (2001) 663.
    91. Q. Li, M. Suenaga, S. R. Fltyn, H. Wang, IEEE Trans. Appl. Sup. 15 (2005) 2787.
    92. S. Hebert, V. Hardy, Ch. Simon, J. Provost, Phys. Rev. B 60 (1999) 13175.
    93. N. Chikumoto, M. Konzykowski, T.Terai, M. Murakami, Supereond. Sci. Technol. 13 (2000) 749.
    94. K. Ogikubo, M. Nakano, T. Terai, K. Yamaguehi, M. Yamawaki, Physiea C 357-360 (2001) 280.
    95. D. X. Huang, Y. Sasaki, S. Okayasu, T. Aruga, K. Hojou, Y. Ikuhara, Phys. Rev. B 57 (1998) 13907.
    96. S. O. Kayasu, T. Nishio, M. Ono, T. Mashimo, Y. Tanaka, A. Iyo, Physiea C 437-438 (2006) 239.
    97. R. Kumar, H. M. Agrawal, R. Pskshwaha, D. Kanjilal, Supereond. Sci. Technol. 19 (2006) 1047.
    98. T. Sueyoshi, S. Inada, T. Fujiyoshi, K. Miyahara, T. Ikegami, K. Ebihara, R. Miyagawa, Y. Chimi, N. Ishikawa, A. Iwase, Physiea C 412-414 (2004) 497.
    99. M. Terasawa, N. Takezawa, K. Fukushima, T. Mitamura, X. Fan, H. Tsubakino, T. Lphara, K. Ueda, Y. Awaya, T. Kambara, M. Matsuda, G. Tatara, Physiea C 296 (1998) 57.
    100. M. Terasawa, Vacuum 81 (2006) 142.
    101. J. R. Thompson, D. Paul, Z. L. Wang, D. M.Kroeger, D. K. Christen, Appl. Phys. Lett. 67 (1995) 1007.
    102. T. Matsushita, M. Kiuchi, T. Haraguchi, T. Imada, K. Okamura, S. Okauasu, S. Uchida, J. I. Shimoyama, K. Kishio, Supercond. Sci. Technol. 19 (2006) 200.
    103. L. Civale, A. D. Marwiek, T. K. Worthington, M. A. Kink, J. R. Thompson, L. Krusin-Elbaum, Y. R. Sun, J. R. Clem, F. Holtzberg, Phys. Rev. Lett. 67 (1991) 648.
    104. S. Khatua, E K. Mishra, R. Kumar, D. C. Kunclaliya, D. Buddhikot, R. Pinto, S. K. Malik, J. Appl. Phys. 96 (2004) 7403.
    105. H. Narayan, A. Gupta, A. V. Narlikar, K. N. Sood, R. Kishore, D. Kanjial, Supercond. Sci. Technol. 17 (2004) 1072.
    106. T. Sueyaoshi, K. Kasuga, Y. Takanashi, S. Okayasu, N. Kobayashi, Journal of Physics: Conference Series 51 (2006) 267.
    107. K. Okamura, M. Kiuchi, E. S. Otabe, T. Yasuda, T. Matsushita, S. Okayasu, Supercond. Sci. Technol. 17 (2004) S20.
    108. V. A. Sarkar, S. Chattopadhyay, R. Kumar, U. De, Nucl. Instr. and Meth. B 230 (2005) 284.
    109. Y. Bugoslavsky, L. F. Cohen, G. K. Perkins, M. Polichetti, T. J. Tate, R. Gwilliam, A. D. Caplin, Nature 411 (2001) 561.
    110. J. Y. Coulter, J. O. Willis, M. P. Maley, J. L. Ulmann, Physica C 412-414 (2004) 1079.
    111. M. Zehetmayer, M. Eisterer, S. Sponar, H. W. Weber, A. Wisniewski, R. Puzniak, P. Panta, S. M. Kazakov, J. Karpinski, Physica C 418 (2005) 73.
    112. M. Zehetmayer, M. Eisterer, R. Muller, M. Weigand, J. Jun, S. M. Kazakov, J. Karpinski, H. W. Weber, Journal of Physics: Conference Series 43 (2006) 651.
    113. M. Zehetmayer, M. Eisterer, J. Jun, S. M. Kazakov, J. Karepinski, B. Birajdar, O. Eibl, H. W. Weber, Phys. Rev. B 69 (2004) 054510.
    114. M. C. Frischherz, M. A. Kirk, J. Farmer, L. R. Greeenwood, H. W. Werber, Physic C 232 (1994) 309.
    115. M. Zehetmayer, M. Eisterer, S. M. Kazakov, J. Karpinski, A. Wisniewski, R. Puzniak, A. Daignere, H. W. Weber, Physica C 404-410 (2004) 30.
    116. D.H. Galvan, G. A. Hirata, E. Adem, Mater. Sci. Eng. 126(2006)28.
    117. J.A. Fendrich, W. K. Kwok, J. Giapintzakis, C. J. Vander Beek, V. M. Vinokur, S. Fleshier, U. Welp, H. K. Viswanathan, G. W. Crabtree, Phys. Rev. Lett. 74(1995) 1210.
    118. H. Yang, Q. Q. Liu, F. Y. Li, C. Q. Jin, R. C. Yu, Supercond. Sci. Technol. 18 (2005)1360.
    119.刘圣康,《中子物理》,原子能出版社(1986).
    120.卢希庭,《原子核物理》,原子能出版社(2000).
    121. H. Nassar, M. Paul, I. Ahmad, D. Berkovist, M. Bettan, P. Collon, S. Dababneh, S. Ghelberg, J. P. Greene, A. Heger, M. Heil, D. J. Henderson, C. L. Jiang, E Kappeler, H. Koivisto, S. O. Brien, R. C. Pardo, M. Patronis, T. Pennigton, R. Plag, K. E. Rehm, R. Reifarth, R. Scott, S. Sinha, X. Tang, R. Vondrasek, Phys. Rev. Lett. 94 (2005) 092504.
    122. C. Granja, S. Pospisil, A. Aprahamian, H. Bomer, H. Lehrnann, T. von Egidy, H.-F. Wirth, G. Graw, R. Hertenberger, Y. Eisermann, D. Nosek, L. Ribacek, S. A. Telezhnikov, Phys. Rev. C 70(2004)034316.
    123. V.N. Kondratyev, Phys. Rev. C 69(2004)038801.
    124. F.M. Sauerzopf, H. P. Wiesinger, H. W. Weber, Phys. Rev. B 51(1995)6002.
    125. R.P. Gupta, M. Gupta, Phys. Rev. Lett. 77(1996)3216
    126.崔福斋,李恒德,尹凤琢,自然科学进展——国家重点实验室通讯,4(1994)595.
    127. Koh-ichi Ueda, T. Kohara, M. Okada, H. Kodaka, K. Miyata, S. Watauchi, I. Tanaka, Physica C 388-389(2003)369.
    128. D. Bolten, M. Ullrich, H. C. Freyharclt, F. M. Sauerzopf, H. W. Weber, Mater. Sci. Eng. B65(1999)35.
    129. I. Kusevic, E. Babic, D. Marinaro, S. X. Dou, R. Weinstein, Physica C 408-410(2004)643.
    130. R. Weinstein, A. Grandini, R. Sauh, B. Mayes, D. Parks, Supercond. Sci. Technol. 19(2006)S575.
    131. S. Tonies, Physica C 273(2002)755.
    132. I. Kusevic, E. Babic, D. Marinaro, S. X. Dou, R. Weinstein, Physica C 408-410(2004)524.
    133. R. Weinstein, R. Sawh, D. Parks, M. Murakami, T. Mochida, N. Chikumoto, G. Krabbes, W. Bieger, Physica C 283(2002)214.
    134. D.G. Marinaro, S. X. Dou, J. Horvat, J. Boldeman, R. Weinstein, R. Sawh, IEEE Trans. Appl. Sup. 11(2001)3896.
    135. U. Topal, L. Dorosinskii, H. Ozkan, H. Yavuz, Physica C 388-389(2003)401.
    1.周午纵,梁维耀,《高温超导基础研究》,上海科学技术出版社(1999).
    2.梁敬魁,车广灿,陈小龙,《高T_c氧化物超导体系的相关系和晶体结构》,科学出版社(1994).
    3. X.Y. Song, G. Daniels, D. Matt Feldmann, A. Gurevich, D. Larbalestier, Nature Mater. 4(2005)470.
    4. Y. Li, Y. Liu, R. Duan, X. T. Xiong, B. Y. Wang, G. Cao, L. Wei, D. N. Zheng, Z. X. Zhao, Joseph H Ross Jr., Physica C 402(2004)179.
    5. F. Giovannelli, M. Ferretti, J. F. Bardeau, M. Hervieu, I. Monot-Laffez, Supercond. Sci. Technol. 17(2004)8.
    6. M. Murakami, N. Sakai, T. Higuchi, S. I. Yoo, Supercond. Sci. Technol. 9(1996)1015.
    7. M.R. Koblischka, M. Muralidhar, M. Murakami, Mater. Sci. Eng. B65(1999)58.
    8. A. Ibi, H. Fukushima, Y. Yamada, S. Miyata, R. Kuriki, K. Takahashi, Y. Shiohara, Supercond. Sci. Technol. 19(2006)1229.
    9. K. Takahashi, H. Kobayashi, Y. Yamada, A. Ibi, H. Fukushima, M. Konishi, S. Miyata, Y. Shiohara, T. Kato, T. Hirayama, Supercond. Sci. Technol. 19(2006)924.
    10. S. Nariki, N. Sakai, M. Kita, M. Fujikura, M. Murakami, I. Hirabayashi, Supercond. Sci. Technol. 19(2006)S500.
    11. K. Iida, N. H. Babu, Y. Shi, D. A. Cardwell, Supercond. Sci. Technol. 19(2006)S478.
    12. M. Miki, S. Tokura, H. Hayakawa, H. Inami, M. Kitano, H. Matsuzaki, Y. Kimura, I. Ohtani, E. Morita, H. Ogata, M. Izumi, H. Sugimoto, T. Ida, Supercond. Sci. Technol. 19(2006)S494.
    13. F. Koyama, S. Akiyama, M. Murakami, Supercond. Sci. Technol. 19(2006)S572.
    14. E. Morita, H. Matsuzaki, Y. Kimura, I. Ohtani, H. Ogata, M. Izumi, Y. Nonaka, M. Murakami, T. Ida, H. Sugimoto, M. Miki, M. Kitano, Supercond. Sci. Technol. 19(2006)S486.
    15. M. Kita, S. Nariki, N. Sakai, I. Hirabayashi, Supercond. Sci. Technol. 19(2006)S491.
    16. C. X. Xu, A. Hu, N. Sakai, M. Izumi, I. Hirabayashi, Supercond. Sci. Teehnol. 18 (2005)229.
    17. K. Iida, N. H. Babu, Y. H. Shi, D. A. Cardwell, M. Murakami, Supercond. Sci. Technol. 19(2006)641.
    18. S. Nariki, N. Sakai, M. Murakami, Supercond. Sci. Technol. 18(2005)S126.
    19. Y. Kimura, H. Matsuzaki, I. Ohtani, E. Morita, M. Izumi, N. Sakai, I. Hirabayashi, M. Miki, M. Kitano, T. Ida, Supercond. Sci. Technol. 19(2006)S466.
    20. D. C. Larbalestier, Physics Today 6(1991)74.
    21. S. Jin, T. H. Tiefel, R. C. Sherwood, R. B. Dover, M. E. Davis, G. W. Kammott, R. A. Fastanacht, Phyys. Rev. B 37(1989)7859.
    22. S. Nariki, N. Sakai, M. Kita, M. Fujikura, M. Murakami, I. Hirabayashi, Supercond. Sci. Technol. 19 (2006) S500.
    23. K. Salama, V. Selvarnanickam, L. Gao, K. Sun, Appl. Phys. Lett. 54 (1989) 2352.
    24. H. Fujimoto, M. Murakami, S. Gotoh, N. Koshizuka, T. Oyama, Y. Shiohara, S. Tanaka, Advances in Superconductivity(Proc. 2nd ISS'89, Tsukuba, 1989) 2 (1990) 285.
    25. L. Zhou, P. X. Zhang, P. Ji, Supercond. Sci. Technol.3 (1990) 490.
    26. K. Salama, S. Sathyamurthy, Supercond. Sci. Technol. 8 (1998) 701.
    27. D. L. Shi, S. Sengupta, J. S. Lou, C. Varanasi, P. J. McGirm, Physica C 213 (1993) 179.
    28.张红,PMP法Gd-Ba-Cu-O超导体材的制备与性能研究[硕士论文],沈阳,东北大学&西安,西北有色金属研究院,(2003).
    29.陈绍楷,包含亚微米Y_2 BaCuO_5颗粒的PMP法YBCO的制备及其微结构研究[博士论文],沈阳,东北大学&西安,西北有色金属研究院,(2002).
    30. M. Muralidhar, N. Sakai, M. Jisa, N. Koshizuka, M. Murakami, Appl. Phys. Lett. 83 (2003) 5005.
    31. F. Sandiumenge, B. Martinez, X. Obradors, Supercond.Sci.Technol. 10(1997)A93.
    32. M. Muralidhar, M. Jisa, N. Sakai, M. Murakami, Supercond. Sci. Technol. 16 (2003) RI.
    33. F. J. Torres, J. Alarcon, Ceramics International 31 (2005) 683.
    34.余焜,《材料结构分析基础》,科学出版社(2000)198.
    35. Yu. D. Tretyakov, E. A. Goodilin Russ. Chem. Rev. 69 (1) (2000) ml.
    36. M. Murakami, Supercond. Sci. Technol. 5 (1992) 185.
    1. K. Yoshizawa, S. Nariki, M. Murakami, T. Takizawa, Physica C 392-396 (2003) 391.
    2. S. Nariki, N. Sakai, M. Murakami, Supercond. Sci. Technol. 18 (2005) S126.
    3. S. Nariki, N. Sakai, M. Kita, M. Fujikura, M. Murakami, I. Hirabayashi, Supercond. Sci. Technol. 19 (2006) S500.
    4. M. Miki, S. Tokura, H. Hayakawa, H. Inami, M. Kitano, H. Matsuzaki, Y. Kimura, I. Ohtani, E. Morita, H. Ogata, M. Izumi, H. Sugimoto, T. Ida, Supercond. Sci. Technol. 19 (2006) S494.
    5. C. X. Xu, A. Hu, N. Sakai, M. Izumi, I. Hirabayashi, Supercond. Sci. Technol. 18 (2005) 229.
    6. J. Figueras, T. Puig, X. Obradors, Phys. Rev. B 67 (2003) 014503.
    7. E Sandiumenge, B. Martinez, X. Obradors, Supercond. Sci. Technol. 10 (1997)A93.
    8. M. Muralidhar, N. Sakai, M. Jisa, N. Koshizuka, M. Murakami, Appl. Phys. Lett. 83 (2003) 5005.
    9. Y. Li, Y. Liu, R. E Duan, X. T. Xiong, B. Y. Wang, G. H. Cao, L. Wei, D. N. Zheng, Z. X. Zhao, H. Joseph, Jr. Ross, Physica C 402 (2004) 179.
    10. N. H. Babu, Y. Shi, K. Iida, D. A. Cardwell, Nature Mater. 4 (2005) 476.
    11. F. Koyama, S. Akiyama, M. Murakami, Supercond. Sci. Technol. 19 (2006) S572.
    12. E. Morita, H. Matsuzaki, Y. Kimura, I. Ohtani, H. Ogata, M. Izumi, Y. Nonaka, M. Murakami, T. Ida, H. Sugimoto, M. Miki, M. Kitano, Supercond. Sci. Tectmol. 19 (2006)S486.
    13. M. Kita, S. Nariki, N. Sakai, I. Hirabayashi, Supercond. Sci. Technol. 19 (2006) S491.
    14. Y. Shi, N. Hari Babu, K. Iida, D. A. Cardwell, Supercond. Sci. Technol. 20 (2007) 38.
    15. M. Miki, S. Tokura, H. Hayakawa, H. Inami, M. Kitano, H. Matsuzaki, Y. Kimura, I. Ohtani, E. Morita, H. Ogata, M. Izumi, H. Sugimoto, T. Ida, Supercond. Sci. Technol. 19 (2006) S494.
    16. S. Nariki, H. Hinai, N. Sakai, M. Murakami, M. Otsuka, Physica C 378-381 (2002) 764.
    17. X. Y. Song, G. Daniels, D. Matt Feldmann, A. Gurevich, D. Larbalestier, Nature Mater. 4 (2005) 470.
    18. F. Giovannelli, M. Ferretti, J. F. Bardeau, M. Hervieu, I. Monot-Laffez, Supercond. Sci. Technol. 17 (2004) 8.
    19. Wu Ting, T. Egi, K. Kuroda, N. Koshizuka, S. Tanaka, Appl. Phys. Lett. 70 (1997) 770.
    20. Y. Q. Cai, X. Yao, A. Hu, X. J. Wu, M. Jirsa, S. Xu, G Jin, Supercond. Sci. Technol. 19 (2006) S506.
    21. M. R. Koblischka, M. Winter, A. Hu, U. Hartmann, M. Murakami, Journal of Physics: Conference Series 43 (2006) 337.
    22. A. Hu, M. R. Koblischka, X. Yao, H. Zhou, M. Winter, U. Hartmann, M. Murakami, Supercond. Sci. Technol. 19 (2006) S580.
    23. A. Hu, N. Chikumoto, H. Zhou, N. Sakai, M. Murakami, Supercond. Sci. Technol. 18 (2005) S131.
    24. A. Hu, N. Sakai, H. Zhou, M. Murakami, I. Hirabayashi, Int. J. Condens. Phys. 19 (2005) 159.
    25. M. R. Koblischka, M. Muralidhar, M. Murakami, Mater. Sci. Eng. B 65 (1999) 58.
    26. M. Muralidhar, H. S. Chauhan, T. Saitoh, K. Kamada, K. Segawa, M. Murakami, Supercond. Sci. Technol. 10 (1997) 663.
    27. A. Hu, N. Sakai, H. Zhou, K. Inoue, N Chikumoto, M. Murakami, Physiea C 402 (2004) 127.
    28. A. Hu, G Krabbes, P Scharzle, W. Bieger, Physica C 322 (1999) 129.
    29. M. Murakami, N. Sakai, T. Higuehi, S. I. Yoo, Supereond. Sci. Teehnol. 9 (1996) 1015.
    30. G Osabe, T. Takizawa, S. I. Yoo, N. Sakai, T. Higuehi, M. Murakami, Mater. Sci. Eng. B 65 (1999) 11.
    31.张红,PMP法Gd-Ba-Cu-O超导体材的制备与性能研究[硕士论文],沈阳,东北大学&西安,西北有色金属研究院(2003).
    32. E. M. Gyorgy, R. B. Van Dover, K. A. Jackson, L. F. Schneemeyer, J. Waszcazk, Appl. Phys. Lett. 55 (1989) 283.
    33. T. Egi. J. G. Wen, K. Kuroda, H. Unoki, N. Koshizuka, Appl. Phys. Lett. 67 (1995) 2406.
    34.冯端,《固体物理学大辞典》,高等教育出版社(1995).
    35. M. Muralidhar, M. Jirsa, N. Sakai, M. Murakami, Supercond. Sci. Technol. 16 (2003) R1.
    36. A. Hu, N. Sakai, M. Murakami, I Hirabayashi, Supercond. Sci. Technol. 18 (2005) S52.
    37. M. Muralidhar, M. Murakami, I Hirabayashi, Supercond. Sci. Technol. 13 (2000) 1315.
    38. J. J. Kim, H. K. Lee, J. Chung, H. J. Shin, H. J. Lee, J. K. Ku, Phys. Rev. B 43 (1991) 2962.
    39. T. T. M. Palstra, B. Batlogg, R. B. van Dover, L. F. Schneemeyer, J. K. Waszczak, Phys. Rev. B 41 (1990) 6621.
    40. J. Plain, T. Puig, F. Sandiumenge, X. Obradors, J. Rabier, Phys. Rev. B 65 (2002) 104526.
    1. R. Kumar, H. M. Agrawal, R. Pskshwaha, D. Kanjilal, Supercond. Sci. Technol. 19 (2006) 1047.
    2. M. Zehetmayer, M. Eisterer, S. Sponar, H. W. Weber, A. Wisniewski, R. Puzniak, P. Panta, S. M. Kazakov, J. Karpinski, Physica C 418 (2005) 73.
    3. M. Zehetmayer, M. Eisterer, R. Muller, M. Weigand, J. Jun, S. M. Kazakov, J. Karpinski, H. W. Weber, Journal of Physics: Conference Series 43 (2006) 651.
    4. R. Weinstein, A. Grandini, R. Sauh, B. Mayes, D. Parks, Supercond. Sci. Technol. 19 (2006) S575.
    5. M. Zehetmayer, M. Eisterer, J. Jun, S. M. Kazakov, J. Karepinski, B. Birajdar, O. Eibl, H. W. Weber, Phys. Rev. B 69 (2004) 054510.
    6. I. Kusevic, E. Babic, D. Marinaro, S. X. Dou, R. Weinstein, Physica C 408-410 (2004) 643.
    7. U. Topal, L. Dorosinskii, H. Ozkan, Physica C 388-389 (2003) 403-404.
    8. F.M. Sauerzopf, H. P. Wiesinger, H. W. Weber, Phys. Rev. B 51 (1995) 6002.
    9. N. Chikumoto, M. Konzykowski, T. Terai, M. Murakami, Supercond. Sci. Technol. 14 (2001) 663.
    10. M. Zehetmayer, M. Eisterer, S. M. Kazakov, J. Karpinski, A. Wisniewski, R. Puzniak, A. Daignere, H. W. Weber, Physica C 404-410 (2004) 30.
    11. M. C. Frischherz, M. A. Kirk, J. Farmer, L. R. Greeenwood, H. W. Werber, Physic C 232 (1994) 309.
    12. M. Zehetmayer, M. Eisterer, S. M. Kazakov, J. Karpinski, A. Wisniewski, R. Puzniak, A. Daignere, H. W. Weber, Physica C 404-410 (2004) 30.
    13. F. M. Sauerzopf, Phys. Rev. B 57 (1998) 10959.
    14. T. Terai, T. Kobayashi, Y. Ito, K. Kishio, J. Shimoyama, Physica C 282-287 (1997) 2285.
    15. L. Klein, E. R. Yacoby, Y. Wolfus, Y. Yeshum, L. Burlachkov, B. Ya Shapiro, M. Konczykowski, F. Holtzberg, Phys. Rev. B 47 (1993) 12349.
    16. M. Konczykowski, V. M. Vinokur, F. Rullier-Albenque, Y. Yeshurun, F. Holtzberg, Phys. Rev. B 47 (1993) 5531.
    17. R. P. Gupta, M. Gupta, Phys. Rev. Lett. 77 (1996) 3216.
    18. Koh-ichi Ueda, T. Kohara, M. Okada, H. Kodaka, K. Miyata, S. Watauchi, I. Tanaka, Physica C 388-389 (2003) 369.
    19. A. A. Makletsov, A. E. Petrov, V. V. Gann, Nucl. Instr. and Meth. in Phys. Rev. B 94 (1994) 203.
    20. K. Iida, N. H. Babu, Y. H. Shi, D. A. Cardwell and M. Murakami, Supercond. Sci. Technol. 19 (2006) S478.
    21. K.E. Sickafus, J. O. Willis, P. J. Kung, W. B. Wilson, D. M. Parkin, M. P. Maley, F. W. Clinard, Jr. C. J. Salgado, R. P. Dye, K. M. Hubbard, Phys. Rev. B 46 (1992) 11862.
    22. E. M. Gyorgy, R. B. Van Dover, K. A. Jackson, L. F. Schneemeyer, J. Waszcazk, Appl. Phys. Lett. 55 (1989) 283.
    23. T. Egi. J. G. Wen, K. Kuroda, H. Unoki, N. Koshizuka, Appl. Phys. Lett. 67 (1995) 2406.
    24. M. R. Koblischka, M. Muralidhar, M. Murakami, Mater. Sci. Eng. B 65 (1999) 58.
    25. M. Muralidhar, H. S. Chauhan, T. Saitoh, K. Kamada, K. Segawa, M. Murakami, Supercond. Sci. Technol. 10 (1997) 663.
    26. F.J. Torres and J. Alarcon, Ceram. Int. 31 (2005) 683.
    27.余焜,《材料结构分析基础》,科学出版社(2000)198.
    1. T. Matsushita, M. Kiuchi, T. Haraguchi, T. Imada, K. Okamura, S. Okauasu, S. Uchida, J. I. Shimoyama, K. Kishio, Supercond. Sci. Technol. 19 (2006) 200.
    2. S. O. Kayasu, T. Nishio, M. Ono, T. Mashimo, Y. Tanaka, A. Iyo, Physica C 437-438 (2006) 239.
    3. Y. Feng, A. K. Pradhan, Y. Zhao, Y. Wu, N. Koshizuka, L. Zhou, Supercond. Sci. Technol. 14 (2001) 224.
    4. N. H. Babu, Y. H. Shi, K. Iida, D. A. Cardwell, Nature Mater. 4 (2005) 476.
    5. U. Topal, H. Sozeri, H. Yavuz, Physica C 408-410 (2004) 636.
    6. I. Kusevic, E. Babic, D. Marinaro, S. X. Dou, R. Weinstein, Physica C 408-410 (2004) 643.
    7. I. Kusevic, E. Babic, D. Marinaro, S. X. Dou, R. Weinstein, Physica C 408-410 (2004) 524.
    8. M. Wemer, F. M. Sauerzopf, H. W. Weber, A. Wisniewski, Phys. Rev. B 61 (2000) 14795.
    9. A. Kohler, F. M. Sauerzop, M. Zehetmayer, A. Erb, H. W. Weber, Physic C 341-348 (2000) 1467.
    10. F. M. Sauerzopf, Phys. Rev. B 57 (1998) 10959.
    11. U. Topal, L. Dorosinskii, H. Ozkan, Physica C 388-389 (2003) 403-404.
    12. F. M. Sauerzopf, H. P. Wiesinger, H. W. Weber, Phys. Rev. B 51 (1995) 6002.
    13. M. C. Frischherz, M. A. Kirk, J. Farmer, L. R. Greeenwood, H. W. Werber, Physic C 232 (1994) 309.
    14. D. X. Huang, Y. Sasaki, S. Okayasu, T. Aruga, K. Hojou, Y. Ikuhara, Phys. Rev. B 57 (1998) 13907.
    15. A. Kumar, P. Kumar, M. R. Tripathy, A. K. Arora, R. P. Tandon, Materials Chemistry and Physics 97 (2006) 230.
    16. J. Bechtold, Y. Y. Xue, Z. J. Huang, E. V. Hungerford, P. H. Hor, C. W. Chu, X. K. Maruyama, H. Backe, F. R. Buskirk, S. M. Connors, D. D. Snyder, Y. C. Jean and J. M. Farmer, Physica C 191 (1992) 199.
    17. C. Xu, A. Hu, N. Sakai, M. Izumi and I. Hirabayashi, Supercond. Sci. Technol. 18 (2005) 229.
    18. H. Hinai, S. Nariki, S. J. Seo, N. Sakai, M. Murakami and M. Otsuta, Supercond. Sci. Technol. 13 (2000) 676.
    19. K. Inoue, N. Sakai, S. Nariki, M. Murakami and M. Murakami, Physica C 388-389 (2003) 407.
    20. S. Nariki, N. Sakai, M. Kita, M. Fujikura, M. Murakami and I. Hirabayashi, Supercond. Sci. Technol. 19 (2006) S500.
    21. K. Iida, N. H. Babu, Y. H. Shi, D. A. Cardwell and M. Murakami, Supercond. Sci. Technol. 19 (2006) S478.
    22. A. A. Makletsov, A. E. Petrov, V. V. Gann, Nucl. Instr. and Meth. in Phys. Rev. B 94 (1994) 203.
    23. K. E. Sickafus, J. O. Willis, E J. Kung, W. B. Wilson, D. M. Parkin, M. P. Maley, F. W. Clinard, Jr. C. J. Salgado, R. P. Dye, K. M. Hubbard, Phys. Rev. B 46 (1992) 11862.
    24. T. Terai, T. Kobayashi, Y. Ito, K. Kishio, J. Shimoyama, Physica C 282-287 (1997) 2285.
    25. E. M. Gyorgy, R. B. Van Dover, K. A. Jackson, L. F. Schneemeyer, J. Waszcazk, Appl. Phys. Lett. 55 (1989) 283.
    26. T. Egi. J. G. Wen, K. Kuroda, H. Unoki, N. Koshizuka, Appl. Phys. Lett. 67 (1995) 2406.
    27. M. Murakami, Supercond. Sci. Technol. 5 (1992) 185.
    28. F. Sandiumenge, B. Martinez and X. Obradors, Supercond. Sci. Technol. 10 (1997) A93.
    29. Y. D. Tretyakov and E. A. Goodilin, Russ. Chem. Rev. 69 (2000) 1.
    30. F. J. Torres and J. Alarcon, Ceram. Int. 31 (2005) 683.
    31.余焜,《材料结构分析基础》,科学出版社(2000)198.
    32. M. R. Koblischka, M. Muralidhar, M. Murakami, Mater. Sci. Eng. B 65 (1999) 58.
    33. M. Muralidhar, H. S. Chauhan, T. Saitoh, K. Kamada, K. Segawa, M. Murakami, Supercond. Sci. Technol. 10 (1997) 663.
    34. M. Muralidhar, N. Sakai, M. Jisa, N. Koshizuka, M. Murakami, Appl. Phys. Lett. 83 (2003) 5005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700