用户名: 密码: 验证码:
大电网短路电流限制措施研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电力系统规模的扩大和电网的不断加强,电力系统中短路电流水平逐年增大,目前已成为电力系统规划、运行方面面临的重要问题。同时电力市场化的不断推进,对主网架的电力输送能力和可靠性提出了更高的要求,因此有效控制短路电流水平,寻找限制短路电流的合理而经济的方法是电网发展面临的重大挑战之一。
     基于有效而经济的控制全网短路电流水平的目的,本文建立了数学模型寻找成本最优的限流方案,综合考虑多种限流措施,利用遗传算法求解。该方法对18节点进行了计算,结果表明了模型的合理性,算法能够得到经济最优的限流方案。
     本文基于2008至2020年宁夏电网的结构和运行特点,分析宁夏电网短路电流增加的趋势和原因;结合宁夏750kV电网的建设和发展,对各种限流措施进行了探讨和分析。计算结果表明:采用高阻抗变压器可以缓解750kV变电站附近地区超标情况;随750kV电网的逐步强壮,分层分区是控制全网短路电流水平的最优措施;部分节点开关遮断容量过小已成为限制电网发展的瓶颈,应更换开关;开断线路可以作为过渡措施;对于远景网架,采用串联电抗器可以作为局部地区限制短路电流的措施。
     本文从措施实施的连续性、一致性出发,提出宁夏电网2008至2020年综合限流方案。主要措施为改造现有网架结构,辅以升级改造现有设备以及增加限流装置,达到整体限流效果最优。方案一的首要目的为减小短路电流水平,方案二的在减小短路电流的基础上,在经济最优的前提下,尽可能提高提高系统承受短路电流的能力。计算结果表明综合限流方案能够将全网短路电流控制在合理范围,并满足电网运行要求。
With the expansion of power system, short-circuit current is increased year by year, which has become a serious problem for the planning and operation of power system. Besides, a heathier power market will set higher standards for transmission capability and reliability of power gird. Therefore, to effectively control the level of short-circuit current and find reasonable and economical limitation methods is one of the big challenges standing on the way of power system development.
     Aiming to effectively control the short-circuit current level for the whole power network, a mathematical model is built to find limitation solution with lowest investment, taking several different methods into consideration and using Genetic Algorithm to search for the global optimal solution. Tests on the 18-bus system show that the model is effective and reasonable.
     Based on the characters of framework and operation in the planning network of Ningxia province from 2008 to 2020, both of the increasing trend and deep-rooted causes for short-circuit current are analyzed; Taking the construction and development of 750kV electrical network in Ningxia province as background, thesis researches the measures which can limit short circuit currents. Simulation results show that: to adopt high impedance transformer can bring notable decrease of short-circuit current at the adjacent area of the 750kV substation; dispatching by levels and districts will be the best method to control short-circuit current globally as the 750kV power network becomes robust; to improve the interrupting capacity for some breakers which are too low and become the bottleneck for power system development is necessary; line-cutting can be a temporary measure; for 2020-yeat gird, installation of series rector is useful to reduce short-circuit current as a local limitation mothod.
     From the angle of measures' global effectiveness, continuity, limitation solution from 2008 to 2020 are put up, with reconstruction network being the first choice and change transformation devices being the second choice. Solution I aims to reduce short circuit current, and Solution II can not only realize short circuit current control, but also improve the capability of power system to operate in the condition of larger short circuit current. Their validity is proved by calculation.
引文
[1]周小谦.中国电力工业发展的前景.http://www.china5e.com/dissertation/power/0005.htm,2001.10.
    [2]王婷.截至2007年底全国电力装机容量超7亿千瓦.http://www.cs.com.cn/sylm/jsbd/200801/t20080116_1348981.htm,2008.1.
    [3]电气频道.2020年我国电力装机容量将翻番.http://www.cmwin.com/CBPResource/StageHtmlPage/A280/A28020071021142439265.htm,2007.10.
    [4]黄娟娟,郑英芬.特高压网架对华中电网短路电流水平的影响分析及限流措施[J].中国电力,2007,40(3):49-52.
    [5]何仰赞,温增银.电力系统分析[M].武汉:华中科技大学出版社,2002,第三版.
    [6]西安交通大学等.电力系统计算[M].北京:水利电力出版社,1978,第一版.
    [7]阮前途.上海电网短路电流控制的现状与对策[J].电网技术,2005,29(2):78-83.
    [8]叶琳,戴彦.短路电流限制技术在浙江电网的应用[J].华东电力,2005,33(5):23-26.
    [9]陆建忠,张啸虎.加强电网规划,优化电网结构,限制短路电流[J].华东电力,2005,33(5):292-295.
    [10]叶幼君,鲍爱霞,程云志.浙江500kV电网短路电流的控制[J].华东电力,2006,34(3):193-197.
    [11]周彦.基于TPSC技术的短路电流限制器[J].华东电力,2005,33(5):326-327.
    [12]袁娟,刘文颖,董明齐.西北电网短路电流的限制措施[J].电网技术,2007,31(10):42-45.
    [13]梁绍斌,李继红,毛雪雁.浙江电网控制系统短路电流的探索与实践[J].华东电力,2006,34(8):68-688.
    [14]王非,李群炬.京津唐电网限制短路电流问题探讨[J].华北电力技术,2007,(4):17-19.
    [15]庄侃沁,胡宏,励刚,等.控制和降低短路电流水平措施在华东电网的应用[J].华东电力,2005,33(12):917-919.
    [16]李明,张小青.电力系统故障限流器技术的研究[J].电气时代,2005,(4):54-56.
    [17]傅业胜,罗意群.华东电网500kV/220kV电磁环网解网分析[J].华东电力,1997,(7):31-33.
    [18]吴劲晖,周剑波,王涛.浙江220kV电网2002年分层分区对电网调度的影响分析及对策[J].浙江电力,2003(2):4-16.
    [19]林章岁,郑春平,吴威.福建电网500-220kV电环网解环运行的可行性研究[J].福建电力与电工,2003,2(23):1-4.
    [20]李春叶,李胜,尚敬福,等.电磁环网方式与分层分区运行方式之决策[J].电力学报,2006,21(2):160-163.
    [21]胡伟.2004-2005年江苏电网分层分区运行分析[J].华东电力,2003,(8):14-17.
    [22]陈春霖,阮前途,程道平.上海电网实现分层分区运行[J].电网技术,1996,20(9):29-31.
    [23]王梅义,吴竞昌,蒙定中.大电网系统技术[M].北京:中国电力出版社,1995,第一版.
    [24]朱天游.500kV自耦变压器中性点经小电抗接地方式在电力系统中的应用[J].电网技术,1999,23(4):15-19.
    [25]施伟园.500kV主变中性点小电抗接地限制不对称短路电流[J].上海电力,2001,(8):26-29.
    [26]毛雪雁,宣晓华.500kV自耦变压器中性点小电抗接地的研究[J].华东电力,2005,33(5):26-29.
    [27]Sugimoto S,Kida J,Arita H,et al.Principle and Characteristics of a FCL with Series Compensation[J].IEEE Trans PWRD 1996,2(11):842-847.
    [28]殷可,高凯.应用串联电抗器限制500kV短路电流分析[J].华东电力,2004,32(9):7-10。
    [29]Accepted Bulk Power Series Reactor Applications on the PJM System.
    [30]Australasia news:ABB installs its largest series reactor at TransGrid's Sydney Soutll 330 kV Substation.
    [31]唐跃进,李敬东,叶妙元,等.未来电力系统中的超导技术.电力系统自动化[J],2001,25(2):70-75.
    [32]Raju B P,Parton K C,13artram T C.A Current Limiting Device Using Superconducing DC BIAS Applications and Prospects[J].IEEE Trans on Power Apparatus ans Systems,1982,101(9):3173-3177.
    [33]Boening H J,Paice D A.Fault Current Limiter Using a Superconducting Coil[J].IEEE Trans on Magnetics,1983,19(3):1051-1057.
    [34]Boening H J,Leung E M.Supeconducting Fault Current Limiter and Inductor Design[J].IEEE Trans on Mag-19,1983,3:1054-1058.
    [35]Ito D,Tsurunaga K,Hara T,et al.Superconducting Fault Current Limiter Development [J].IEEE Trans on Magnetics,1991,27(2):2345-2348.
    [36]Tasaki K.Qench.Current Degradation in Superconducting Coil for 6.6kV/2kA Fault Current Limiters.In:MT-14 Proceeding.Japan,1995,1112-1114.
    [37]Thuries E,Pham V D,Laumond Y,et al.Towards the Superconducting Fault Current Limiter[J].IEEE Trans on Power Delivery,1991,6(2):801-808.
    [38]Strumpler R,Skindhoj J,Glatz-Reichenbach J,et al.Novel Medium Voltage Fault Current Limiters Based on Polymer PTC Resistors[J].IEEE Transactions on Power Delivery,1999April,14(2):425-430.
    [39]谢泽权.限制短路电流技术的探讨.广东电力[J],1997,(2):29-31.
    [40]Niclas Ottosson,Lena Kjellin.Modular back-to-back HVDC with capacitor commutated converters(CCC).ABB Sweden.http://www.abb.com.cn.
    [41]Y.SEKINE,S.KATO,T.MOTOK1,S.ITO~*.Kii channel HVDC link between Shikoku and Kansai electric power companies by submarine cables.CIGRE Symposium Tokyo,1995,220(4):1-6.
    [42]A.E.Hammad,W.F.Long.Performance and economic comparisons between point-to-point HVDC transmission and hybrid back-to-back HVDC/AC transmission.IEEE Transactions on Power Delivery,1990,5(2):1137-1144.
    [43]浙江大学发电教研组直流输电科研组.直流输电[M].北京:电力工业出版社,1982.
    [44]戴熙杰.直流输电基础[M].北京:水利电力出版社,1990.
    [45]吕文杰.英国国家电网的短路电流控制技术[J].华东电力,2005,33(9):22-24.
    [46]叶幼君,鲍爱霞,程云志.浙江500kV电网短路电流的控制[J].华东电力,2006,34(3):11-15.
    [47]Goldberg D E.Genetic Algorithm in Search Optimization and Machine Learing[M].Addison Welley,1989.
    [48]Chen Genshe,Chen Xinhai.Application of Modified Genetic Algorithm to Computer Vision for Spacecraft Rendesvous.Proc of Inter Confon Modeling,Simulation and Control,1993.3,856-863.
    [49]方建安,邵世煌.采用遗传算法学习的神经网络控制器[J].控制与决策,1993,(8):208-212.
    [50]文劲宇,刘沛,程时杰.遗传算法及其在电力系统中的应用(上)[J].电力系统自动化,1996,20(11):57-60.
    [51]文劲宇,刘沛,程时杰.遗传算法及其在电力系统中的应刚(下)[J].电力系统自动化,1996,20(11):60-65.
    [52]熊信银,吴耀武.遗传算法及其在电力系统中的应用[M].武汉:华中科技大学出版社,2002,第一版.
    [53]王秀丽,王锡凡.遗传算法在输电系统规划中的应用[J].西安交通大学报,1995,29(8):1-9.
    [54]王锡凡.电力系统优化规划[M].北京:水利电力出版社,1990,第一版.
    [55]范宏,程浩忠,张节谭,等.考虑电力系统安全的输电网规划[J].电力系统自动化,2007,31(11):35-38.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700