用户名: 密码: 验证码:
粉末冶金法制备β-SiCp/Al电子封装材料工艺与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
β-SiCP/Al复合材料具有高导热、低膨胀、高模量、高化学稳定性、低密度等优异的性能,在电子封装领域具有广阔的应用前景。粉末冶金方法具有两相混合均匀、成分控制和材料成形均比较容易实现、可以获得高致密度的复合材料等多方面的优点,是制备金属基复合材料,特别是颗粒增强金属基复合材料的常用方法,因此本文采用粉末冶金方法制备体积分数为50%的β-SiC/Al电子封装材料。
     论文实验中根据振实密度、松装密度、空隙率测试结果,首次采用工业炉生产的平均粒度为17.94μm的β-SiC微粉作为增强体制备铝基电子封装材料。实验中对β-SiC微粉进行1100℃的高温氧化、HF酸洗和200℃烘干的表面处理方法,除去SiC表面的吸附气体和水分并使其棱角钝化,提高了β-SiC粉体的分散性,制备出了增强体分布均匀、致密度高、孔隙少的β-SiC/Al电子封装材料。论文研究了成型压力、烧结温度、热压压力对材料热导率和热膨胀系数的影响,采用金相显微镜、扫面电镜和X-衍射等方法研究了材料的物相,组织形貌及致密度的变化。利用动态热机械分析仪测试了复合材料的热膨胀系数,利用激光导热仪测试了复合材料的热导率,确定的比较理想的制备工艺参数为成型压力320MPa、烧结温度1000℃、热压压力3 MPa。
     本文实验条件下制备的β-SiC/A1电子封装材料具有比较好的综合热物理性能,在20℃~150℃平均线膨胀系数为8.86×10-6K-1;在室温下其热导率为124 W·m-1·K-1,可满足大功率电子器件对封装材料的使用性能要求。
With excellent high quality of high thermal conductivity, low expansion, high module, high chemical stability and low density,β-SiCP/Al composite enjoys great potential of application in the realm of electronic packaging.
     Powder Metallurgy Method has the following advantages:mixing uniformity,component easily controlled,forming more easily,geting high density composite materials,etc.it is a commonly used methods to manufacture Metal Matrix Composites,especially particle reinforced metal matrix composites.So we adopt Powder Metallurgy Method to manufactureβ-SiC/Al Electronic packaging materials with volume fraction to 50%.
     Testing the tap density , bulk densityand porosity ofβ-SiC powder, the average size D = 17.94μm ofβ-SiC particles is good at reinforcement phase. Surface treatment methods for the sic micro powder include the following three steps:the high temperature oxidation 1,100 degrees,HF acid pickling,200degrees drying,these methods eliminated adsorption of gases and moisture,made edges passivation and improved the dispersion of SiC micropowder,manufacturedβ- SiC/Al electronic packaging materials with enhance body distributed evenly,high density,pore less.In the process,the specific preparation processes of forming pressure,sintering temperature,hot-pressure have an effects on the material morphology ,relative density. Determining the forming pressure 320MPa,the sintering temperature1000℃,hot- pressure 3MPa as the optimal parameters in the preparation of 50%β-SiCp/Al .
     To sum up, The 50%β-SiCp/Al composites fabricated by powder-metallurgy with 17.94μm spherical SiC particles enjoy perfect comprehensive thermal and physical properties.: its its coefficient of thermal expansion is 8.86×10-6·K-1 under20℃~150℃; the thermal conductivity is 124W·m-1·K-1 .Owing to the high temperature applied, the network composites produced are sound. The results indicate that the composites sintered in liquid phase always satisfy the electronic packaging application.
引文
[1]田民波,梁彤翔,何卫.电子封装技术和封装材料[J].半导体情报, 1995, 32(4):42-61
    [2]褚骏,戎蒙恬.电子封装中极易出现的几个问题[J].世界电子元器件,2004,7:82-84
    [3] Y.-L.Shen,A.Needleman,and S.Suersh. Coeffieients of Thermal Expansion of Metal Matrix Composites for Electronic Packgaing[J].Metallugrical andMaterials Transactions, 1994,25(A):839-849
    [4]瑜学斌,张国定,吴人杰等.真空压渗铸造铝基电子封装复合材料研究[J].材料工程,1994,(3):64-67
    [5] Carl Zweben.Metal-Matrix Composites for Electronic Packaging[J].JOM,1992,44(7)15-24
    [6]刘正春,王志法,姜国圣等.金属基电子封装材料进展[J].兵器材料科学与工程,2001,24:49-52
    [7] JacobsonD.M.Spray-Formed Silicon-Aluminum[J].ADVANCED MATERIALS AND PROCESSES,2000(3):36-39
    [8] Yu S Z,Hing P,Hu X. Dielectric properties of polysty-rene aluminum-nitride composites [J]. App.l Phys,2000,88 (1):398-404
    [9] RimdusitS,H. Ishida. Development of new class of e-lectronic packaging materials based on ternary systems of benzox-azine, epoxy and phenolic resins[J]. Polymer, 2000,41(22):7941-7949
    [10]S.Lemunux,S.Elomar,J.A.Nemes.Thermal Expansion of Isotropic Duralcan Metal-Matix Composites [J].Journal of Materials Science,1998,33:4381-4387
    [11]M.K.Premkumar,W.H.Hunt,R.sawtell.AluminumComposite Material for Multichi Modules [J].JOM,1992,7:70-89
    [12]黄强,顾明元,金燕萍.电子封装材料的研究现状[J].材料导报,2000,14(9):28-32
    [13]Lee H S,et al.Fabrication process and thermal properties of SiCP/A1metal matrix composites for electronic Packing applications[J]. Journal of Materials Science, 2000,35:6231-6238
    [14]CarlZweben.AdvancedMaterialsforOptoelectronicPackaging[J].Optoelectronics,2002,9:37-40
    [15]K.wangjun Euh,Suk Bong Kang.Effect of Process Parameters on the Fabrication of Al-SiC Composite Sheets by Atmospheric Plasma Spraying Method[J].Journal of the Korean Institute of Metals and Materials,2003,6(41):342-349
    [16]张建云,孙良新,宏平,等.电子封装SiCp/356Al复合材料制备及热膨胀性能[J].功能材料,2004,4(35):507-512
    [17]崔岩.碳化硅颗粒增强铝基复合材料的航空航天应用[J].材料工程,2002, (6):3-6
    [18]OmateleOO,JanneyM A. Gel-casting.anewceramicforming process[J].American Ceramic Socity bulletin,1991,70(10):1641-1650
    [19]Chiou J M,Chung D D L. Improvement of the temperature resistance of aluminum-matrix composites using an acid phosphase binder:partⅠbinders[J]. Journal of Materials Science,1993,28:1435-1446
    [20]She J H,deng Z Y,Daniel-Doni J,et al. Oxidation bonding of porous silicon carbide ceramics[J]. Journal of materials Science,2002,37:3615-3622
    [21]D.P.H.Hasselman,Y.D.Kimberly,L.G.Alan . Effect of reinforcement pafticle size on the thermal conductivity of a particulate-silicon carbide-reinforced Aluminum Matrix composite[J].Amceramjc,1992,75(11):3137-3140
    [22]耿林,温丙先,姚忠凯.压铸SiCw/Al复合材料的热物理性能研究[J].复合材料学报,1996,13(3):48-52.
    [23] Alan.L.Giger,D.P.H.Hasselan,Y.D.Kimberly,L.G.Alan. Effect of reinforcement pafticle size on the thermal conductivity of a particulate-silicon carbide-reinforced aluminum . Matrix composite[J].Journal of Material Science Letters,1993,12:420-423
    [24]M.Gupta,L.Lu,S.E.Ang.Effect of microstrucral features on the ageing behaviour of A1-Cu/SiC metal matrix composites processed using casting and rheocasting routes[J].Mater.Sci.,1997,32:1261
    [25]K. A. Moores,Y. K. Joshi. High performance packaging materials and architectures for improved thermal manage-ment of power electronics[J]. Future Circuits Int., 2001,(7):4549
    [26]S.E Lomari,M.D.Skio,A.Sundarrajan,etal.Thermal expansion behaviour of particulate Mmetal–Matrix composites[J].Composites science and technology,1998,58(4):369-376
    [27]喻学斌,张国定,吴人洁.电子封装铝基复合材料热循环曲线研究[J].航空材料学报,1995,15(l):16-20
    [28]马森林.超细颗粒增强铝基复合材料的微观结构与拉伸行为[D].博士学位论文,哈尔滨:哈尔滨工业大学,1999
    [29]王治海.碳化硅颗粒增强铝合金复合材料特性[J].中国有色金属学报,1995,5(3):123-125
    [30] G.Neite,S.Mielke.Thermal Expansion and Dimensional Stability of Alumina Fiber Reinforced Aluminum Alloys[J].Materials Science and Engineering,1991,148A:85-92
    [31] Y.Ma,J.Bi,Y.X.Liu,Y.X.Gao.Effect of SiC Particulate Size on the Properties and FractureBehavior of SiCp/2024A1 Composites[C].Proceedings of the Ninth International Conference of Composite Materials,1993:448-453
    [32]李义春,安希墉.尺寸稳定化工艺对SiCp/A1复合材料尺寸稳定性的影响[J].中国有色金属学报,1992,7(2):76-80
    [33] Chihiro Kawai.Effect of Interfacial Reaction on the Thermal Conductivity of Al-SiC Composites With SiC Dispersions[J].J.Am.Ceram.Svc.,2001,84(4):896-898.
    [34] D. J. Lioyd.International Materials Reviews 1994,39, (l):1
    [35] M.Vedani, E. Gariboldi,G. Sila,et al. Material Science and Technology ,1994,10 (2):132
    [36] Y. Flom and R. J. Arsenault. Materials Science and Engineering,1986,77:191
    [37] Candan,etal.Effect of magnesrum alloying additions on infiltration threthold pressure and structure of SiC powder compacts infiltrated by aluminium-based melts[J]. Materials Science,1997,32:289
    [38] J.U.Ejiofor,R.G.Reddy,1997,Vol.49(11):31-37
    [39]刘媛媛.无压浸渗法制备β-SiCp/Al电子封装材料工艺与性能研究[D].硕士论文,西安科技大学,2008
    [40]Burke JT,et al.A new infiltration process for the fabrication of metal matrix composites[J].SAMPE Quqarterly,1989,34:817
    [41] Jae Chul Lee,Sung Bae Pkar,Hyun Kwnag Seok,et al. Predietion of Si contents to suppress the interfacial reaction in the SiCp/2014Al composites[J].Acta Mater, 1998,46(8):2635-2643
    [42]梅志,吴人洁.颗粒增强体的表面处理方法[J].材料开发与应用,1997,12(4):32-34
    [43] Asrenault RJ,Fisher R M.Microstructure of fiber and Particulate SiC in6061Al composites[J].SeriPMatall,1983,17:67
    [44] JACOBSON D M. Lightweight Electronic Packaging Technology Based on Spray Formed Si-Al [J]. Powder Metallurgy,2000,43(3):200-202
    [45] SANGHA S P S,JACOBSON D M,OGILVY A J W,et al. Novel Aluminum Silicon Alloys for Electronic Packaging [J]. Engineering Science and Education Journal, 1997,6(5):195 -201
    [46] T.w.克莱因,P.J.威瑟斯.金属基复合材料导论[M].冶金工业出版社,1996
    [47]贾德昌,周玉,雷延权.机械合金化及其在Al合金和Al基复合材料中的应用进展[J].宇航材料工艺,1996,1:1-9
    [48] BhagatR.B.Inter.J.Powder Metall,1989,25:31
    [49]LeeHS,HongSH.Pressure infiltration casting process and thermophysical properties of high volume fraction SiCp/Al metal matrix composites[J]. Mater. Sci.Technol,2003,19:1057-1066
    [50]张强,陈国钦,武高辉,等.含高体积分数SiCp的铝基复合材料制备与性能[J].中国有色金属学报,2003,13(5):1180-1183
    [51]任淑彬,曲选辉,何新波,等.电子封装用高体积分数SiCp/Al复合材料的制备[J].中国有色金属学报,2005,15(11):1722-1726
    [52]Pech-canul M I,Katz R N,Makhlouf M M.Optimum Conditions for Presssureless Infiltration of SiCp Preforms by Aluminum Alloys[J]. J.Mater.Pro.Tech, 2000,108(1):68-77
    [53]Hozer L,Chiang Y M,Inanova X,et al.Liquid-Exchange Processing and Properties of SiC-Al Composites[J].J.Mater.Res,1997,12(7):1785-1789
    [54]朱和祥,黎柞坚,陈国平.碳化硅颗粒增强铝基复合材料的发展概况[J].材料导报,1995,(3):73
    [55]顾晓峰. SiCp/A1复合材料的制备及其器件的研制[D].博士学位论文,武汉,武汉理工大学,2006,4
    [56]Cui Yan,Geng Lin and Yao Zhang-kai.A new advance in the devolopment of high performance SiCp/A1 composites [J] .J.Matr.Sci.Technolgy,1997,13:227
    [57]聂存珠,赵乃勤.金属基电子封装复合材料的研究进展[J].金属热处理,2003,28(6):1-5
    [58]崔岩.无压渗透法制备高性能SiC/Al电子封装复合材料[J].200年材料科学与工程新进展,2003:1080-1082
    [59]HuntM.Progress in powder metal composites[J].Materials Engineering,1990,107(1):33-36
    [60]崔岩,耿林,姚忠凯.SiCp/606lA1复合材料的界面优化与控制[J].中国有色金属学报,1997,7(12):159
    [61]Zhang Qiang,Wu Gaohui,Chen Guoqin,et al.The thermal expansion and mechanical properties of high reinforcement content SiCp/Alcomposites fabrication by squeeze Casting technology[J].Composites,Part A,2003,34:1023-1027
    [62]于家康,周尧和.混杂2D-CIA1电子封装复合材料的设计与制备[J].中国有色金属学报, 2000,10(增刊1):1-4
    [63]熊德赣,刘希从,赵询等.铝碳化硅复合材料T/R组件封装外壳的研制[J].电子元件与材料,2003,22(2):17-19
    [64]Gu X F,Zhang L M,Zhang D M.Fabrication by SPS and thermophysical properties of high volume fabrication SiCp/Al matrix composites[J].Key Engineering Materials, 2006, 313:171-176
    [65]王晓阳,朱丽娟,刘越.粉末冶金法制备A1SiC电子封装材料及性能[J].电子与封装,2007,7(5):9-11
    [66]黄培云编.粉末冶金原理[M].冶金工业出版社,1997
    [67] Jae Chul Lee, Ji Young Byun,Sung BaePark.Prediction of Si contensts to suppress the formation ofA14C3 in the SiCP/A1 composites [J].Acta Mate 1998,46(5): 1771-1780
    [68]Jae Chul Lee,Sung Bae Park,Hyun Kwang Seok,et al. Predietion of Si contenst to suppress the interfacial reaction in the SiCP/2014A1 composites [J].Acta Mater, 1998,46(8):2635-2643
    [69]Lee JAE CHUL.Modification of the interface in SiC/A1 composites[J].Metal MaterTrans,2000,31A:2361
    [70]施忠良,顾明元,刘俊友等.氧化的碳化硅与铝镁合金之间的界面反应[J].科学通讯,2001,46(14):1161-1165
    [71]秦蜀懿,张国定,王文龙.颗粒形状及基体热处理对SiCp/LD2断裂韧性的影响[J].稀有金属,1999,23(3):181-184
    [72]陈建,潘复生,刘天模.A1/SiC界面结合机制的研究现状(续)[J].轻金属,2000,11:56-58
    [73]毕豫.SiC表面处理及热处理工艺对SiCP/6066A1复合材料组织和性能的影响[D].长沙,中南大学,2004
    [74]邢一明,程晓农,赵玉涛.金属基复合材料中增强材料的表面处理[J].江苏理工大学学报,1997,18(6):84-88
    [75]肖伯律,毕敬,赵明久.SiCp尺寸对铝基复合树料拉伸性能和断裂机制的影响[J].金属学报,2002,38(9):1006
    [76]宁叔帆,李鸿岩,陈维等.表面氧化物含量对SiC浆料黏度影响的研究[J].西安交通大学学报,2005,39(6):641-645
    [77]陆厚根编著.粉体技术导论[M].同济大学出版社,1998
    [78]王晓刚主编.碳化硅合成理论与技术[M].陕西科学技术出版社,2001
    [79]张永俐,罗素华. SiC/A1界面A14C3的生成及其控制[J].材料科学与工程,1998,16(1):32
    [80]李骏带主编.中国材料工程大典8:179

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700