用户名: 密码: 验证码:
SiCp(Cu)/Fe复合材料的制备工艺和性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
SiC颗粒具有价格低、硬度高、耐磨、耐腐蚀等优点,是较为理想的增强材料。铁具有良好的强度和韧性,是现代工业中最常用的金属材料之一。低密度、高强度和高刚度的增强体颗粒加入到铁基体中,能够在降低材料密度的同时,提高其弹性模量、硬度、耐磨性和高温性能,两者的结合必将产生一种新型低成本、高耐磨、综合性能良好的金属基复合材料。
     本文分别利用高温氧化、酸洗和碱洗工艺对SiC颗粒进行表面处理。并分别采用置换反应法和分解还原反应法在SiCp表面包裹一层Cu,用来改善SiCp和Fe之间的润湿性及物理化学相容性。根据粉末冶金法,分别利用放电等离子体烧结(SPS)和热压烧结(HP)两种工艺制备SiCp(Cu)/Fe复合材料。借助差热分析(DTA-TG)、X-(?)寸线衍射仪(XRD)、扫描电镜(SEM)、能量散射谱(EDS)、金相显微镜(OM)等技术分析了SiCp/Cu复合粉体和SiCp(Cu)/Fe复合材料的显微组织和界面特征。利用阿基米德排水法、显微硬度计、三点弯曲法、磨损试验等方法研究了SiCp(Cu)/Fe复合材料的性能特点和机理,考察了烧结温度、烧结压力、增强相含量以及其他因素对SiCp(Cu)/Fe复合材料性能的影响。
     研究结果表明:对于相同的SiCp,采用分解还原反应法得到的复合粉体的包覆效果要优于置换反应法得到的复合粉体的包覆效果。高温氧化使SiC颗粒棱角钝化,同时在其表面生成一层Si02膜,可以得到包覆效果较好的SiCp/Cu复合粉体;经碱洗的SiC颗粒,表面更为干净且被粗化,同时颗粒比表面积增大,其颗粒表面有一层致密的Cu微晶,得到的复合粉体的包覆效果最好。采用放电等离子体烧结法制备SiCp(Cu)/Fe复合材料,其相对密度、显微硬度、抗弯湿度和耐磨性均在950℃烧结温度和25MPa烧结压力下达到最佳水平。同时,随着SiCp(Cu)含量的增加,复合材料的这几项性能均呈现而先增加后减小的趋势,其中SiCp(Cu)的加入量为6wt.%时,得到的SiCp(Cu)/Fe复合材料具有最优的性能,其相对密度为99.1%,显微硬度为440.6HV,抗弯强度为689.2MPa,磨损量为1.099mg/m。SiCp表面包裹的Cu改善了SiC颗粒与Fe基体的界面结合强度,使复合材料的综合性能得到了提高。
Silicon carbide is an ideal reinforced material for composites due to its advantages such as low price, high hardness, good resistance to wear and corrosion, etc. Iron, which has good strength and toughness, is one of the most commonly used metal materials in modern industry. The addition of the reinforced particles with low density, high strength and high rigidity into the iron matrix can reduce the density of the material as well as increase its elastic modulus, hardness, wear resistance and high-temperature performance. Thus, the combination of these two materials will bring a new metal matrix composite with low-cost, good comprehensive properties and high wear resistance.
     In this study, surface treatment technique such as high-temperature oxidation, acid dipping and alkaline wash was adopted separately on silicon carbide particles. Replacement reaction method and decomposition-reduction reaction method were used to generate Cu coating on the surface of silicon carbide, which, in order to improve the wettability and physical and chemical compatibility between silicon carbide and iron. Based on the powder metallurgy method, spark plasma sintering (SPS) and hot-pressing sintering (HP) were used respectively in fabrication of SiCp(Cu)/Fe composite. The microstructure and the interface characteristics of SiCp/Cu composite powder and SiCp(Cu)/Fe composites were analyzed by means of DTA-TG, XRD, SEM, EDS, OM techniques and so on. Archimedes method, microhardness instrument, three point bending method and wear test method were used to study the properties and mechanism of SiCp(Cu)/Fe composites. The influences of sintering temperature and pressure, the content of reinforcement and other different technological conditions on the properties of the composites were investigated.
     The results indicated that for the same silicon carbide particles, the effect of the Cu coating prepared by decomposition reaction method was better than that by reduction reaction method. In addition, as a result of the high-temperature oxidation, the edges of silicon carbide particles were passivated and a layer of silicon dioxide film was generated on the surface of silicon carbide particle. Consequently, SiCp/Cu composite powder can be obtained. The surface of silicon carbide particle which treated by alkaline wash after oxidation and acide dipping was cleaner and more rough than that only treated by high-temperture oxidation, moreover, the specific surface of the particle was increased, which resulted in a compact layer of Cu coating. The properties such as relative density, microhardness, bending strength and wear resistance of SiCp(Cu)/Fe composites which fabricated by spark plasma sintering achieved to the best level under 950℃and 25MPa. In addition, with the increase of the SiCp(Cu) content, these properties first increased then decreased. And the best properties were obtained at the content of 6wt.%, the relative density was 99.1%, the microhardness was 440.6HV, the bending strength was 689.2MPa and the abrasion loss was 1.099mg/m. Furthermore, the interface bonding strength between silicon carbide and iron matrix was improved due to the Cu coating on the surface of silicon carbide particles, which finally enhanced the comprehensive performance of the composites.
引文
[1]吴人洁.复合材料[M].天津:天津出版社,2000.14-17
    [2]陈华辉.现代复合材料[M].北京:中国物资出版社,1998.21
    [3]吴入洁.金属基复合材料的现状与展望[J].金属学报,1997,(01):241-245
    [4]张国定,赵昌正编著.金属基复合材料[M].上海:上海交通大学出版社,1996.56-58
    [5]张国定.金属基复合材料界面问题[J].材料研究学报,1997,(06):649-657
    [6]崔岩,耿林,姚忠凯.SiCp/6061Al复合材料的界面优化与控制[J].中国有色金属学报,1997,7(04):159-162
    [7]崔岩,耿林,姚忠凯.轻微界面反应对SiCp/6061Al复合材料弹性模量的影响[J].复合材料学报,1998,(01):35-39
    [8]曹菊芳.SiC/Fe-Al金属间化合物界面固相反应的研究[D].[硕士学位论文].安徽:合肥工业大学,2008
    [9]曹菊芳,汤文明,赵学法等.SiC/Fe_3Al界面的固相反应[J].中国有色金属学报,2008,4(05):21-26
    [10]干勇.中国材料工程大典第2卷钢铁材料工程[M].北京:化学工业出版社,2005.3-5
    [11]张静,潘复生,陈万志.铁基复合材料的现状和发展[J].材料导报,1995,2(01):53-59
    [12]E.Pagounis, V.K.Lindroos. Processing and properties of particulate reinforced steel matrix composites[J]. Materials Science and Engineering A,1998,246(1-2):221-234
    [13]林文松,李元元.颗粒强化钢铁基复合材料的研究现状与展望[J].粉末冶金工业,2001,11(05):25-29
    [14]耿学文,赵洪波,樊振军.铁基复合材料的研究进展综述[J].中国科技信息,2009,7(06):34-38
    [15]毛雪平,蒲褚.颗粒增强金属基复合材料的制备方法综述[J].现代电力,2002,3(04):66-69
    [16]高跃岗,姚秀荣,刘兆晶等.国外铁基复合材料的发展及应用[J].合肥工业大学学报(自然科学版),2006,1(04):13-16
    [17]冯可芹,杨屹,王一三等.铁基复合材料的制备技术与展望[J].机械工程材料,2002,5(12):121-126
    [18]M.Vardavouliasa, C.Jouanny-Tresya, M.Jeandin. Sliding-Wear Behaviour Of Ceramic Particle-Reinforced High-Speed Steel Obtained By Powder Metallurgy[J]. Wear,1993, 165(02):141-149
    [19]Gatti A. Iron-alumina materials[J]. Transactions AIME,1959,215(05):753-755
    [20]Navara E, Easterling K E. Observations on the decohesion of oxide particles in a deformed iron-base matrix [J]. Jemkont Ann,1971,155(8):438-441
    [21]刘君武,郑治祥,丁厚福等.Fe/SiC金属基复合材料的研究[J].兵器材料科学与工程,2001,8(03):38-41
    [22]刘君武,丁厚福,郑治祥SiCp/Fe复合材料工艺及性能研究[J].矿冶工程,2002,5(01):92-95
    [23]刘君武,吕珺,王建民等.微量SiC颗粒增强铁基合金的摩擦磨损性能研究[J].材料热处理学报,2006,8(01):16-19
    [24]杨玉芳,宗亚平,王刚等.电流直加热动态热压烧结制备SiCp/Fe复合材料[J].材料研究学报,2007,3(06):130-134
    [25]杨玉芳,宗亚平,徐娜.快速致密化制备SiCp/Fe复合材料及其性能研究[J].材料导报,2007,9(07):80-83
    [26]徐亚东,徐桂英,葛昌纯.放电等离子体烧结(SPS)技术及其在材料制备中的应用[J].材料导报网刊,2006,1(02):15-17
    [27]Li B, Liu Y, Cao H, et al. Rapid fabrication of in situ TiC particulates reinforced Fe-based composites by spark plasma sintering [J]. Materials Letters,2009,63(23):2010-2012
    [28]Li B, Liu Y, Li J, et al. Effect of sintering process on the microstructures and properties of in situ TiB2-TiC reinforced steel matrix composites produced by spark plasma sintering [J]. Journal of Materials Processing Technology,2010,2010(01):91-95
    [29]徐波,丁厚福,郑治祥等.SiC颗粒增强铁基复合材料的现状及展望[J].合肥工业大学学报(自然科学版),2002,3(01):23-27
    [30]汤文明,郑治祥,丁厚福等.Fe/SiC界面反应机理及界面优化工艺研究的进展[J].兵器材料科学与工程,1999,5(04):64-68
    [31]M.Backhaus-Ricoult. Solid State Reactions Between Silicon Carbide and Various Transition Metals[J]. Berichte der Bunsengesellschaft fur physikalische Chemie,1989,93(11): 1277-1281
    [32]汤文明,郑治祥,丁厚福等.SiC表面氧化及其对SiC/Fe界面稳定性的影响[J].无机材料学报,2001,6(02):289-296.
    [33]汤文明,郑治祥,丁厚福等.SiC表面固相反应涂层[J].矿冶工程,2001,4(01):69-71+76
    [34]汤文明,郑治祥,丁厚福等SiC/Fe-Cr合金界面反应的研究[J].无机材料学报,2001,11(05):921-927.
    [35]汤文明,郑治祥,丁厚福等.铬对SiCp/Fe复合系统界面化学稳定性的影响[J].理化检验.物理分册,2001,2(07):284-287
    [36]汤文明,郑治祥,丁厚福等.SiC/金属界面固相反应与控制的研究进展[J].硅酸盐学报,2003,9(03):283-291
    [37]汤文明,郑治祥,丁厚福等SiC/Fe界面固相反应模型[J].无机材料学报,2003,10(04):885-891
    [38]丁厚福,陈曙光,郑治祥等.合金元素及SiCp镀覆对铁基复合材料组织性能的影响[J].矿冶工程,2001,3(04):73-76+79
    [39]丁厚福,李吉泉,郑治祥.铁基粉末冶金材料的热处理[J].国外金属热处理,2002,1(03):39-41
    [40]石磊,刘君武,王支相等.SiC颗粒表面改性对SiCp/Fe烧结及性能的影响[J].合肥工业大学学报(自然科学版),2000,4(02):177-181
    [41]樊振军,汪翔,刘君武等.SiC颗粒对烧结铁基复合材料性能的影响[J].合肥工业大学学报(自然科学版),2001,2(06):41-44
    [42]陈曙光,丁厚福,郑治祥等.SiCp表面化学镀铜工艺研究[J].热加工工艺,2001,7(01):28-30
    [43]陈曙光,丁厚福,郑治祥.SiCp表面化学镀镍合金层的成分与形貌研究[J].表面技术,2001,5(04):3-5
    [44]刘君武,丁厚福,郑治祥SiCp/Fe复合材料断口分析[J].理化检验物理分册,2003,2(04):184-187
    [45]刘君武,吕珺,王建民等.SiC粉体化学镀铜工艺研究[J].电镀与涂饰,2005,8(12):15-18
    [46]刘君武,郑治祥,汤文明等.粉体化学镀的研究及应用进展[J].金属功能材料,2005,12(04):35-38
    [47]王德宝,吴玉程,王文芳等.SiC颗粒表面修饰对铜基复合材料性能的影响[J].中国有色金属学报,2007,4(11):1814-1820
    [48]C.Radoa, B.Drevetb, N.Eustathopoulos. The role of compound formation in reactive wetting:the Cu/SiC system[J]. Acta Materialia,2000,48(18-19):4483-4491
    [49]Pelleg J. Reactions in the matrix and interface of the Fe-SiC metal matrix composite system[J]. Materials Science and Engineering,1999,269(1-2):225-241
    [50]张双益,肖志瑜,冼志勇等.SiC颗粒增强铁基粉末冶金复合材料的研究[J].华南理工大学学报(自然科学版),1999,4(07):14-20
    [51]樊振军.SiC/Fe基复合材料摩擦磨损性能测试及机理探究[J].合肥工业大学学报(自然科学版),2002,4(08):11-16
    [52]张锐,高濂,虞玲等.Cu颗粒包覆纳米SiC粉体的相分散性能分析[J].无机材料学报,2002,3(05):221-225
    [53]王海龙,张锐,王西科等.化学镀法制备SiC/Cu金属陶瓷复合粉体工艺的研究[J].佛山陶瓷,2003,6(11):34-38
    [54]张锐,高濂,郭景坤.非均相沉淀制备Cu包裹纳米SiC复合粉体颗粒[J].无机材料学报,2003,5(03):575-579
    [55]王海龙,张锐,王西科等.Cu包裹SiC复合粉体工艺的研究[J].硅酸盐学报,2004,7(04):398-401
    [56]张锐,王海龙,付元中等SiC/Cu内米包裹粉体及其复合材料的制备[J].郑州大学学报(工学版),2004,14(03):74-76+97
    [57]王海龙,张锐,卢红霞等.两种Cu包裹SiC颗粒复合粉体工艺的研究[J].中国陶瓷工业.2005,2(04):18-21
    [58]邵刚,王海龙,秦丹丹等SiC(Cu)/Fe复合材料制备工艺研究[J].稀有金属材料与工程,2007,10(S1):856-858
    [59]徐祖耀,黄本立,鄢国强等.中国材料工程大典.第26卷,材料表征与检测技术[M].北京:化学工业出版社,2005.365-369
    [60]张清.金属磨损和金属耐磨材料手册[M].北京:冶金工业出版社,1991.27-33
    [61]邢一明,程晓农,赵玉涛.金属基复合材料中增强材料的表面处理[J].江苏理工大学学报,1997,9(06):84-88
    [62]程南璞SiC_p/Al复合材料制备工艺和微结构及性能研究[D].[博士学位论文].湖南:中南大学,2007
    [63]肖伯律,毕敬,赵明久等.SiCp尺寸对铝基复合材料拉伸性能和断裂机制的影响[J].金属学报,2002,38(09):1006-1008
    [64]Jae Chul Lee, Ho In Lee, Jae Pyoung Ahn, et al. Modification of the interface in SiC/Al composites[J]. Metallurgical and Materials Transactions A,2000,31(09):2361-2368
    [65]Jae-Chul Lee, Ji-Young Byun, Sung-Bae Park, et al. Prediction of Si contents to suppress the formation of Al4C3 in the SiCp/Al composite [J]. Acta Materialia,1998,46(05):1771-1780
    [66]Mingyuan Gu, Yanping Jin, Zhi Mei, et al. Effects of reinforcement oxidation on the mechanical properties of SiC particulate reinforced aluminum composites [J]. Materials Science and Engineering A,1998,252(02):188-198
    [67]李楠,顾华志,赵惠忠.耐火材料学[M].北京:冶金工业出版社,2010.76-79
    [68]刘越,王保勇,张雅静等.混料工艺对SiCp/Al复合材料SiC颗粒分布均匀性的影响[J].东北大学学报(自然科学版).2010,14(06):820—823
    [69]陈剑锋,武高辉,孙东立等.金属基复合材料的强化机制[J].航空材料学报,2002,5(02):49-53
    [70]Lee JC, Ahn JP, Hyeok J. Control of the interface in SiC/Al composites [J]. Acta Metal, 1999,41(02):890-895
    [71]Shi Z, Ochiai S, Hojo M, et al. The oxidation of SiC particles and its interfacial characteristics in Al-matrix composite[J]. JOURNAL OF MATERIALS SCIENCE,2001, 36(10):2441-2449
    [72]Y.-F.Lee, S.-L.Lee, J.-C.Lin. Wear and corrosion behaviors of SiCp reinforced copper matrix composite formed by hot pressing[J]. Scand. J. of Metallurgy,1999,28(07):9-16
    [73]郭跃华.摩擦磨损微观组织形貌仿真[M].[硕士学位论文].云南:昆明理工大学,2004
    [74]A.T.Alpas, J.D.Embury. Wear mechanisms in particle reinforced and laminated metal matrix composites [J]. Wear of Materials,1991,68(09):159-166
    [75]湛永钟,张国定,蔡宏伟.颗粒增强金属基复合材料的干摩擦性能与磨损机理[J].材料科学与工程学报,2003,21(5):748-752
    [76]A.T.Alpas, J.Zhang. Effect of SiC particulate reinforcement on the dry sliding wear of aluminium-silicon alloys(A356)[J]. Wear,1992,155(1):83-104
    [77]Lianmeng Zhang, Jingkun Guo, Tuan W-H. The Dry Sliding Wear Behavior of SiCp/Cu Composites[J]. Key Engineering Materials,2003,249(27):283-287
    [78]汪翔,丁厚福.SiCp增强体表面改性对铁基复合材料组织性能的影响[J].宇航材料工艺,2001,4(04):49-53

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700