用户名: 密码: 验证码:
SiC_p/Al复合材料制备工艺和微结构及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用粉末冶金法,通过SiC颗粒表面处理和成形参数和热处理工艺控制基体组织和界面结合,制备SiC_p/6066Al复合材料。使用金相显微镜(OM)、X-射线衍射仪(XRD)、扫描电镜(SEM)、透射电镜(TEM)及高分辨电镜(HREM)等仪器和选区电子衍射(SAED)、能量散射谱(EDS)、拉伸试验、和动态机械分析(DMA)等方法系统研究SiC_p/6066Al复合材料微观结构、性能特点和机理;实验结合理论模型研究SiC_p/6066Al复合材料热处理规律、变形行为、阻尼机制和界面特征对性能的影响规律。研究工作及主要结果有以下:
     (1)首次综合采用氧化酸洗+碱洗工艺对SiC颗粒进行表面处理与优化成型温度相结合,探求有利于提高复合材料界面结合的工艺方案和机理,并获得成型参数搭配影响复合材料力学性能的新规律,确立了SiC_p/6066Al复合材料的表面处理、成型参数和界面控制的工艺技术,并制备出综合性能高的SiC_p/6066Al复合材料(①10%SiCp/6066Al:σ_(0.2)~387MPa,σ_b~484MPa,δ_5~7.2%,E~88.6 GPa:②12%SiCp/6066Al:σ_(0.2)~425MPa,σ_b~524MPa,δ_5~6.5%,E~92.7 GPa;③15%SiCp/6066Al:σ_(0.2)~461MPa,σ_b~537MPa,δ_5~5.5%,E~96.8 GPa。)
     (2)设计四因素多水平试验并建立了数理统计模型,分析热处理的微观机制,探明了热处理工艺参数影响SiC_p/6066Al复合材料强度性能的规律,并得到合理的热处理工艺参数(10%SiC_p/6066Al:535℃/90 min固溶,室温水淬,170℃/7h时效;12%SiC_p/6066Al:530℃/90 min固溶,室温水淬,170℃/6h时效;15%SiC_p/6066Al:525℃/90 min固溶,室温水淬,170℃/5h时效。
     (3)微结构分析发现实验制备的SiC_p/6066Al复合材料基体中分布有颗粒状的弥散相(Fe,Mn,Cu)_3Si_2Al_(15)(bcc结构,晶格常数a=1.28 nm,尺寸100-500 nm)并对位错运动有钉扎作用。探明了SiC颗粒原态及表面处理后SiC_p/6066Al复合材料中界面的结构和结合形式,确立了控制良好SiC/Al界面结合的工艺方案。通过修正等效介质模型,研究显微组织变化对SiC_p/6066Al复合材料变形行为的影响及机理,探明了SiC_p/6066Al复合材料的强化机制与断裂模式。
     (4)通过动态试验检测和数学模型,证实SiC_p/6066Al复合材料低温内耗以位错阻尼为主,高温以界面阻尼和晶界阻尼为主,三者间的相互叠加构成复合材料整个内耗行为;对应于内耗平台出现的温度范围,动态模量出现快速的下降,驰豫是一个多步的过程;证实了SiC_p/6066Al复合材料内耗对温度和频率的依赖关系和内耗峰的物理形成机制。12%SiC_p/6066Al复合材料中位错内耗激活能约为1.2 eV,晶界内耗激活能约为1.57 eV;其阻尼能力达到10~(-2)量级并且能在高温(<400℃)时保持较高的模量。
     (5)修正并建立含界面特征(不同界面厚度和“界面结合强度”)的等效体模型,理论结合实验研究不同SiC/Al界面特征对SiC_p/Al复合材料性能的影响程度,确立了SiC_p/Al复合材料性能(弹性模量、界面阻尼和屈服强度)对SiC/Al界面特征的依赖规律,形成生产实验中控制界面的科学理论根据。
     SiC颗粒表面状态和成型参数对SiC_p/Al复合材料性能和界面结构的影响规律、SiC_p/Al复合材料热处理规律、微结构尤其是界面特征影响复合材料性能的规律研究,为SiC_p/Al复合材料工业化生产提供了理论指导和技术支持,并推动SiC_p/Al复合材料基础性问题的理论研究。
The SiC_p/6066Al composites have been fabricated by a powder metallurgy route with the SiC surface modification techniques,the optimized forming temperatures of hot compression and hot extrusion and the optimized parameters of heat treatment to control the microstructures and the interracial cohesion in the composites.The microstructures,mechanical properties,fracture modes,dynamical modulus and internal friction in the composites were studied by OM, XRD,SEM,TEM,HREM,SAED,EDS,tensile tests and DMA.The laws of heat-treatment,the deformation behaviour,the damping mechanism and the interfacial effects in the SiC_p/6066Al composites have been explored by experiments combined with mathematical model. Some major conclusions can be drawn from the experimental studies and the theoretical analysis as follows:
     (1)It's the first time to adapt the SiC particle surface treatment techniques of oxidation,acid dipping and alkali washing as well as the optimized forming temperatures to explore the techniques to improve the interracial cohesion in the SiC_p/Al composites.The law of forming temperatures influencing the mechanical properties of the composites has been obtained and the cohesive mechanism of SiC/Al interface was also investigated,which has established the techeniques of particle surface modification,forming temperature and interracial control.The SiC_p/6066Al composites with good comprehensive properties have been fabricated through the optimized techeniques(①10%SiCp/6066Al:σ_(0.2)~387MPa,σ_b~484MPa,δ_5~7.2%,E~88.6 GPa;②12%SiCp/6066Al:σ_(0.2)~425MPa,σ_b~524MPa,δ_5~6.5%,E~92.7GPa;③15%SiCp/6066Al:σ_(0.2)~461MPa,σ_b~537MPa,δ_5~5.5%,E~96.8GPa。).
     (2)The mathematical statistical model with more factors and more levels has been set up to study the heat-treatment of the SiC_p/Al composites.The experimental and thereotical results combined with the micromechanism of heat treatment have established the law of mechanical properties depending on the parameters of heat treatment. The reasonable parameters of heat treatment for the 10%SiC_p/6066Al composites are solution at 535℃for 90 min,water quench and aged at 170℃for 7 h;the parameters of heat treatment for the 12%SiC_p/6066Al composites are solution at 530℃for 90 min,water quench and aged at 170℃for 6 h and those of the 15%SiC_p/6066Al composites are solution at 525℃for 90 min,water quench and aged at 170℃for 5h.
     (3)The dispersoid phase(Fe,Mn,Cu)_3Si_2Al_(15)(bcc structure with a lattice constant a≈12.8(?)and in size of 100~500 nm)in the SiC_p/6066Al composites have been found in the microstruetural solusion,which can pin up the dislocations.The interfacial structure and cohesive forms have been verified and the techeniques to get strong interfacial cohesion has been obtained.Studies on the effects of microstructures on the deformation behaviour in the composites through the modified EMA model have been proved the strengthening mechanisms and the fracture modes,which also confirmed that the optimized techeniques are beneficial to enhancing the strength and ductility of SiC_p/Al composites.
     (4)The dynamical experiments of the composites combined with the theoretical model have verified that,at low temperature,the dislocation damping is the primal damping mechanism in SiC_p/6066Alcomposites,while the sliding motion of interface and grain boundary plays major roles in internal friction at high temperature.All of these three mechanisms make up the main damping behavior in the composites.At the appearance of the internal friction platform,the dynamical modulus of the composites decreases rapidly.The temperature-and frequency-dependence of internal friction and the forming mechanism of damping peaks in the composites have been found.The activation energies of dislocation damping and grain boundary sliding are 1.2 eV and 1.57 eV,respectively.The damping capacity of the 12%SiC_p/6066Al can get the order of 10~(-2)as well as high elastic modulus at higher temperatures less than 400℃.
     (5)The equivalent representative element of particle reinforced metal matrix composites has been modified with different interface features to study the effects of interfacial parameters on the properties of the SiC_p/Al composites.The interface-denpendence of properties (including the elastic modulus,interracial damping and yielding strength) of the SiC_p/Al composites,compared with the experimental results,has been found.The studies can provide the manufacture of SiC_p/Al composites with scientific approaches.
     The studies on the effects of surface modification and forming temparatures on the properties and the interfacial structures of SiC_p/Al composites,the law of heat treatment and the microstructures,especially the interfacial features,can provide the industrialized production of SiC_p/Al composites with theoretical guidance and technical assistance, and promote the basic research in SiC_p/Al composites.
引文
[1]沃丁柱.复合材料大全[M].北京:化工出版社,2002
    [2]王广欣,刘惠民.金属基复合材料的制备及力学性能[M].杭州:浙江大学出版社,1996
    [3]吴人杰.金属基复合材料的现状与展望[M].金属学报,1997,33(1):78-84
    [4]Clyne T W,Withers.金属基复合材料导论[M].北京:冶金工业出版社,1996
    [5]Cui Y,Geng L,Yao Z K.A new advance in the development of high performance SiCp/Al composite[J].Journal of Materials Science and Technology,1997(13):227-229
    [6]樊建中,姚忠凯,杜善义,等.P/M制备的SiCp/Al复合材料界面结构[J].中国有色金属学报,1998,8(3):20-23
    [7]Sui Xiangdong,Luo Chengping,Luo Zuoxuan,et al.The fabrication of particle reinforced cast metal matrix composites[J].Journal of Materials Processing Technology,1997,(63):426-431
    [8]Lee J C,Ahn J P,et al.Control of the interface in SiC/Al composites[J].Acta Metallurgica,1999,41:890-895
    [9]梅志,崔昆,吴人杰.颗粒增强体的表面处理方法[J].材料开发与应用,1997,12(4):32-34
    [10]张济山,陈国良,粉末雾化喷射成形制备颗粒增强金属基复合材料[J].材料科学与工程,1995,13(1):21-29
    [11]Nyberg E.Coating particulate SiC in aluminium metal matrix composites[J].Key Engineering Materials,1993,(77-78):349-356
    [12]屠宇强,王张敏,李戈扬,等.Al/SiC复合材料界面反应的DTA研究[J].材料研究学报,1994.8(6):570-572
    [13]Lee J C,Ji Y B,Park S B.Prediction of Si contents to suppress the formation of Al4C3 in the SiCp/Al composites[J].Acta Materials,1998,46(5):1771-1780
    [14]Lee J C,Park S B,Seok H K,et al.Prediction of Si contents to suppress the interfacial reaction in the SiCp/2014Al composites[J].Acta Materialia,1998,46(8):2635-2643
    [15]kilier,US Patent 4961461,1990
    [16]崔岩,耿林,姚忠凯.SiCp/6061Al复合材料的界面优化与控制[J].中国有色金属学报,1997,7(12):159-162
    [17]邢一明,程晓农,赵玉涛.金属基复合材料中增强材料的表面处理[J].江苏理工大学学报,1997,18(6):84-88
    [18]Lee J C.Modification of the interface in SiC/Al composites[J].Metallurgical and Materials Transactions,2000,A31:2361-2368
    [19]郭宏,李义春,石力开,等.原始SiC颗粒表面及SiC_p/Al复合材料界面化学状态的研究.复合材料学报[J],1997,14(4):42-47
    [20]施忠良,顾明元,刘俊友,等.氧化的碳化硅与铝镁合金之间的界面反应[J].科学通讯,2001,46(14):1161-1165
    [21]Fan T,Shi Z.The interracial reaction charachtedstics in SiC/Al composite above liquidus during melting[J].Materials Science and Engineering,1998,A257:281-286
    [22]Li S,Arsenault R J.Quantum chemical study of adhension at the SiC/Al interface[J].Applied Physics,1988,64:6246-6257
    [23]Arsenault R J,Fisher R M.Microstructure of fiber and particulate SiC in 6061 Al composites[J].Scripta Materialia,1983,17:67-71
    [24]郭树启.SiC_w/Al复合材料的研究[D]:[博士学位论文].哈尔滨:哈尔滨工业大学,1986
    [25]曹利.碳化硅晶须增强铝复合材料的微观结构及断裂规律[D]:[博士学位论文].哈尔滨:哈尔滨工业大学.1989
    [26]Van Den M,Burg.Al-SiC interface structure studied by HREM[J].Acta Metallurgica et Materialia,1992,40(5):5281-5287
    [27]Romero J C,Wang L,Arsenault R J.Interfacial structure of a SiC/Al composites[J].Materials Science and Engineering,1996,A212:1-5
    [28]隋贤栋.SiCp/ZL109复合材料中的SiC的界面行为[J].复合材料学报,2000,17(1):65-70
    [29]Vedabu M,Gadbold E.Influence of interface properties on mechanical behavior of particle reinforced metal matrix composite[J].Materials Science and Technology,1994,10(2):132-136
    [30]Geng L,Wu K and Yao G K.SiC-Al interface crystallographic orientation relationship in a squeeze-cast SiC_w/Al composite[J].Materials Characterization,1995,34:227-229.
    [31]耿林.压铸SiC_w/LD_2复合材料晶须及界面的微观结构[D]:[博士学位论文].哈尔滨:哈尔滨工业大学,1990
    [32]Wang C,Bernhole,Davis R F.Formation energies,abundances,and the electronic structure of native defects in cubic SiC[J].Physics Review B,1988,35:12752-12755
    [33]Luo X,Qian G F,Wang E G.Molecular-dynamics simulation of Al/SiC interface structures [J].Physics Review B,1999,59(15):10125-10131
    [34]Shyong J H,Derby B.The deformation characteristics of SiC particulate-reinforced aluminum alloy 6061[J].Materials Science and Engineering,1995,A197:11-18
    [35]Tan M Z,Xin Q B,Li Z H and Zong B Y.Influence of SiC and Al_2O_3 particulate reinforcements and heat treatments on mechanical properties and damage evolution of Al-2618 metal matrix composites[J].Journal of Materials Science,2001,36(8):2045-2053
    [36]肖伯律,毕敬,赵明久.SiCp尺寸对铝基复合树料拉伸性能和断裂机制的影响[J].金属学报,2002,38(9):1006-1008
    [37]郦定强,洪淳亨.增强体颗粒尺寸对SiCp/2124Al复合材料变形行为的影响[J].上海交通大学学报,2000,34(3):342-346
    [38]毕豫.SiC表面处理及热处理工艺对SiCp/6066Al复合材料组织和性能的影响[D]:[硕士学位论文].长沙:中南大学,2004
    [39]Zhou Y Z,Li J,Nutt S,Lavernia E J,et al.Spray forming of ultra-fine SiC particle reinforced 5182 Al-Mg[J].Journal of Materials Science,2000,35(16):4015-4023
    [40]Nardone V C.Assessment of models used to predict the strength of discontinuous silicon carbide reinforced aluminum alloys[J].Scripta Materialia,1987,21:1313-1217
    [41]Nardone V C,Prewo K M.On the strength of discontinuous silicon carbide reinforced aluminum composites[J].Scripta Materialia,1986,20(1):43-48
    [42]Cho K,Gurland J.The law of mixtures applied to the plastic deformation of two-phase alloys of coarse microstructures[J].Journal of Metallurgica Transactions,1988,A19(8):2027-2040
    [43]Taya M,Arsenault RJ.A comparison between a Shear Lag type and an Eshelby type model in predicting the mechanical properties of a short fiber composite[J].Scripta Metallurgica, 1987,21:349-354
    [44]Shi N,Wilner B,Arsenault R J.An FEM study of the plastic deformation process of whisker reinforced SiC/Al composites[J].Acta Metallurgica,1992,40:2841-2854
    [45]Doel T J A,Bowen P.Tensile properties of particulate-reinforced metal matrix composites [J].Composites(Part A),1996,A 27:655-665
    [46]Mummery P,Derby B.The influence of microstructure on the fracture behavior of particulate metal matrix composites[J].Materials Science and Engineering,1991,A135:221-224
    [47]樊建中,桑吉梅,张永忠,等.铝基复合材料增强体颗粒分布均匀性的研究[J].金属学报,1998,34(10):1199-1204
    [48]Hansen N.The effect of grain size and strain of the tensile flow stress of Al at room temperature[J].Acta Metallurgica,1977,25(8):863-869
    [49]Christmen T,Needleman A.An experimental and numerical study of deformation in metal-ceramic composites[J].Acta Metallurgica,1989,37:3029-3050
    [50]秦蜀懿,张国定.改善颗粒增强金属基复合材料塑性和韧性的途径与机制[J].中国有色金属学报,2000,10(5):621-629
    [51]Arsenaut R J,Shi N,Feng C R,et al.Localized deformation of SiC-Al composites[J].Materials Science and Engineering,1991,A131:55-68
    [52]Ma W C,Gu J L,Zhang Y,Wand M M.Effect of SiC Particles on ageing behaviour of SiC_p/7075 composites[J].Journal of Materials Science Letters,1997,16:1867-1869
    [53]Shen C Y,Lin S J.Ageing behaviour of SiCp-reinfoced AA7075 composites[J].Journal of Materials Science,1997,32:1741-1747
    [54]Suresh S,Christman T,Sugimura Y.Accelerated aging in cast Al alloy-SiC particulate composites[J].Scripta Metallurgica et Materials,1989,23:1599-1603
    [55]Song Y,Baker T N.Accelerated aging processes in ceramic reinforced AA6061 composites [J].Materials Science and Technology,1994,10(5):406-413
    [56]Dutta I,Allen S M,Harley J L.Effect of reinforcement on the aging response of cast 6061Al-Al2O3 particulate composites[J].Metallurgical Transactions A,1991,A22(11):2553-2563
    [57]Gupta M,Lai M O,Herng N S.Effect of particulate size on the microstructural evolution,aging behavior and mechanical properties of Al-4.5 Cu/SiC composites[J].High Temperature Materials and Processes,1999,18(3):132-134
    [58]Thomas M P,King J E.Improvement of the mechanical properties of 2124 Al/SiCp MMC plate by optimization of the solution treatment[J].Composites Science and Technology,1996,56:1141-1149
    [59]Varma S K,Salas D,et al.Microstructural development during aging of 2014 aluminum alloy composite[J].Journal of Materials Science,1999,34:1855-1863
    [60]Appendino P,Badini C.6061 aluminum alloys-SiC particulate composite:a comparison between aging behavior in T4 and T6 treatments[J].Material Science and Engineering,1991,A135:275-279
    [61]龚浩然,黎文献.喷射沉积SiCp/6066铝基复合材料的固溶温度[J].金属热处理,2000,6:15-16
    [62]柏振海.6066Al/SiC_p复合材料弹性模量、内耗及加工制备的研究[D]:[博士学位论文]. 长沙:中南大学,2006
    [63]董尚利,杨德庄.碳化硅晶须和颗粒增强铝基复合材料的时效行为[J].材料工程,1996,(8):45-49
    [64]Papazian J M.Effects of SiC whiskers and particles on precipitation in aluminum matrix composites[J].Metallurgical Transactions A,1988,A19(12):2945-2953
    [65]Parazian JM,Adler,P N.Tensile Properties of Short Fiber-Reinforced SiC/Al Composites.I.Effects of Matrix Precipitates[J].Metallurgical Transactions A,1990,A21(2):401-410
    [66]Nieh T G,Karlak R F.Aging characteristics of B4C/6061 Al[J].Scripta Metallurgica,1984,18(3):25-28
    [67]Dutta L,Bourell DL,Latimer D.A Theoretical Investigation of Accelerated Aging in Metal-Matrix Composites[J].Journal of Composite Materials.1988,22(9):829-849
    [68]赵乃勤,李家俊.急冷SiC_p/LD12复合材料时效特征的研究[J].兵器材料科学与工程,1999,22(6):32-34
    [69]刘秋云,费维栋.SiC_w/6061复合材料时效机制的研究[J].材料研究学报,1999,13(4):409-411
    [70]Strangwood M,Hippsley C A,Strangwood M,Hippsley C A,Lewandowski J J.Segregation to SiC/Al interfaces in Al based metal matrix composites[J].Scripta Metallurgica et Materials,1990,24:1481-1487
    [71]Badini C,Marino F,Montorsi M.Precipitation phenomena in B4C-reinforced magnesium-based composite[J].Materials Science and Engineering A,1992,A157:53-61
    [72]乐永康,王哲,张迎元.颗粒增强铝基复合材料6066Al/SiC_p的时效析出特性[J].稀有金属材料工程,2002,31(6):460-463
    [73]王俊,黄裕杰,王仕勤,张力宁.SiC颗粒增强锌基复合材料的制备及其性能[J].复合材料学报,1995,12:56-59
    [74]罗宾辉,柏振海,谢佑卿.6066Al/SiCp复合材料的组织特征与阻尼性能[J].中南工业大学学报,2001,32(5):511-514
    [75]顾敏,王西科,沈宁福,等.SiCp-Gr颗粒混杂增强6061铝基复合材料中的内耗峰及其阻尼机制[J].中国有色金属学报,2003,13(3):645-650
    [76]张迎元,乐永康,高灵清.喷射共沉积SiCp增强6061Al MMC的阻尼特性及位错阻尼机制[J].中国有色金属学报,1999,9(1):91-96
    [77]裴政,王进华,郭洪光.铝基复合材料阻尼的微观机制分析.兵器材料科学与工程,2001,24(1):8-11
    [78]顾敏.喷射共沉积颗粒增强铝基复合材料阻尼特性的研究[D]:[博士学位论文].郑州:郑州大学,2003
    [79]哈宽富.金属力学性能的微观理论.北京:科学出版社,1983
    [80]Zhang J,Perez R J,Laverimia E J.Documentation of damping capacity of metal,ceramic and metal matrix composite materials[J].Journal of Materials Science,1993,28:2395-2404
    [81]Zhang J,Perez R J,Laverimia E J.Effects of SiC and graphite particulates on the damping behavior of metal matrix composite[J].Acta Metallurgica,1994,42(2):359-409
    [82]Granato A,Lucke K.Theory of mechanical damping due to dislocations[J].Journal of Applied Physics,1956,27(6):583-593
    [83]Granato A,Lucke K.Application of dislocation theory to internal friction phenomena at high frequencies[J].Journal of Applied Physics,1956,27(7):789-805.
    [84]Wang C,Zhu Z G.Internal friction at medium temperature in an Al matrix composite reinforced by SiC particles[J].Scripta Materialia,1998,38(12):1739-1745
    [85]Lavernia E J,Perez R J,Zhang J.Damping behavior of discontinuously reinforced Al alloy metal matrix composites[J].Metallurgical and Materials Transactions,1995,A26:803-817
    [86]Flom Y,Arsennault R J.Interfacial bond strength in an aluminum alloy 6061-SiC composite [J].Materials Science and Engineering,1986,77:191-197
    [87]Divecha A P,Fishman S G and Karmarkar S D.Silicon carbide reinforced aluminum-a formable composite[J].Journal of Metals,1981,33(9):12-17
    [88]栾佰峰,姜龙涛,孙海宽,等.热挤压变形对亚微米Al_2O_(3P)/Al复合材料组织性能的影响[J].中国有色金属学报,2002,13(2):374-376
    [89]曾凡文,张绪虎,胡欣华,等.SiC_p/2014Al复合材料的挤压研究[J].稀有金属,1999,23(3):177-180
    [90]程羽,郭生武,郭成,等.热挤压对颗粒增强金属基复合材料组织和性能的影响[J].兵器材料科学与工程,2000,23(2):31-34
    [91]Xu H,Palmiere E J.Particulate refinement and redistribution during the axisymmetric compression of an Al/SiC_p metal matrix composite[J].Composites,1999,A30:203-211
    [92]刘俊友,刘英才,等.SiC颗粒氧化行为及SiC_p/铝基复合材料界面特征[J].中国有色金属学报,2002,12(5):961-966
    [93]Thakur S K,Dhindaw B K.The influence of interfacial characteristics between SiC_p and Mg/Al metal matrix on wear coefficient of friction and microhardness[J].Wear,2001,247:191-201
    [94]崔岩,耿林,姚忠凯.轻微界面反应对SiCp/6061Al复合材料弹性模量的影响[J].复合材料学报,1998,15(1):74-77
    [95]Batdal A.The effect of antimony on the interface of cast AlSi-SiC composites[J].Journal of Materials Scencei,1993,28:2699-2705
    [96]Evans R D,Boyd J D.Near-interface microstructures in a SiC/Al composite[J].Scripta Materialia,2003,49:59-63
    [97]Andrew F.Materials and processing technology for PM MMCs[J].MPR,1992,10:40-46
    [98]Thamlm L M,Gupta M,Cheng L.Effect of reinforcement volume fraction on the evolution of reinforcement size during the extrusion of Al-SiC composites[J].Materials Science and Engineering A,2002,A326:355-363
    [99]贾玉玺.烧结规范对粉末冶金法制备的SiC_p/Al复合材料挤压态力学性能的影响[J].金属学热处理,2002,7(4):5-8
    [100]Shi Z L,Yang J M,Lee J C,et al.The interfacial characterization of oxidized SiCp/2014 Al composites[J].Materials Science and Engineering A,2001,A303:46-53
    [101]Gu M Y,Jin Y P,Mei Z,et al.Effects of reinforcement oxidation on the mechanical properties of SiC particulate reinforced aluminum composites[J].Materials Science and Engineering A,1998,A252:188-198
    [102]秦蜀懿,张国定,王文龙.颗粒形状及基体热处理对SiCp/LD2断裂韧性的影响[J].稀有金属,1999,23(3):181-184
    [103]陈建,潘复生,刘天模.Al/SiC界面结合机制的研究现状(续)[J].轻金属,2000,11:56-58
    [104]李学海,胡天全.碳化硅磨料生产中连续碱洗酸洗及脱水的研究[J].金刚石与磨料磨具工程,2001,(2):44-46
    [105]赵龙志,曹小明,胡宛平,等.骨架表面改性对SiC/Al复合材料性能的影响[J].材料研究学报,2005,19(5):512-518
    [106]宁叔帆,李鸿岩,陈维,等.表面氧化物含量对SiC浆料黏度影响的研究[J].西安交通大学学报,2005,39(6):641-645
    [107]傅敏士,肖亚航,彭长庚,等.二次热压变形工艺对粉末冶金SiC_p/Al复合材料组织均匀性的影响[J].热加工工艺,2000,(6):27-29
    [108]贾玉玺.挤压加工对SiC_p/Al复合材料组织和性能的影响[J].塑性工程学报,2000,17(4):5-8.
    [109]Zhang F,Sun P F,Li X C,et al.A comparative study on microplastic deformation behavior in a SiC_p/2024Al composite and its unreinforced matrix alloy[J].Materials Letters,2001,49:69-74
    [110]Zhou J,Druzdzel A T and Duszczyk J.The effect of extrusion parameters on the fretting wear resistance of Al-based composites produced via powder metallurgy[J].Journal of Materials Science,1999,34:5089-5097
    [111]Tang F,Anderson J E,Biner S B.Solid state sintering and consolidation of Al powders and Al matrix composites[J].Journal of Light Metal,2002,2-4:204-214.
    [112]Derby B,Mummery P M.Fracture behavior,in S.Suresh,A.Mortensen,A.Needleman (Eds),Fundamentals of Metal-Matrix Composites[C].Butterworth-Heinemann,Boston:1993,p251-268.
    [113]Silva R D,Caldemaison D,Bretheau T.Interface strength influence on the mechanical behavior of Al/SiC particle metal matrix composites,in:F.R.Jones(Ed.),Interfacial Phenomena in Composite Materials'98[C].Butterworth Sheffield:1989,p235-241
    [114]Needleman A,Nutt S R,Suresh S,Tergaard V,Matrix,reinforcement,and inteffacial failure,in:S.Suresh,A.Mortensen,A.Needleman(Ed.),Fundamentals of Metal Matrix Composites[C].Butterworth-Heinemann,Boston:1993,p233-250
    [115]Arsenault R J,Shi N.Dislocation generation due to differences between the co-efficient of thermal expansion[J].Journal of Materials Science and Engineering,1986,81(1-2):175-187
    [116]Bhagat R B,Amateau M F,House M B,et al.Elevated temperature strength,aging response and creep of aluminium MMCs[J].Journal of Composite Materials,1992,26(11):1578-1593
    [117]Mahadevan K,Raghukandan K,Senthilvelan T,Pal B C,Pillai U T S.Investigation on the influence of heat-treatment parameters on the hardness of AA6061-SiC_p composite[J].Journal of Materials Processing and Technology,2006,171:314-318
    [118]Box G E P,Hunter W H,Hunter J S.Statistics for Experiments[M].New York:John Wiley and Sons,1978.
    [119]John P W M.Design and Analysis of Experiments[M].New York:Macmillan,1972
    [120]Sritharan T,Chan L S,Tan L K,et al.A feature of the reaction between Ai and SiC particles in an MMC[J].Materials Characterization,2001,47(1):75-77
    [121]Tham L M,Gupta M and Cheng L.Predicting the failure strains of Al/SiC composites with reacted matrix-reinforcement interfaces[J].Material Science and Engineering A,2003, A354(1-2):369-376
    [122]Mitra R,Chalapathi Rao V S,Maiti R,et al.Stability and response to rolling of the interfaces in cast AI-SiC_p and Al-Mg alloy-SiC_p composites[J].Material Science and Engineering A,2004,A379:391-400
    [123]Luo Z P,Song Y G and Zhang S Q.A TEM study of the microstructure of SiC_p/Al composite prepared by pressureless infiltration method[J].Scripta Materialia,2001,45(10):1183-1189
    [124]Lloyd D J.Particle reinforced aluminum and magnesium matrix composites[J].Internal Materials Review,1994,39:1-23.
    [125]田荣章,王祝堂.铝合金及其加工手册[M].长沙:中南工业大学出版社,2000
    [126]Wang R M,Surappa M K,Tao C H,Li C Z,Yan M G.Microstructure and interface structure studies of SiC_p-reinforced Al(6061)meta-matrix composites[J].Materials Science and Engineering A,1998,A125:219-226
    [127]Zhou Z,Song Z J,Xu Y K.Effect of microstructure on the mechanical properties of an Al alloy 6061-SiC particle composite[J].Materials Science and Engineering,1991,Al32:363-370;Lin C,Qin S Y,Zhang G D and Naka M.Micromechanical properties of high fracture performance SiCp-6061Al/6061AI composite[J].Materials Science and Engineering A,2002,A332(1-2):203-209
    [128]Ratnaparkhi P L,Howe J M.Structure and mechanism of bonding at a diffusion-bonded Al/SiC interface[J].Acta Metallurgica et Materialia,1994,42:811-823
    [129]Qin S Y,Chen C R,Zhang G,Wang W,et al.The effect of particle shape on ductility of SiCp reinforced 6061 Al matrix composites[J].Materials Science and Engineering A,1999,A272(2):363-370
    [130]Nan C W,Clarke D R.The influence of particle size and particle fracture on the elastic/plastic deformation of metal matrix composites[J].Acta Materialia,1996,44:3801-3811.
    [131]Hu G K,Guo G,Baptiste D.A micromechanical model of influence of particle fracture and particle cluster on mechanical properties of metal matrix composites[J].Computational Materials Science,1998,9:420-430.
    [132]胡更开,韩棋.微结构分布对复合材料弹塑性性能的影响[J].北京大学学报,1999,19(5):554-559
    [133]Humphreys F J.Dislocations and Properties of Real Materials[M].London:Institute of Metals,1985,p175
    [134]方岱宁,周储伟.有限元计算细观力学对复合材料力学行为的数值分析[J].力学进展,1998,28(2):173-188
    [135]梁军,杜善义.弹塑性复合材料力学性能的微观研究.固体力学学报[J],2000,21(4):361-365
    [136]Mishnaevsky Jr L,Dong M,Honle S,Schmauder S.Computational mesomechanics of particle-reinforced composites[J].Computational Materials Science,1999,16:133-143
    [137]Stround D.The effective medium approximations:Some recent developments[J].Superlattices and Microstructures,1998,23(3/4):567-573
    [138]Xue Z,Huang Y,Li M.Particle size effect in metallic materials:a study by the theory of mechanism-based strain grain gradient plasticity[J].Acta Materialia,2002,50:149-160
    [139]Gao H,Huang Y,Nix W D,Hutchinson J W.Mechanism-based strain gradient plasticity-I.Theory[J].Journal of the Mechanics and Physics of Solids,1999,47:1239-1263.
    [140]Hall E O.The deformation and ageing of mild steel:Ⅲ[J].Procedings of Physics Soceity,1951,B64:747-753;Peteh N J.The cleavage strength of polycrystals[J].Journal of Iron Steel Institute,1953,174:25-28.
    [141]Clyne T W and Withers P J.An Introduction to Metal Matrix Composites[M].Cambridge:Cambridge University Press,1993
    [142]Nie S H,Basaran C.A mieromeehanieal model for effective elastic properties of particulate composites with imperfect interfacial bonds[J].International Journal of Solids and Structures,2005,42:4179-4191
    [143]Kapoor R,Vecehio K S.Deformation behavior and failure mechanisms in particulate reinforced 6061 Al metal-matrix composites[J].Materials Science and Engineering A,1995,A202:63-75
    [144]Gupta M,Surappa M K,Qin S.Effect of interfaeial characteristics on the failure-mechanism mode of a SiC reinforced Al based metal-matrix composite[J].Journal of Materials Processing Technology,1997,67:94-99
    [145]Chen Z Z,Tokaji K.Effects of particle size on fatigue crack initiation and small crack growth in SiC particulate-reinforced aluminium alloy composites[J].Materials Letters,2004,58:2314-2321
    [146]Jiao S,Jenkins M L,Davidge R W.Interfaeial fracture energy-mechanical behaviour relationship in Al2O_3/SiC and Al_2O_3/TiN nanocomposites[J].Aeta Matedalia,1997,45(1):149-156
    [147]Chandra N,Li H,Shet C,Ghonem H.Some issues in the application of cohesive zone models for metal-ceramic interfaces[J].International Journal of Solids Structure,2002,39:2827-2855
    [148]Li H,Chandra N.Analysis of crack growth and crack-tip plasticity in ductile materials using cohesive zone models[J].International Journal of Plasticity,2003,19(6):849-882
    [149]Kang C S,Maeda K,Wang K J and Wakashima K.Dynamic young's modulus and internal friction in particle SiC/Al composites[J].Acta Materialia,1998,46(4):1209-1220
    [150]葛庭燧.固体内耗理论基础,晶界驰豫与晶界结构[M].北京:北京科学出版社,2000,82-83
    [151]Zener C.Elasticity and Anelasticity of Metals[M].Chicago,IL:The University Chicago Press,1948:41-59
    [152]Bordoni P G.Activation Energy and Relaxation Spectrum of Dislocations in Copper[J].Physical Review Letters,1959,2(5):200-202
    [153]Seeger A.On the theory of the low-temperature internal friction peak observed in metals [J].Philosophical Magazine,1956,1:651-662
    [154]Koehler J S.Imperfection in nearly perfect crystals[M].New York:John Wiley & Sons,Inc.,1952,197;Granato A and Lucke K.Theory of mechanical damping due to dislocations[J].Journal of Applied Physics,1956,27(6):583-593
    [155]Schoeck G.Friccion intema debido A la interaction enter dislocations y atomos solutos[J].Acta Metallurgica,1963,11:617-622
    [156]Nowick A S and Berry B S.An Elastic Relaxation in Crystalline[M].New York and London:Academic Press,172:130
    [157]田莳,李秀臣,刘正堂.金属物理性能[M].北京:航空工业出版社,1994,152
    [158]Wolfenden A and Wolla J M."Dynamic mechanical properties"in(Metal matrix composites mechanical and properties).eidted by Everett R K and Aresenault R J[C].Sna Diego:Academic Press,Inc.,CA92101,USA,1991:287-328
    [159]Wolfenden A and Wolla J M.Mechanical damping and dynamic modulus measurements in alumina and tungsten fibre-reinforced aluminium composites[J].Journal of Materials Science,1989,24(9):3205-3212
    [160]Torisaka Y,Kojima S.Superplasticity and internal friction of a superplastic Zn-22%Al eutectoid alloy[J].Acta Metallurgica et Matedalia,1991,39(5):947-954
    [161]Zhang F,Sun P F,Li X C,et al.An experimental study on deformation behavior below 0.2%offset yield stress in some SiC_p/Al composites and their unreinforced matrix alloys[J].Materials Science and Engineering A,2001,A300:12-21
    [162]Wang J,Zhang Z,Yang G.The dependence of damping capacity of PMMCs on strain amplitude[J].Computational Materials Science,2000,18:205-211
    [163]Brandes E A.Smithells Metals Reference Book[M],6~(th)edn Butterworths,London,1983
    [164]Wakashima K,Tsukamoto H.Mean-Field Micromechanics Model and Its Application to the Analysis of Thermomechanical Behaviour of SiC_p/Al composites[J].Materials Science and Engineering A,1991,A146:291-297
    [165]Hashin Z.The elastic moduli of heterogeneous materials[J].Transactions of the ASME,Journal of Applied Mechanics 29(1962):143-150
    [166]Levin V M.Thermal expansion coefficients of heterogeneous materials[J].Mechanics of Solids,1967,2:58-61
    [167]Ju J W,Chert T W.Micromechanics and effective moduli of elastic composites containing randomly dispersed ellipsoidal inhomogeneities[J].Acta Mechanica,1994,103:103-121
    [168]Ju J W,Chen T W.Effective elastic moduli of two-phase composites containing randomly dispersed spbedcal inhomogeneities[J].Acta Mechanica,1994,103:123-144

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700