用户名: 密码: 验证码:
纳米碳化硅颗粒增强铝基复合材料的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳化硅颗粒增强铝基(SiCp/Al)复合材料由于具有比强度、比刚度高,导电、导热性能优良,耐高温、耐磨性能较好、热膨胀系数小等优点,而具有广阔的应用前景。当增强体碳化硅颗粒(SiCp)达到纳米尺寸时,其增强效果更好。本课题利用高能球磨和真空热压烧结法成功地制备了纳米碳化硅颗粒增强铝基(nano-SiCp/Al)复合材料,观察了复合材料试样的微观组织,测试了烧结试样的力学性能。为了改善增强体nano-SiCp和Al基体的润湿性,使nano-SiCp在Al基体中均匀分布并保持纳米尺寸,尽可能地抑制不良界面反应,减少硬脆相的产生,充分发挥nano-SiCp的增强作用,实验中对nano-SiCp进行了酸洗、化学镀铜等表面改性处理,效果显著。
     在高能球磨过程中,nano-SiCp的体积含量、球磨时间、转速是影响混合粉末质量的主要工艺参数。实验结果表明,nano-SiCp的体积含量为2%,球磨时间为2h,转速为200r/min为最佳高能球磨参数。
     真空热压烧结过程中,烧结温度、轴向载荷、保温时间是影响烧结试样性能的主要工艺参数。实验结果表明,烧结温度为873K、轴向载荷为40MPa、保温保压20min为最佳烧结参数。
     nano-SiCp酸洗和化学镀铜后增强Al基复合材料的组织均匀、晶粒细小、界面质量较高,nano-SiCp在铝基体中均匀分布,复合材料的力学性能更加优良。这一结果表明,对nano-SiCp进行表面改性可显著改善nano-SiCp与Al基体的润湿性,使nano-SiCp在Al基体中均匀分布,有效减少了不良界面反应,充分发挥了nano-SiCp的增强作用。
     本文研究了高能球磨和真空热压烧结法的制备工艺过程及其参数对nano-SiCp/Al复合材料组织及性能的影响规律,并最终得出了制备nano-SiCp/Al复合材料的最佳工艺参数。
Aluminium matrix composites strengthened by SiC particles (SiCp/Al composites) have extensive applyment prospect because of their higher specific strength、specific rigidity、favorable thermal conduction、better elevated-temperature, better wear resistance properties, and lower thermal coefficient and so on. Nano-SiCp/Al composites prepared by high energy ball milling and hot pressed sintering possess better microstructure and properties.
     In the process of high energy ball milling, the content of nano-SiCp、the time of high energy ball milling and the rotational speed have the material effect。Research results show that the content of nano-SiCp is 2%、the time of high energy ball milling is 2h, and the rotational speed is 200r/min are the best parameters。In the process of hot pressed sintering, that the temperature of sintering is 873K, the load is 40MPa, and the time of keeping the temperature and the load is 20min, is the best parameter.
     If nano-SiCp,s surface is treated previously, it will be good to the microstructure and properties of nano-SiCp/Al composites. The SEM pictures of nano-SiCp/Al composites indicate that nano-SiCp disperses well on the aluminium matrix, and nano-SiCp is embedded in aluminium matrix gr adually.
     In this paper, it is studyed that the process and parameters of the preparation of nano-SiCp/Al composites by high energy ball milling and hot pressed sintering, and finally it is determinated that the best process and parameters of the preparation of nano-SiCp/Al composites.
引文
[1]Uenishi K, Matsubara T, Kambara M, et al. Nanostructured titanium-aluminides and their composites formed by combustion synthesis of mechanically alloyed powders [J]. Scripta Materialia,2001,44(8,9):2093-2097.
    [2]Pagounis E, Lindroos V K. Processing and properties of particulate reinforced steel matrix composites[J]. Materials Science and Technology,1998, A246:221-234.
    [3]李敏之.新金属及其复合材料发展现状与动向.材料导报,1991,(8):16-23
    [4]Byung-Chul Ko, Gyeong-Su Park, Yeon-Yoo. The effects of SiC particle volume fractionon the micro-structure and hot workability of SiCp/AA2024composites. J Mat Pro Tec,1999,95:210-215
    [5]Liu Cheng, Qin Shuyi, Zhan Guoding, et al. Micromechanical properties of high fracture performance SiCp-6061Al/6061Al composite. Mat Sci Eng,2002, A332:203-209
    [6]张强,陈国钦,姜龙涛等.高体积分数SiCp/Al热膨胀系数与SiCp含量的相关性.第十二届全国复合材料学术会议论文集:复合材料-生命、环境与高技术.天津:天津大学出版社,2002,478-480
    [7]陈建,潘复生,刘天模.Al/SiC界面结合机制的研究现状[J].轻金属,2000,9:52-54
    [8]陈凤初,陈建,潘复生,刘天模.Si对Al/SiC体系润湿性的影响[J].铝加工,1998,21(5):53-55.
    [9]陈建,潘复生.合金元素影响铝/陶瓷界面润湿性的研究现状[J].兵器材料科学与工程,1999,22(4):53-58.
    [10]JIAN CHEN, MINGYUAN GU, FUSHENG PAN. Reactive wetting of a metal/ceramic system[J]. Journal of Materials Research,2002,17(4):911-917.
    [11]张国定.金属基复合材料界面问题[J].材料研究学报,1997,11(6):649-657
    [12]ANDREAS MORTENSEN, MICIJAEL KOCZAK J. The status of Metal-Matrix Composite and Development in Japan[J]. JOM,1993,3:10-17.
    [13]A. C. Ferro, B. Derby. Wetting behavior in the Al-Si/SiC system:interface reactions and solubility effects[J]. Acta Metal Mater,1995,43(8):3061-3073.
    [14]J. M. HOWE. Bonding, Structure and Properties of metal/ceramic interface:part1 chemical bonding, chemical reaction and interfacial structure[J]. Intl. Mater. Reviews, 1993,38(5):233-256.
    [15]P. L. RANTNAPARKHI, J. M. Howe. Characterization of a diffsion-bonded Al-Mg alloy/SiC interface by high resolution and analytical electron microscopy[J]. Metallurgical and Materials Transactions. A.1994,25A(3):617-627.
    [16]LEE JAE-CHUL, AHN JAE-PYOUNG, SHIM JAEKYEOK, et al. Control of the interface in SiC/Al composites[J]. Script Materialia,1994,41(8):895-900.
    [17]Logsdon W A and Liaw P K. Tensile fracture toughness and fatigue crack growth rate properties of silicon carbide wisker and particulate reinforced aluminum metal matrix composites[J]. Eng Fracture Mech,1986,24(5):737-751.
    [18]王武孝,袁森.铸造法制备颗粒增强金属基复合材料的研究进展[J].铸造技术,2001,(2):42-45
    [19]Geiger A L, Hasselman D P H, Donaldson K Y.J Mater Sci Lett,1993,12:420-425
    [20]赖化清,范宏训,徐祥.金属基复合材料及其在汽车上的应用[J].汽车研究与开发,2001,4:42-44
    [21]杨遇春.高新材料中异军突起的金属基复合材料.材料科学与工程,1991,(2):7-14
    [22]高技术新材料要览编委会.高技术新材料要览.中国科学技术出版社,1993
    [23]黄泽文.碳化硅颗粒增强铝基复合材料在高速机械中的应用.首届海内外中华青年学者材料科学技术研讨会论文摘要集.1995,64
    [24]王治海.碳化硅颗粒增强铝合金复合材料特性.中国有色金属学报,1995,5(3):123-125.
    [25]许富民,齐民,朱世杰等.SiC颗粒增强铝合金复合材料.金属学报,2002,38(9):998-1001.
    [26]Hashim J, Looney L, Hashmi M S J. The enhancement of wettabilty of SiC particles in cast aluminium matrix composites. J Mat Pro Tec,2001,119:329-335.
    [27]肖永亮,李亚利,梁勇.纳米SiC颗粒增强铝基复合材料研究[J].金属学报,1996,32(6):658-662.
    [28]CAO Mao-sheng, GUAN Chang-bin, XU Jia-qiang. Nanomaterials introduction[M]. Haerbin:Haerbin University Press,2001.84-97.
    [29]M. J. STAR INK, P. WANG, I SINCLA IR. Microstrucure and trengthening of Al-Li-Cu-Mg alloys and mmcs:I analysis and modelling of microstructural changes, Acta mater.1999,47 (14):3841-3853.
    [30]S. C. Lima, M. Gup ta, L. Ren. The tribological p roperties of Al-Cu/SiCp metal matrix composites fabricated using the rheocasting technique, Journal of Materials Processing Technology 89-90 (1999)591-596.
    [31]M. J. STAR INK, P. WANG, I. SINCLA IR and P. J. GREGSON, Structure and amorphization of the oxide on the Silicon carbide surface in an SiCp/Al composite, Acta mater. Vol.47 (1999), pp.3841-3853.
    [32]NARUSH IMA T, GOTO T, HIRA I T, et al. High-temperature oxida-tion of silicon carbide and silicon nitride [J]. Mater Trans J M,1997,38:821-835.
    [33]S. SCHAMM, R. FEDOU, J. P. Rocher, et al. The k2ZrF6 wetting process:effect of surface chemistry on the ability of a SiC-fiber perform to be impregnated by Aluminum [J]. Metall. Trans. A,1991,22A(9):2133-2161.
    [34]J. M. HOWE. Bonding, Structure and Properties of metal/ceramic interfacial Structure[J]. Intl, Mater. Reviews,1993,38(5):233-256.
    [35]张大童,李元元,龙雁.铝基复合材料研究进展[J].轻合金加工技术,2000(1):5-9.
    [36]夏德顺.铝基复合材料焊接研究述评[J].导弹与航天运载技术,1996(6):38-46
    [37]欧阳柳章,罗承萍,隋贤栋,等.SiCp/Al复合材料的制造及新动向[J].铸造,2000(1):17-20.
    [38]Nuhara K. In:Proc Int. Symposrum on Fine Ceramics ARITA. SAGA:The Organizing Committee of the International Symposium on Fine Ceramics.1992:117
    [39]段志伟,张振忠,沈晓东,周建秋.纳米SiC表面化学镀铜研究[J].材料保护,2007,40(7):46-48.
    [40]贺春林,刘常升,孙旭东,才庆魁.纳米SiC颗粒增强铝基复合材料的拉伸性能[J].东北大学学报,2005,26(6):555-556.
    [41]Lee G G, Ha G H, Kim B K. Synthesis of high density ultrafine W/Cu composite alloy by mechano-thermo-chemical process [J]. Powder Metallurgy,2000,43(1):79-82.
    [42]丁雨田,许广济,寇生中,王广丽.碳化硅粒子增强铝基复合材料的研制[J].甘肃工业大学学报,1998,24(3):15-17.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700