用户名: 密码: 验证码:
直流溅射法制备YBCO带材研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
YBCO高温超导带材具有优异的电学性能,它具有在外场下临界电流高,交流损耗低以及成本较低等优点,在工业应用中有非常大的潜力,所以各国都投入了巨大的人力物力进行研究。直流溅射具有方法简单、易于控制以及工艺重复性好等特点,本文基于直流溅射法研究了Y2O3种子层薄膜的制备工艺,并且在制备有Y2O3/YSZ/CeO2 (YYC)缓冲层的镍钨合金(Ni-5at.%W)基带上制备YBCO涂层导体进行了研究,还对YBCO薄膜的磁通钉扎特性也做了初步探讨。主要内容如下:
     1、根据c轴择优度和温度的关系以及反应溅射特有的迟滞效应,得出当温度为720℃,溅射电流为0.2A,水分压为0.016Pa,反应溅射处于平衡状态,制备出Y2O3种子层薄膜纯c轴取向,且面内面外半高宽为3.9°和4.9°。
     2、在Y2O3/YSZ/CeO2(YYC)缓冲层上制备YBCO涂层导体,发现缓冲层表面粗糙度对YBCO薄膜的性能有很大的影响,分别在反应溅射法和射频溅射法制备YYC缓冲层上以相同的工艺制备YBCO薄膜,两种缓冲层都是纯c轴取向,面内面外取向一致性相当,但反应溅射法制备的缓冲层粗糙度明显大于射频溅射制备的,在前者上制备的YBCO薄膜临界电流密度Jc为1.2 MA/cm2,而在后者基础上制备的YBCO薄膜的临界电流密度Jc达到2.8 MA/cm2。
     3、探讨了用卷绕法在平面靶直流溅射装置上连续制备YBCO带材的工艺,780℃为卷绕法制备YBCO薄膜的适宜温度,由于平面靶的负离子反溅射效应较为明显,综合考虑靶基距和气体总压,并且通过改变卷绕速度,补偿由于负离子反溅射效应导致的成分偏差,在靶基距为20mm,气体总压为70Pa,卷绕速度为0.55m/h时,临界电流密度达到0.6MA/cm2。
     4、研究了YBCO超导薄膜在磁场下的性能变化,首先在65K和77K的温度下,外加0-2T的磁场下对未掺杂的YBCO薄膜的性能进行测试,磁场方向垂直于基片表面,温度越低,YBCO薄膜的性能随磁场强度的增大下降的趋势越弱,然后我们还用Y过量的靶制备了富Y的YBCO薄膜,由于Y2O3在YBCO薄膜中形成钉扎中心,其在磁场下的性能明显优于未掺杂的YBCO薄膜。
YBa2Cu3O7-δ(YBCO) superconducting tapes have promising electronic and electric applications ,because of its the high critical current density (Jc) in external magnetic fields, lower ac loses and processing costs. YBCO HTS tapes (also called coated conductors) attract the attention of the researchers worldwide. In this thesis, YBCO coated conductors were deposited on Y2O3/YSZ/CeO2(YYC) buffered Ni-5at.%W substrate with sputtering because it is easy to control and high reliability. The main content of this thesis including:
     1. According to the relationship between temperature and c-axis textured orientation of Y2O3 seed layer, the optimal temperature was obtained. And then we studied the optimal water partial pressure according to the hysteresis characteristic of the reactive sputtering. The Y2O3 seed layer film with pure c-axis orientation was deposited under the condition of the temperature being 720℃, sputtering current being 0.2A and water partial pressure being0.016Pa.The full width at half maximum(FWHM) of in-plane and out-of-plane scan are 3.9°and 4.9°.
     2. The surface roughness of the Y2O3/YSZ/CeO2 (YYC) buffered layer has a great influence to the quality of the YBCO coated conductors. The YYC buffer layers which were prepared by reactive sputtering and the RF sputtering were pure c-axis orientation , and the FWHM of in-plane and out-of-plane scan were similar, but the root mean square (RMS) roughness of the YYC that prepared by reactive sputtering is significantly greater than that of YYC prepared by RF sputtered, As a result, the critical current density of YBCO thin film that deposited on the former buffer layer was 1.2 MA/cm2, but that of YBCO thin film on the latter reached 2.8 MA/cm2.
     3.The fabrication of YBCO by reel-to-reel technology has been studied, the optimal temperature is 780℃. Because the negative ions bombardment effect of the plane target was obvious, we changed the speed of the reel-to-reel to compensate the component deviation. The critical current density of YBCO thin film reached 0.6 MA/cm2 under the condition that the distance between target and substrate was 20 mm, the total gas pressure was 70Pa and the speed of the reel-to-reel was 0.55m/h.
     4.The performance of the YBCO coated conductors in magnetic field had been studied,we applied magnetic field of 0-2T that is perpendicular to the substrate surface at the 65K and 77K, found that the YBCO films with Y2O3 particles, pinning centers have showed substantial improvement in comparison with pure YBCO films in magnetic field.
引文
[1]曲喜新,杨邦朝等.电子薄膜材料,科学出版社,北京, 1996
    [2] Gorter .C. J. Superconductivity until 1940 In Leiden and As Seen From There. Rev. Mod. Phys., 1964, Vol. 36, No. 1: 3-7.
    [3] Bennorz .J G, Muller K. A. Possible High Tc superconductivity in the Ba-La-Cu-O system [J]. Phys B. 1986, 64:189-193
    [4]赵忠贤,陈立泉. Ba-Y-Cu氧化物液氮温区的超导电性[J].科学通报. 1987, 6:412-414 Michel C, Hervieu M, Grandin A, et al. Superconductivity in the Bi-Sr-Cu-O system [J]. Phys B. 1987, 68:421-423
    [5] Green S. M, Jiang C, Yu M, et al. Zero resistance at 107K in the (Bi,Pb)-Ca-Sr-Cu oxide system[J]. Phys Rev, 1988, B38:5016-5018
    [6] Sheng Z. Z, Hermann A. M, Bulk superconductivity at 120K in Tl-Ba-Ca-Cu-O system[J]. Nature, 1988, 332:138-139
    [7] Schilling A. Superconductivity above 130K in the Hg-Ba-Ca-Cu-O system[J]. Nature, 1993, 363:56-58
    [8] K. Develos-Bagarinao, H. Yamasaki, Y. Nakagawa, et al. Relationship between composition and surface morphology in YBCO films deposited by large-area PLD, Physica C, 2004, 412-414: 1286-1290
    [9] Chen M, Donzel L, Lakner M, et al. High temperature superconductors for power applications. Journal of the European Ceramic Society, 2004, Vol. 24, No. 6: 1815-1822.
    [10] Balachandran U, Li M, Koritala R E, et al. Development of YBCO-coated conductors for electric power applications. Physica C: Superconductivity and its Applications, 2002, Vol. 372-376, No. SUPPL 2: 869-872.
    [11] W. Paul, M. Chen, M. Lakner, et al. Fault current limiter based on high temperature superconductors—different concepts, test results, simulations, applications, Physica C, 2001, 354: 27-33
    [12] A. P. Malozemoff, D. T. Verebelyi, S. Fleshler, et al. HTS Wire: status and prospects, Physica C, 2003, 386: 424-430
    [13]张国民,林良真,肖立业,等.高温超导带材的交流损耗.低温与超导, 2001, 29: 51-56
    [14] R. F. Service. MgB2 trades performance for a shot at the real world. Science, 2002, 295: 786-788
    [15] K. Jürgen, M. B?cker, C. Bührer, et al. Flexible HTS Wires: From Start-Up of a Full-Sized Plant to Industrial Applications. IEEE Trans. Appl. Supercond, 2005, 10: 1-4
    [16] H. Hilgenkamp. Grain boundaries in high-Tc superconductors. Reviews of Modern Physics, 2002, 74: 485-549
    [17]张国民,林良真,肖立业,等.高温超导带材的交流损耗.低温与超导, 2001, 29: 51-56
    [18] Osami Tsukamoto. Roads for HTS power applications to go into the real world Cost issues and technical issues. Cryogenics, 2005, 45: 3-10
    [19] K. Hasegawa. Biaxially Aligned YBCO Film Tapes Fabricated by All Pulsed Laser Deposition, Appl. Supercond 4, 1996, 487
    [20] X. D. Wu. Properties of YBCO Thick Films on Flexible Buffered Metallic Substrates, Appl. Phys. Lett 67, 1995, 2397
    [21] M. W. Rupich, D. T. Verebelyi, Wei Zhang, et al. Metalorganic Deposition of YBCO Films for Second-Generation High-Temperature Superconductor Wires. MRS Bulletin, 2004, 29:572-578
    [22] Y. L. Xu, D. L. Shi. A Review of Coated Conductor Development, TSINGHUA SCIENCE AND TECHOLOGY, 2003, 8:342-369
    [23] W. Prusseit, R. Nemetschek, C. Hoffmann, et al. ISD process development for coated conductors. Physica C, 2005, 426-431: 866-871
    [24] P. N. Arendt, S. R. Foltyn, L. Civale, et al. High critical current YBCO coated conductors based on IBAD MgO. Physica C, 2004, 412-414: 795-800
    [25]袁冠森.第二代高温超导带材涂层导体的研究.低温物理学报, 2003, 25: 501-505
    [26] Amit Goyal, M. Parans Paranthaman. The RABiTS Approach: Using Rolling-Assisted Biaxially Textured Substrates for High-Performance YBCO Superconductors, MRS Bulletin, 2004, 29: 552-561
    [27] Dimos D, Chaudhari P, Manhart J. Superconducting transport properties of grain boundaries in Yba2Cu3O7 bicrystals. Phys.Rev.B, 1990, 41: 4038-4049
    [28] D. Q. Shi, R. K. Ko, K. J. Song, et al. Deposition of Y2O3 film on textured metal substrates for a single buffer layer of a YBCO coated conductor. Supercon.Sci.Technol. 2005, 18: 561-565
    [29] M. P. Paranthaman, T. Izumi. High-Performance YBCO-Coated Superconductor Wires. MRS Bulletin, 2004, 29: 533-536
    [30] X.Castel, M. Guilloux-Viry, A. Perrin, et al. High crystalline quality CeO2buffer layersepitaxied on (1102) sapphire for YBa2Cu3O7 thin films, Journal of Crystal Growth, 1998, 187:211-220
    [31] E. Varesi, G. Celentano, T. Petrisor, et al. Pulsed laser deposition of high critical current density YBa2Cu3O7?x/CeO2/Ni–W architecture for coated conductors applications. Supercon.Sci.Technol, 2003, 16: 498-505
    [32] A. Goyal, D. P. Norton, J. D. Budai, et al. High critical current density superconducting tapes by epitaxial deposition of YBa2Cu3Ox thick films on biaxially textured metals. Appl. Phys. Lett., 1996, 69: 1795-1797
    [33] M. S. Bhuiyan, M. Paranthaman, S. Sathyamurthy, et al. MOD approach for the growth of epitaxial CeO2 buffer layers on biaxially textured Ni–W substrates for YBCO coated conductors. Supercon.Sci.Technol, 2003, 16: 1305-1309
    [34] X. Cui, F. A. List, D. M. Kroeger , et al. Continuous growth of epitaxial CeO2 buffer layers on rolled Ni tapes by electron beam evaporation. Physica C, 1999, 316: 27-33
    [35]李凤华. YBaCuO超导带材制备的基础研究:[博士学问论文].沈阳.东北大学2005, 1-128
    [36]杨邦朝,王文生.薄膜物理与技术.成都:电子科技大学出版社, 1994. 95
    [37] Hochmuth H and Lorenz M. Side-selective and non-destructive determination of the critical current density of double-sided superconducting thin films. Physica C: Superconductivity, 1996, Vol. 265, No. 3-4: 335-340.
    [38] Hochmuth H and Lorenz M. Inductive determination of the critical current density of superconducting thin films without lateral structuring. Physica C: Superconductivity, 1994, Vol. 220, No. 1-2: 209-214.
    [39] Rupich M W, Verebelyi D T, Zhang W, et al. Metal organic deposition of YBCO films for second-generation high-temperature superconductor wires. MRS Bulletin, 2004, Vol. 29, No. 8: 572-578.
    [40] He Qing, Christen D K, Budai J D, et al. Deposition of biaxial oriented metal and oxide buffer - layer films on textured Ni tapes: New substrates for high - current, high - temperature superconductors[ J ]. Physical, 1997, 275 (1 - 2): 155 - 161.
    [41] L im SM, Kim H S, Chung K C. Comparative studies on the growth conditions of CeO2 and Y2O3 bugger layers on Ni-W tapes [ J ]. Supercond. Sci. Technology , 2004, 17: 148 - 154.
    [42] Barnes P N,Nekkanti RM, Haugan T J , et al. pulse laser deposition of YBCO coated conductor using Y2O3 as the seed and cap layer [ J ]. Supercond .Sci. Technol, 2004, 17: 957 - 962.
    [43] Ho - Sup Kim, Chan Park, Rock Kil Ko, et al. High rate DC - reactive sputter depositing ofY2O3 film on the textured metal substrate for the superconducting coated conductor [ J ]. Physica C, 2005, 426 - 431; 926 - 932.
    [44] M. A. Arranz, B. Holzapfel, N. Reger, et al. An experimental study of the main involved parameters in the epitaxial growth of CeO2 buffer layers on nickel tapes. Physica C, 2002, 366: 109-116
    [45]茅昕辉,陈国平,蔡炳初.反应磁控溅射的进展.真空, 2001,4:1-7.
    [46] Koblischka M R, Winter M, Hu A, et al. Nanoscale flux pinning sites in high-Tc superconductors. Physica Status Solidi C: Conferences, 2005, Vol. 2, No. 5: 1720-1725.
    [47] Wang X and Wu J Z. Tailoring defect microstructures for better magnetic flux pinning in YBa2Cu3O7-& films using quench annealing. Physica C: Superconductivity and its Applications, 2005, Vol. 432, No. 3-4: 287-292.
    [48] Shlyk L, Krabbes G, Fuchs G, et al. Flux pinning enhancement in melt-processed YBa2 Cu3 O7 with extended nanodefects. Applied Physics Letters, 2005, Vol. 86, No. 9: 092503.
    [49] Koblischka M R. Nanoengineering of flux pinning sites in high-Tc superconductors. Tsinghua Science and Technology, 2003, Vol. 8, No. 3: 280-291.
    [50] Yamasaki H, Nakagawa Y, Sawa A, et al. Flux pinning effects of twin boundaries studied with unidirectionally twinned YBCO films. Physica C: Superconductivity and its Applications, 2002, Vol. 372-376, No. SUPPL 3: 1885-1889.
    [51] Pingxiang Z, Lian Z, Ping J, et al. Flux pinning of stacking faults and dislocations in YBCO bulks. Physica C: Superconductivity, 1994, Vol. 235-240, No. pt 4: 2733-2734.
    [52] Dam B, Huijbregtse J M, Klaassen F C, et al. Origin of high critical currents in YBa2Cu3O7-& superconducting thin films. Nature, 1999, Vol. 399, No. 6735: 439-442.
    [53] Huijbregtse J M, Klaassen F C, Szepielow A, et al. Vortex pinning by natural defects in thin films of YBa2Cu3O7-&. Superconductor Science and Technology, 2002, Vol. 15, No. 3: 395-404.
    [54] Huijbregtse J M, Dam B, Van Der Geest R C F, et al. Natural strong pinning sites in laser-ablated YBa2Cu3O7-δthin films. Physical Review B, 2000, Vol. 62, No. 2: 1338.
    [55] Matsumoto K, Horide T, Ichinose A, et al. Critical current control in YBa2Cu3O7-& films using artificial pinning centers. Japanese Journal of Applied Physics, Part 2: Letters, 2005, Vol. 44, No. 1-7: 246-248.
    [56] Crisan A, Fujiwara S, Nie J C, et al. Sputtered nanodots: A costless method for inducing effective pinning centers in superconducting thin films. Applied Physics Letters, 2001, Vol. 79, No. 27: 4547.
    [57] Gapud a A, Feenstra R, Christen D K, et al. Temperature and magnetic field dependence of critical currents in YBCO coated conductors with processing-induced variations in pinning properties. IEEE Transactions on Applied Superconductivity, 2005, Vol. 15, No. 2 PART III: 2578-2581.
    [58] Macmanus-Driscoll J L, Foltyn S R, Jia Q X, et al. Systematic enhancement of in-field critical current density with rare-earth ion size variance in superconducting rare-earth barium cuprate films. Applied Physics Letters, 2004, Vol. 84, No. 26: 5329-5331.
    [59] Cai C, Holzapfel B, Hanisch J, et al. High critical current density and its field dependence in mixed rare earth (Nd,Eu,Gd)Ba2Cu3O7-& thin films. Applied Physics Letters, 2004, Vol. 84, No. 3: 377-379.
    [60] Sueyoshi T, Inada S, Ueno T, et al. Effect of controlled densities of columnar defects on pinning parameters in YBa2Cu3O7-& thin films. Physica C: Superconductivity and its Applications, 2005, Vol. 424, No. 3-4: 153-158.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700