用户名: 密码: 验证码:
人类肝脏疾病本体的构建及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本体是对特定领域知识概念化的明确而规范的说明,是描述该领域的概念以及概念间关系等知识的标准化术语系统,也被称为领域本体。在本体中,概念和概念之间的关系被逐一确立,并被赋予明确唯一的定义。本体的使用者运用这些规范化的概念和关系来描述该领域的相关事物和知识,减少了对相同涵义信息的表达异质性,从而实现信息的标准化描述,因此有利于各领域知识和信息在数据库及互联网中的存储与传播,加强了人机之间的理解和交流,是实现语义互联网的重要基础。
     与多数其它领域相比,生物医学信息学领域更充分地接受了本体思想,并发展和使用了更多的领域本体。本论文详尽而系统地介绍了生物医学领域中的一个新本体——人类肝脏疾病本体(Human Liver Disease Ontology, HuLDO)的构建过程、评估结果和应用举例,并简要介绍了另一个新本体——蛋白质相互作用本体(Protein-Protein Interaction Ontology, PPIO)的评估和应用过程。这些本体分别在肝脏疾病相关知识和分子相互作用信息的挖掘、整合、交流等方面具有着基础性的意义。
     人类肝脏疾病本体(HuLDO)是全面归纳人类各种肝脏疾病概念,并对其进行定义、分类和注释的术语系统,其所收录的疾病概念和术语来源于目前已有的疾病本体和经典术语集,以及国际和国内的肝脏病学领域权威著作。该本体目前共收录了227种肝脏疾病,对每种肝脏疾病均给出其定义、同义词、分类、描述说明等注释信息,还包含了部分疾病之间的多种病理学关系,每条记录的各个知识均经过人工确认并提供其参考来源信息。与已有相似本体和经典术语集相比:HuLDO具有最全面的肝脏疾病类型和最丰富的同义词等注释信息,为进一步的本体应用打下了坚实的基础。
     首先,根据HuLDO的疾病分类结构,我们构建了人类肝脏知识总库——LiverAtlas的疾病子库,并利用HuLDO进行了人类肝脏疾病相关基因/蛋白质信息的收集和整合。目前该库从16个已有数据库中整理和收录了与59种肝脏疾病相关的共18,243个遗传学生物分子事件,并对每条疾病与分子的关联性记录的可信度做出了参考评分。目前该库提供数据的浏览、查询、批量下载等功能,并与LiverAtlas的基因子库、蛋白质子库、通路子库等数据库之间建立了完善的数据关联。该数据库为肝脏疾病病理学分子水平的研究提供了丰富的参考信息。
     其次,为了不断扩充LiverAtlas疾病子库数据,我们利用HuLDO字典和多种生物分子名称实体识别方法,对文献中的肝脏疾病与基因/蛋白质分子间的关系进行了全面的挖掘。疾病与分子的关系挖掘重点在于疾病名称实体文本挖掘和分子名称实体文本挖掘两个环节,在前一环节中,我们深入地研究了基于HuLDO字典的文本挖掘的技术细节的优化;在后一环节中,我们利用人工构建的标准数据集,客观评估和比较了ABNER工具、GNAT工具,以及自行研发的生物分子名称识别方法的性能,并确定了综合性的优化挖掘策略,并对挖掘结果进行了可视化的展示。
     最后,结合HuLDO中所提示的疾病间的病理学关系和肝脏疾病数据库中所收集的各疾病相关分子,我们对“肝炎→肝硬化→肝癌”发展过程中的分子机制加以分析和推测,对三种肝病相关的和独有的基因进行了生物学过程、分子网络和通路、hub基因三方面的分析,并对分析结果逐一做出了生物学的解释,指出了潜在的新的疾病相关基因和生物学事件,为进一步实验研究提供了参考。
     蛋白质相互作用本体(PPIO)是基于事件概念模型构建的描述蛋白质相互作用所参与的生物过程、所在的亚细胞定位、所扮演的分子角色、所采用的作用方式、所实现的生物学功能和实验检测手段共六方面特征的本体,其概念和术语来源于Gene Ontology (GO)等权威的相关本体和术语系统。通过与其近似的描述蛋白质相互作用信息的术语系统——PSI-MI的比较发现:PPIO包含较为丰富而全面的蛋白质相互作用相关术语集合,其知识覆盖领域与后者相比各自有所偏重,PPIO是描述蛋白质相互作用的生物学特征和信息的理想本体。通过基于PPIO字典的文本挖掘实验,证实了PPIO在蛋白质相互作用相关生物学知识的文本挖掘等方面具有良好的应用效果和重要的应用前景。
     随着本体研究在生物医学领域的不断发展和完善,各种生物医学相关本体必将在生物学相关知识自动挖掘、信息整理、信息整合、数据库构建等方面发挥重要的作用,为生物医学知识信息的高效而准确的沟通和传播提供有力的帮助。
Ontology is the philosophical study of the nature of being, existence, as well as the basic categories of being and their relations. For a specific field, the corresponding ontology is called domain-specific ontology, referring to a nomenclature which comprehends the terms in this field and describes the relationships between them. In an ontology, the terms are defined clearly, then grouped into a hierarchy, and subdivided according to their similarities and differences. One of the key promises of ontology is its potential to facilitate information interoperability because if different data providers and users use the same set of well defined terms for describing their knowledge and data, it will be much easier for them to "talk" to one another. This advantage is especially notable in human-computer interaction and communication, thus favoring the storage of information in various databases and the dissemination of knowledge over the Internet. The establishment of ontologies in all areas is the most important foundation of the construction of Semantic Web.
     Compared to most other fields, biomedical informatics has adopted ontologies more readily and has developed and used more ontologies. Thus in this thesis, we introduce the construction processes and assessment methods of two ontologies in the biomedical field:the Human Liver Disease Ontology (HuLDO) and the Protein-Protein Interaction Ontology (PPIO). Several application examples of HuLDO are also described in detail. These two ontologies may take as the basis to knowledge mining, data integration, and information exchange respectively in the field of hepatology and molecular interaction.
     The Human Liver Disease Ontology systematically classifies and annotates various diseases relating to human liver and semantically integrates disease terms and correlative medical information through extensive cross mapping and integration of Disease Ontology (DO), MeSH, Unified Medical Language System (UMLS), Systematized Nomenclature of Medicine-Clinical Terms (SNOMED-CT), International Statistical Classification of Diseases and Related Health Problems10th Revision (ICD-10) and two monographs of hepatology. Each knowledge point was based on classics and was curated manually. Additionally, HuLDO was carefully checked and iteratively revised by experts in hepatology. In the present version, HuLDO encompasses knowledge of227inherited, developmental and acquired human liver diseases, and was enriched by adding plenty synonyms, definitions, descriptions, references, and logical or pathological relations between different diseases. Compared with other nomenclatures, HuLDO covers most of the liver disease terms included in the predominant medical nomenclatures and extends far beyond them in the scope of liver disease. HuLDO offers a sound basis for database construction, knowledge mining and other applications.
     Firstly, according to the disease hierarchy in HuLDO, we built the disease sub-base of LiverAtlas, a knowledge base of human liver, and use HuLDO to collect and integrate information of human liver disease-related gene/protein. Thus far, we have collected18,243records of the genetic relations of59liver diseases from16databases and scored the credibility of each record. Currently the disease sub-base provides data browsing, query, batch download and other functions, and has established perfect data associations with the gene sub-base, the protein sub-base and the pathway sub-base databases. This database provides a wealth of reference information for the study of hepatology at molecular level.
     Secondly, in order to infuse the disease sub-base with new knowledge continuously, we used HuLDO as a dictionary and several computational methods to dig the relationships between liver diseases and genetics molecules from literatures. The key steps in this mission are the disease-name-recognition and the molecule-name-recognition. In the first step, we intensely investigated the technical optimization of the HuLDO based disease-name-recognition; in the latter step, we constructed a standard dataset manually, and assessed and compared the performances of ABNER, GNAT, and a self-developed molecule-name-recognition method. Finally we determined an integrative strategy of molecule-name-recognition, and visualized the mining results to users.
     Thirdly, based on the data of disease-molecule relationship from LiverAtlas, we analyzed the biological processes, networks, pathways, and hub genes of hepatitis, liver cirrhosis and hepatocellular carcinoma (HCC). Subsequently, we tried to explain the analysis results and pointed out those potential newfound disease-related genes and biological events, thus providing clues for further experimental studies.
     The design of the Protein-Protein Interaction Ontology was inspired by the event model which consists of six aspects of information:the role and state of the interactor, the biological process, the subcellular localization, the interaction type, the biological function and the detection method. The PPIO was implemented by integrating appropriate concept resources from corresponding ontologies. Finally, the PPIO was assessed through a comparison with the Proteomics Standards Initiative-Molecular Interaction format and applied to extract protein-protein interaction annotation in "human liver protein" related abstracts from MEDLINE. The validation on the "BioCreAtIvE PPI" corpus shows a satisfactory performance
     Along with the deepening and extension of research, ontology will play an important role in many aspects of biomedical information communication such as automatic text mining, data integration, database construction etc. The study of ontology will provide powerful support for effective communication and dissemination of biomedical information and knowledge.
引文
[1].李勇,张志刚.领域本体构建方法研究.计算机工程与科学.2008;30(5).
    [2].黄卿贤,胡谷雨,王立峰.本体的概念、建模与应用.解放军理工大学学报(自然科学版).2005:6(2):123-6.
    [3].夏燕,张忠平,曹顺良,朱扬勇,李亦学.Gene Ontology在生物数据整合中的应用.计算机工程.2005;第31卷(第2期).
    [4].d'Aquin M, Noy NF. Where to Publish and Find Ontologies? A Survey of Ontology Libraries. Web Semant.2012 Mar 1; 11:96-111.
    [5].Noy NF, Shah NH, Whetzel PL, Dai B, Dorf M, Griff ith N, et al. BioPortal:ontologies and integrated data resources at the click of a mouse. Nucleic Acids Res.2009 Jul;37(Web Server issue):W170-3.
    [6].MMI ontology registry and repository, http://mmisw.org/orr/.
    [7]. Smith B, Ashburner M, Rosse C, Bard J, Bug W, Ceusters W, et al. The OBO Foundry: coordinated evolution of ontologies to support biomedical data integration. Nat Biotechnol.2007 Nov; 25 (11):1251-5.
    [8].Cote RG, Jones P, Martens L, Apweiler R, Hermjakob H. The Ontology Lookup Service: more data and better tools for controlled vocabulary queries. Nucleic Acids Res. 2008 Jul 1:36 (Web Server issue):W372-6.
    [9]. Cote R, Reisinger F, Martens L, Barsnes H, Vizcaino JA, Herm jakob H. The Ontology Lookup Service:bigger and better. Nucleic Acids Res.2010 Jul;38(Web Server issue):W155-60.
    [10]. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology:tool for the unification of biology. The Gene Ontology Consortium. Nat Genet.2000 May;25(1):25-9.
    [11].the Gene Ontology, http://www.geneontology.org/.
    [12].Bresell A, Servenius B, Persson B. Ontology annotation treebrowser:an interactive tool where the complementarity of medical subject headings and gene ontology improves the interpretation of gene lists. Appl Bioinformatics. 2006;5(4):225-36.
    [13].Dwight SS, Harris MA, Dolinski K, Ball CA, Binkley G, Christie KR, et al. Saccharomyces Genome Database (SGD) provides secondary gene annotation using the Gene Ontology (GO). Nucleic Acids Res.2002 Jan 1;30(1):69-72.
    [14].Aslett M, Wood V. Gene Ontology annotation status of the fission yeast genome: preliminary coverage approaches 100%. Yeast.2006 Oct 15;23(13):913-9.
    [15].Camon E, Magrane M, Barrell D, Binns D, Fleischmann W, Kersey P, et al. The Gene Ontology Annotation (GOA) project:implementation of GO in SWISS-PROT, TrEMBL, and InterPro. Genome Res.2003 Apr; 13 (4):662-72.
    [16].Xie H, Wasserman A, Levine Z, Novik A, Grebinskiy V, Shoshan A, et al. Large-scale protein annotation through gene ontology. Genome Res.2002 May;12(5):785-94.
    [17]. Lu X, Zhai C, Gopalakrishnan V, Buchanan BG. Automatic annotation of protein motif function with Gene Ontology terms. BMC Bioinformatics.2004 Sep 2;5:122.
    [18].Hennig S, Groth D, Lehrach H. Automated Gene Ontology annotation for anonymous sequence data. Nucleic Acids Res.2003 Jul 1;31(13):3712-5.
    [19]. Groth D, Lehrach H, Hennig S. GOblet:a platform for Gene Ontology annotation of anonymous sequence data. Nucleic Acids Res.2004 Jul 1; 32 (Web Server issue):W313-7.
    [20]. Zhong S, Li C, Wong WH. ChipInfo:Software for extracting gene annotation and gene ontology information for microarray analysis. Nucleic Acids Res.2003 Jul 1;31(13):3483-6.
    [21]. Wolting C, McGlade CJ, Tritchler D. Cluster analysis of protein array results via similarity of Gene Ontology annotation. BMC Bioinformatics.2006;7:338.
    [22].Muro EM, Perez-Iratxeta C, Andrade-Navarro MA. Amplification of the Gene Ontology annotation of Affymetrix probe sets. BMC Bioinformatics.2006;7:159.
    [23].Daraselia N, Yuryev A, Egorov S, Mazo I, Ispolatov I. Automatic extraction of gene ontology annotation and its correlation with clusters in protein networks. BMC Bioinformatics.2007;8:243.
    [24]. Nguyen CD, Gardiner KJ, Cios KJ. Protein annotation from protein interaction networks and Gene Ontology. J Biomed Inform.2011 Oct;44(5):824-9.
    [25].Min H, Manion FJ, Goralczyk E, Wong YN, Ross E, Beck JR. Integration of prostate cancer clinical data using an ontology. J Biomed Inform.2009 Dec;42(6):1035-45.
    [26]. Odicino F, PecorelliS, Zigliani L, Creasman WT. History of the FIGO cancer staging system. Int J Gynaecol Obstet.2008 May;101(2):205-10.
    [27]. Fleming ID. AJCC/TNM cancer staging, present and future. J Surg Oncol.2001 Aug;77(4):233-6.
    [28]. Krallinger M LF, Vazquez M, Salgado D, Marcelle C, Tyers M, Valencia A, Chatr-Aryamontri A. How to link ontologies and protein-protein interactions to literature:text-mining approaches and the BioCreative experience. Database (Oxford).2012;bas017.
    [29]. PSI-MI. http://psidev.sourceforge. net/mi/xml/doc/user/.
    [30]. the Human Liver Disease Ontology. http://liveratl.as. hupo. org. cn/disease. jsp?searchtype=Disease.
    [31].the Protein-Protein Interaction Ontology, http://ppio.hupo.org.cn/index.jsp.
    [32]. Hermjakob H, Montecchi-Palazzi L, Bader G, Wojcik J, Salwinski L, Ceol A, et al. The HUPO PSI's molecular interaction format--a community standard for the representation of protein interaction data. Nat Biotechnol.2004 Feb;22(2):177-83.
    [33].Kerrien S, Orchard S, Montecchi-Palazzi L, Aranda B, Quinn AF, Vinod N, et al. Broadening the horizon--level 2.5 of the HUPO-PSI format for molecular interactions. BMC Biol.2007:5:44.
    [34]. Proteomics Standards Initiative-Molecular Interaction format.
    [35].Ivchenko 0, Younesi E, Shahid M, Wolf A, Muller B, Hofmann-Apitius M. PLIO:an ontology for formal description of protein-ligand interactions. Bioinformatics. 2011 Jun 15;27(12):1684-90.
    [36]. PubMed ftp. ftp://ftp. nlm. nih. gov/nlmdata/. medleasebaseline/.
    [37].E-utilities. http://www.ncbi. nlm. nih. gov/books/NBK25500/.
    [38]. Yeganova L, Smith L, Wilbur WJ. Identification of related gene/protein names based on an HMM of name variations. Comput Biol Chem.2004 Apr;28(2):97-107.
    [39].Ohta T, Pyysalo S, Kim JD, Tsujii J. A re-evaluation of biomedical named entity-term relations. J Bioinform Comput Biol.2010 Oct;8(5):917-28.
    [40].Cano C, Monaghan T, Blanco A, Wall DP, Peshkin L. Collaborative text-annotation resource for disease-centered relation extraction from biomedical text. J Biomed Inform.2009 Oct;42(5):967-77.
    [41]. ICD的发展历史-百度百科:ICD-10. http://baike. baidu. com/view/2310037. htm.
    [42].ICD. http://www.who. int/classifications/icd/en/.
    [43]. MeSH. http://www. ncbi. nlm. nih. gov/mesh.
    [44].UMLS. https://uts.nlm.nih.gov/metathesaurus. html.
    [45].SNOMED. http://www. nlm. nih.gov/research/umls/Snomed/snomed_main. html.
    [46].Schriml LM, Arze C, Nadendla S, Chang YW, Mazaitis M, Felix V, et al. Disease Ontology:a backbone for disease semantic integration. Nucleic Acids Res.2011 Jan;40(Database issue):D940-6.
    [47]. Zheng J, Gao X, Beretta L, He F. The human liver proteome project (hlpp) workshop during the 4th hupo world congress. Proteomics.2006;6(6):1716-8.
    [48]. LiverAtlas. http://liveratlas. hupo. org.cn
    [49]. McKusick VA. Mendelian Inheritance in Man and its online version, OMIM. Am J Hum Genet.2007 Apr;80(4):588-604.
    [50].Becker KG, Barnes KC, Bright TJ, Wang SA. The genetic association database. Nat Genet.2004 May;36(5):431-2.
    [51]. Buchkremer S, Hendel J, Krupp M, Weinmann A, Schlamp K, Maass T, et al. Library of molecular associations:curating the complex molecular basis of liver diseases. BMC Genomics.2010;11:189.
    [52]. Yu W, Gwinn M, Clyne M, Yesupriya A, Khoury MJ. A navigator for human genome epidemiology. Nat Genet.2008 Feb;40(2):124-5.
    [53]. Safran M, Dalah I, Alexander J, Rosen N, Iny Stein T, Shmoish M, et al. GeneCards Version 3:the human gene integrator. Database (Oxford).2010:baq020.
    [54]. Sun A, Jiang Y, Wang X, Liu Q, Zhong F, He Q, et al. Liverbase:a comprehensive view of human liver biology. J Proteome Res.2009 Jan;9(1):50-8.
    [55].常青.文本挖掘挖掘知识.中国计算机用户.2004.
    [56].黄凯峰,何洁月.基于生物医学文献的知识发现研究.计算机技术与发展.2008(第02期).
    [57]. Ruch PGA, Gobeill J, Lisacek F, Tbahriti I, Veuthey AL, Aronson AR. Using discourse analysis to improve text categorization in MEDLINE. Stud Health Technol Inform. 2007;129(Pt 1)(710-5).
    [58]. Wee LJ, Er EP, Ng LF, Tong JC. In silico prediction of the granzyme B degradome. BMC Genomics.2012 Nov 30;12 Suppl 3:S11.
    [59]. Lu Z, Kao HY, Wei CH, Huang M, Liu J, Kuo CJ, et al. The gene normalization task in BioCreative III. BMC Bioinformatics.2011;12 Suppl 8:S2.
    [60].Arighi CN, Roberts PM, Agarwal S, Bhattacharya S, Cesareni G, Chatr-Aryamontri A, et al. BioCreative III interactive task:an overview. BMC Bioinformatics. 2011;12 Suppl 8:S4.
    [61].Arighi CN, Lu Z, Krallinger M, Cohen KB, Wilbur WJ, Valencia A, et al. Overview of the BioCreative III Workshop. BMC Bioinformatics.2011;12 Suppl 8:S1.
    [62]. Campos D, Matos S, Lewin I, Oliveira JL, Rebholz-Schuhmann D. Harmonisation of gene/protein annotations:towards a gold standard MEDLINE. Bioinformatics.2012 Mar 13.
    [63].Chatr-Aryamontri A, Winter A, Perfetto L, Briganti L, Licata L, Iannuccelli M, et al. Benchmarking of the 2010 BioCreative Challenge III text-mining competition by the BioGRID and MINT interaction databases. BMC Bioinformatics.2011; 12 Suppl 8:S8.
    [64]. Campbell SJ, Gaulton A, Marshall J, Bichko D, Martin S, Brouwer C, et al. Visualizing the drug target landscape. Drug Discov Today.2011 Feb; 17 Suppl:S3-15.
    [65]. Wu Y LM, Zheng WJ, Zhao Z, Xu H. Ranking gene-drug relationships in biomedical literature using latent dirichlet allocation. Pac Symp Biocomput.2012;422(33).
    [66]. Faro A, Giordano D, Spampinato C. Combining literature text mining with microarray data:advances for system biology modeling. Brief Bioinform.2011 Jan; 13(1):61-82.
    [67].Yu W, Clyne M, Dolan SM, Yesupriya A, Wulf A, Liu T, et al. GAPscreener:an automatic tool for screening human genetic association literature in PubMed using the support vector machine technique. BMC Bioinformatics.2008;9:205.
    [68].GuoY, Korhonen A, Silins I, Stenius U. Weakly supervised learning of information structure of scientific abstracts--is it accurate enough to benefit real-world tasks in biomedicine? Bioinformatics.2011 Nov 15:27(22):3179-85.
    [69].张学军.复杂疾病的遗传学研究策略.安徽医科大学学报.2007;42(3).
    [70].Narayanasamy V MS, Palakal M, Potter DA. TransMiner:mining transitive associations among biological objects from text. J Biomed Sci 2004.
    [71].NLM数据下载权限申请.http://www.nlm. nih. gov/databases/license/weblic/index, html.
    [72]. Leaman R, Gonzalez G. BANNER:an executable survey of advances in biomedical named entity recognition. Pac Symp Biocomput.2008:652-63.
    [73]. Settles B. ABNER:an open source tool for automatically tagging genes, proteins and other entity names in text. Bioinformatics.2005 Jul 15:21(14):3191-2.
    [74].Hakenberg J, Gerner M, Haeussler M, Solt I, Plake C, Schroeder M, et al. The GNAT library for local and remote gene mention normalization. Bioinformatics.2011 Oct 1:27(19):2769-71.
    [75].Swiss-Prot人类蛋白质信息下载地址.http://www. uniprot. org/downloads.
    [76].NCBI人类Gene信息下载地址.ftp://ftp. ncbi. nih. gov/gene/DATA/GENE_INFO/Mammalia/ Homo_sapiens. gene_info. gz.
    [77]. Wang K. Gene-function wiki would let biologists pool worldwide resources. Nature. 2006.
    [78]. Hoffmann R. A wiki for the life sciences where authorship matters. Nature Genetics. 2008.
    [79].中国乙肝病毒携带者不再过亿感染率明显下降.《广州日报》.2010.
    [80].段纪俊,陈万青,张思维.中国恶性肿瘤死亡率的国际比较.中国社会医学杂志.2009:26(6).
    [81].我国每年新增30万名肝癌患者,早期发现刻不容缓.新华网.2008.
    [82].肝癌的预防.http://xiehezhongliu. blog. sohu. com/rss.北京协和医院肿瘤内科博客.
    [83].陈竺:“把肝病大国的帽子甩到太平洋”.人民网.2007.
    [84].姚光弼.临床肝脏病学[M].上海科学技术出版社.2004:327-400.
    [85].姚光弼.临床肝脏病学[M].上海科学技术出版社.2004:457-61.
    [86].姚光弼.临床肝脏病学[M].上海科学技术出版社.2004:621-4.
    [87]. Oliveros JC. An interactive tool for comparing lists with Venn Diagrams. VENNY. 2007.
    [88].MetaCore软件.http://www. genego. com/metacore. php.
    [89].姚光弼.临床肝脏病学[M].上海科学技术出版社.2004.
    [90]. Wang L, Huang J, Jiang M, Lin H. Tissue-specific transplantation antigen P35B (TSTA3) immune response-mediated metabolism coupling cell cycle to postreplication repair network in no-tumor hepatitis/cirrhotic tissues (HBV or HCV infection) by biocomputation. Immunol Res.2012 Apr 13.
    [91].Katsounas A, Schlaak JF, Lempicki RA. CCL5:a double-edged sword in host defense against the hepatitis C virus. Int Rev Immunol.2011 Oct-Dec;30(5-6):366-78.
    [92].Aoud jehane L, Pissaia A, Jr., Scatton 0, Podevin P, Massault PP, Chouzenoux S, et al. Interleukin-4 induces the activation and collagen production of cultured human intrahepatic fibroblasts via the STAT-6 pathway. Lab Invest.2008 Sep;88(9):973-85.
    [93]. Liu H, Xu J, Zhou L, Yun X, Chen L, Wang S, et al. Hepatitis B virus large surface antigen promotes liver carcinogenesis by activating the Src/PI3K/Akt pathway. Cancer Res.2011 Dec 15;71 (24):7547-57.
    [94].Xue-Song L, Cheng-Zhong L, Ying Z, Mo-Bin W. Changes of Treg and Th17 cells balance in the development of acute and chronic hepatitis B virus infection. BMC Gastroenterol.2012 May 1;12(1):43.
    [95].Longhi MS, Liberal R, Holder B, Robson SC, Ma Y, Mieli-Vergani G, et al. Inhibition of Interleukin-17 Promotes Differentiation of CD25(-) Cells Into Stable T Regulatory Cells in Patients With Autoimmune Hepatitis. Gastroenterology.2012 Feb 28.
    [96]. Huang Z, van Velkinburgh JC, Ni B, Wu Y. Pivotal roles of the interleukin-23/T helper 17 cell axis in hepatitis B. Liver Int.2012 Feb 19.
    [97].Bowen DG. Finding a role for Th17 cells in hepatitis C pathogenesis. J Gastroenterol Hepatol.2012 Feb;27(2):188-91.
    [98].Foster RG, Golden-Mason L, Rutebemberwa A, Rosen HR. Interleukin (IL)-17/IL-22-producing T cells enriched within the liver of patients with chronic hepatitis C viral (HCV) infection. Dig Dis Sci.2011 Feb;57(2):381-9.
    [99].Milich DR. Influence of T-helper cell subsets and crossregulation in hepatitis B virus infection. J Viral Hepat.1997;4 Suppl 2:48-59.
    [100].Zenewicz LA YG, Valenzuela DM, Murphy AJ, Karow M, Flavell RA. Interleukin-22 but not interleukin-17 provides protection to hepatocytes during acute liver inflammation. Immunity.2007.
    [101]. Jung JHPJ, Jee MH, Keum SJ, Cho MS, Yoon SK, Jang SK. Hepatitis C virus infection is blocked by HMGB1 released from virus-infected cells. J Virol.2011.
    [102]. Mueller M, Spangenberg HC, Kersting N, Altay T, Blum HE, Klenerman P, et al. Virus-specific CD4+T cell responses in chronic HCV infection in blood and liver identified by antigen-specific upregulation of CD154. J Hepatol.2010 Jun;52(6):800-11.
    [103].Schmilovitz-Weiss H, Belinki A, Pappo 0, Sulkes J, Melzer E, Kaganovski E, et al. Role of circulating soluble CD40 as an apoptotic marker in liver disease. Apoptosis.2004 Mar;9(2):205-10.
    [104].百度百科:ERK1/2. http://baike.baidu.com/view/6988919.htm.
    [105]. Shan C, Xu F, Zhang S, You J, You X, Qiu L, et al. Hepatitis B virus X protein promotes liver cell proliferation via a positive cascade loop involving arachidonic acid metabolism and p-ERK1/2. Cell Res.2010 May;20(5):563-75.
    [106].Klein NP, Schneider RJ. Activation of Src family kinases by hepatitis B virus HBx protein and coupled signaling to Ras. Mol Cell Biol.1997 Nov; 17(11):6427-36.
    [107]. Yoshida S, Masaki T, Feng H, Yuji J, Miyauchi Y, Funaki T, et al. Enhanced expression of adaptor molecule p46 She in nuclei of hepatocellular carcinoma cells: study of LEC rats. Int J Oncol.2004 Oct;25 (4):1089-96.
    [108]. Saito M, Kohara M, Tsukiyama-Kohara K. Hepatitis C virus promotes expression of the 3beta-hydroxysterol delta24-reductase through Spl. J Med Virol.2012 May; 84 (5):733-46.
    [109].Tsao ML, Chao CH, Yeh CT. Interaction of hepatitis C virus F protein with prefoldin 2 perturbs tubulin cytoskeleton organization. Biochem Biophys Res Commun.2006 Sep 15; 348(1):271-7.
    [110].百度百科:IFN. http://baike.baidu.com/view/1397078.htm.
    [111].Nakano T, Goto S, Lai CY, Hsu LW, Takaoka Y, Kawamoto S, et al. Immunological aspects and therapeutic significance of an autoantibody against histone H1 in a rat model of concanavalin A-induced hepatitis. Immunology.2010 Apr; 129 (4):547-55.
    [112].王江.EMT与器官纤维化发生关系的研究进展.胃肠病学和肝病学杂志.2012.
    [113].Toda K, Kumagai N, Tsuchimoto K, Inagaki H, Suzuki T, Oishi T, et al. Induction of hepatic stellate cell proliferation by LPS-stimulated peripheral blood mononuclear cells from patients with liver cirrhosis. J Gastroenterol. 2000:35(3):214-20.
    [114].李福刚,汪钟.白细胞与内皮细胞、血小板粘附的分子机理及意义.Chinese Journal of Pathophysiology.1994; 10 (3):333-6.
    [115]. Asselah T, Bieche I, Laurendeau I, Paradis V, Vidaud D, Degott C, et al. Liver gene expression signature of mild f ibrosis in patients with chronic hepatitis C. Gastroenterology.2005 Dec;129(6):2064-75.
    [116]. Zimmermann HW, Tacke F. Modification of chemokine pathways and immune cell infiltration as a novel therapeutic approach in liver inflammation and fibrosis. Inflamm Allergy Drug Targets.2011 Dec 1;10(6):509-36.
    [117].Baeck C, Wehr A, Karlmark KR, Heymann F, Vucur M, Gassler N, et al. Pharmacological inhibition of the chemokine CCL2 (MCP-1) diminishes liver macrophage infiltration and steatohepatitis in chronic hepatic injury. Gut.2011 Mar;61(3):416-26.
    [118].Mao TK, Kimura Y, Kenny TP, Branchi A, Gishi RG, Van de Water J, et al. Elevated expression of tyrosine kinase DDR2 in primary biliary cirrhosis. Autoimmunity. 2002 Dec;35(8):521-9.
    [119]. Xu L, Hui AY, Albanis E, Arthur MJ,O'Byrne SM, Blaner WS, et al. Human hepatic stellate cell lines, LX-1 and LX-2:new tools for analysis of hepatic fibrosis. Gut.2005 Jan;54(1):142-51.
    [120].Sakaguchi E, Kayano K, Segawa M, Aoyagi M, Sakaida I, Okita K. [Th1/Th2 imbalance in HCV-related liver cirrhosis]. Nihon Rinsho.2001 Jul;59(7):1259-63.
    [121].Tripodi A, Primignani M, Chantarangkul V, Dell'Era A, Clerici M, de Franchis R, et al. An imbalance of pro-vs anti-coagulation factors in plasma from patients with cirrhosis. Gastroenterology.2009 Dec;137(6):2105-11.
    [122]. Ikegami T, Zhang Y, Matsuzaki Y. Liver fibrosis:possible involvement of EMT. Cells Tissues Organs.2007;185(1-3):213-21.
    [123]. Sun HQ, Zhang JY, Zhang H, Zou ZS, Wang FS, Jia JH. Increased Thl7 cells contribute to disease progression in patients with HBV-associated liver cirrhosis. J Viral Hepat.2012 Jun; 19 (6):396-403.
    [124].Cao S, Yaqoob U, Das A, Shergill U, Jagavelu K, Huebert RC, et al. Neuropilin-1 promotes cirrhosis of the rodent and human liver by enhancing PDGF/TGF-beta signaling in hepatic stellate cells. J Clin Invest.2010 Jul;120(7):2379-94.
    [125]. NCBI Gene:HIF1A. http://www.ncbi.nlm.nih.gov/gene/3091.
    [126]. NCBI Gene:PPARG. http://www.ncbi.nlm.nih.gov/gene/5468.
    [127]. NCBI Gene:VDR. http://www.ncbi.nlm.nih.gov/gene/7421.
    [128]. NCBI Gene:GABRA1. http://www.ncbi.nlm.nih.gov/gene/2554.
    [129].Cauli A, Porru G, Vacca A, Mameli A, Ibba V, Mura V, et al. IFN-alpha-induced psoriatic arthritis and HCV-related liver cirrhosis. Therapeutic options and patient's opinion. Reumatismo.2008 Jan-Mar;60(1):57-60.
    [130].Vespasiani Gentilucci U, Santini D, Picardi A, Vincenzi B, Riva E, Bianchi A, et al. Liver cirrhosis after prolonged therapy with IFN-alpha plus interleukin-2 in ametastatic renal cancer long-term survivor. J Interferon Cytokine Res.2002 Jun;22(6):683-8.
    [131].Ji H MY, Zhang X, Luo W, Wu P, Xiao B, Zhang Z, Li X. Aldosterone induction of hepatic stellate cell contraction through activation of RhoA/ROCK-2 signaling pathway. Regul Pept.2011.
    [132]. Sergio A, Cristofori C, Cardin R, Pivetta G, Ragazzi R, Baldan A, et al. Transcatheter arterial chemoembolization (TACE) in hepatocellular carcinoma (HCC):the role of angiogenesis and invasiveness. Am J Gastroenterol.2008 Apr;103(4):914-21.
    [133]. Dai CX GQ, Qiu SJ, Ju MJ, Cai MY, Xu YF, Zhou J, Zhang BH, Fan J. Hypoxia-inducible factor-1 alpha, in association with inflammation, angiogenesis and MYC, is a critical prognostic factor in patients with HCC after surgery. BMC Cancer.2009.
    [134].Zhu AX, Duda DG, Sahani DV, Jain RK. HCC and angiogenesis:possible targets and future directions. Nat Rev Clin Oncol.2011 May;8(5):292-301.
    [135]. Taylor WR, Stark GR. Regulation of the G2/M transition by p53. Oncogene.2001 Apr 5;20(15):1803-15.
    [136]. Chen L, Chan TH, Yuan YF, Hu L, Huang J, Ma S, et al. CHD1L promotes hepatocellular carcinoma progression and metastasis in mice and is associated with these processes in human patients. J Clin Invest.2010 Apr;120(4):1178-91.
    [137]. Yan W, Chang Y, Liang X, Cardinal JS, Huang H, Thorne SH, et al. High mobility group box 1 activates caspase-1 and promotes hepatocellular carcinoma invasiveness and metastases. Hepatology.2012 Jan 11.
    [138]. Feo F, Frau M, Tomasi ML, Brozzetti S, Pascale RM. Genetic and epigenetic control of molecular alterations in hepatocellular carcinoma. Exp BiolMed (Maywood).2009 Jul;234(7):726-36.
    [139]. Xu T, Zhu Y, Xiong Y, Ge YY, Yun JP, Zhuang SM. MicroRNA-195 suppresses tumorigenicity and regulates G1/S transition of human hepatocellular carcinoma cells. Hepatology.2009 Jul;50(1):113-21.
    [140]. Zhu Y LY, Zhang Q, Liu JJ, Li TJ, Yang JR, Zeng C, Zhuang SM. MicroRNA-26a/b and their host genes cooperate to inhibit the G1/S transition by activating the pRb protein. Nucleic Acids Res.2011.
    [141].Gedaly R, Angulo P, Hundley J, Daily MF, Chen C, Evers BM. PKI-587 and Sorafenib Targeting PI3K/AKT/mTOR and Ras/Raf/MAPK Pathways Synergistically Inhibit HCC Cell Proliferation. J Surg Res.2012 Nov 21.
    [142]. Carney BK, Caruso Silva V, Cassimeris L. The microtubule cytoskeleton is required for a G2 cell cycle delay in cancer cells lacking stathmin and p53. Cytoskeleton (Hoboken).2012 Mar 7.
    [143]. Liu J, Zhang D, Luo W, Yu Y, Yu J, Li J, et al. X-linked inhibitor of apoptosis protein (XIAP) mediates cancer cell motility via Rho GDP dissociation inhibitor (RhoGDI)-dependent regulation of the cytoskeleton. J Biol Chem.2011 May 6;286 (18):15630-40.
    [144]. Chung KY, Cheng IK, Ching AK, Chu JH, Lai PB, Wong N. Block of proliferation 1 (BOP1) plays an oncogenic role in hepatocellular carcinoma by promoting epithelial-to-mesenchymal transition. Hepatology.2011 Jul;54(1):307-18.
    [145]. Schroder PC, Segura V, Riezu JI, Sangro B, Mato JM, Prieto J, et al. A signature of six genes highlights defects on cell growth and specific metabolic pathways in murine and human hepatocellular carcinoma. Funct Integr Genomics.2011 Sep;11(3):419-29.
    [146]. Nathke I. Cytoskeleton out of the cupboard:colon cancer and cytoskeletal changes induced by loss of APC. Nat Rev Cancer.2006 Dec;6(12):967-74.
    [147].Buda A, Pignatelli M. E-cadherin and the cytoskeletal network in colorectal cancer development and metastasis. Cell Commun Adhes.2011 Dec;18(6):133-43.
    [148].Bernal SD, Baylin SB, Shaper JH, Gazdar AF, Chen LB. Cytoskeleton-associated proteins of human lung cancer cells. Cancer Res.1983 Apr;43(4):1798-808.
    [149]. Chen QY, Xu LQ, Jiao DM, Yao QH, Wang YY, Hu HZ, et al. Silencing of Racl modifies lung cancer cell migration, invasion and actin cytoskeleton rearrangements and enhances chemosensitivity to antitumor drugs. Int J Mol Med.2011 Nov; 28 (5):769-76.
    [150].Niu J, Mo Q, Wang H, Li M, Cui J, Li Z. Invasion inhibition by a MEK inhibitor correlates with the actin-based cytoskeleton in lung cancer A549 cells. Biochem Biophys Res Commun.2012 Apr 27.
    [151]. Wolf K, Mendoza A, Mentzel M, Wossmann W, Joshi H. Effects of Cisplatin and mafosfamide on the interphase microtubular cytoskeleton of a human breast-cancer cell-line, mx-1, in-vitro-a fine-structure and antitubulin immunofluorescence study. Int J Oncol.1995 Sep;7(3):593-602.
    [152].Hadjivasiliou A. ISG15 implicated in cytoskeleton disruption and promotion of breast cancer. Expert Rev Proteomics.2012;9(1):7.
    [153]. Bharadwaj S, Thanawala R, Bon G, Falcioni R, Prasad GL. Resensitization of breast cancer cells to anoikis by tropomyosin-1:role of Rho kinase-dependent cytoskeleton and adhesion. Oncogene.2005 Dec 15;24(56):8291-303.
    [154].Huang SH, Yang KJ, Wu JC, Chang KJ, Wang SM. Effects of hyperthermia on the cytoskeleton and focal adhesion proteins in a human thyroid carcinoma cell line. J Cell Biochem.1999 Nov 1;75(2):327-37.
    [155]. Infanger M, Kossmehl P, Shakibaei M, Bauer J, Kossmehl-Zorn S, Cogoli A, et al. Simulated weightlessness changes the cytoskeleton and extracellular matrix proteins in papillary thyroid carcinoma cells. Cell Tissue Res.2006 May; 324 (2):267-77.
    [156]. Lin A, Hu L, Tang Y, Sun C, Mi Y, Yao C. [Experimental study on effects of energy controllable steep pulses on cytoskeleton of human ovarian cancer cells SKOV3]. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi.2009 Apr;26(2):268-72.
    [157]. Ip CK, Cheung AN, Ngan HY, Wong AS. p70 S6 kinase in the control of actin cytoskeleton dynamics and directed migration of ovarian cancer cells. Oncogene. 2011 May 26:30(21):2420-32.
    [158]. Welsh CF, Zhu D, Bourguignon LY. Interaction of CD44 variant isoforms with hyaluronic acid and the cytoskeleton inhuman prostate cancer cells. J Cell Physiol. 1995 Sep;164(3):605-12.
    [159]. Zhu H, Zhao J, Zhu B, Collazo J, Gal J, Shi P, et al. EMMPRIN regulates cytoskeleton reorganization and cell adhesion in prostate cancer. Prostate.2011 Jan;72(1):72-81.
    [160]. Tang L, Hu P, Hu HD, Ren H. [Experimental gene therapy mediated by fractalkine (FK) for murine liver cancer]. Zhonghua Gan Zang Bing Za Zhi.2005 Sep; 13 (9):675-7.
    [161]. Li H, Ren Z, Kang X, Zhang L, Li X, Wang Y, et al. Identification of tyrosine-phosphorylated proteins associated with metastasis and functional analysis of FER in human hepatocellular carcinoma cells. BMC Cancer.2009;9:366.
    [162].Monnier J, Boissan M, L'Helgoualc'h A, Lacombe ML, Turlin B, Zucman-Rossi J, et al. CXCR7 is up-regulated in human and murine hepatocellular carcinoma and is specifically expressed by endothelial cells. Eur J Cancer.2011 Jan;48(1):138-48.
    [163].Yamashita T, Honda M, Nio K, Nakamoto Y, Takamura H, Tani T, et al. Oncostatin m renders epithelial cell adhesion molecule-positive liver cancer stem cells sensitive to 5-Fluorouracil by inducing hepatocytic differentiation. Cancer Res. 2010 Jun 1:70(11):4687-97.
    [164].Calvisi DF, Pinna F, Pellegrino R, Sanna V, Sini M, Daino L, et al. Ras-driven proliferation and apoptosis signaling during rat liver carcinogenesis is under genetic control. Int J Cancer.2008 Nov 1; 123 (9):2057-64.
    [165].Kanmura S, Uto H, Sato Y, Kumagai K, Sasaki F, Moriuchi A, et al. The complement component C3a fragment is a potential biomarker for hepatitis C virus-related hepatocellular carcinoma. J Gastroenterol.2009 Apr;45(4):459-67.
    [166]. Lee IN, Chen CH, Sheu JC, Lee HS, Huang GT, Chen DS, et al. Identification of complement C3a as a candidate biomarker in human chronic hepatitis C and HCV-related hepatocellular carcinoma using a proteomics approach. Proteomics. 2006 May;6(9):2865-73.
    [167].Kato S, Kawasaki H. [Blood coagulation and fibrinolysis in relation to endotoxemia in liver cirrhosis and hepatocellular carcinoma]. Nihon Shokakibyo Gakkai Zasshi.1995 Aug;92(8):1143-8.
    [168]. Miyamoto Y, Takikawa Y, Dc Lin S, Sato S, Suzuki K. Apoptotic hepatocellular carcinoma HepG2 cells accelerate blood coagulation. Hepatol Res.2004 Jul;29(3):167-72.
    [169].Yue P, Gao ZH, Xue X, Cui SX, Zhao CR, Yuan Y, et al. Des-gamma-carboxyl prothrombin induces matrix metalloproteinase activity in hepatocellular carcinoma cells by involving the ERK1/2 MAPK signalling pathway. Eur J Cancer. 2011 May;47(7):1115-24.
    [170]. Li X, Lv Y, Yuan A, Yi S, Ma Y, Li Z. Gastrin-releasing peptide promotes the growth of HepG2 cells via EGFR-independent ERK1/2 activation. Oncol Rep.2010 Aug;24(2):441-8.
    [171]. Xu HY, Qian AR, Shang P, Xu J, Kong LM, Bian HJ, et al. siRNA targeted against HAb18G/CD147 inhibits MMP-2 secretion, actin and FAK expression in hepatocellular carcinoma cell line via ERK1/2 pathway. Cancer Lett.2007 Mar 18;247(2):336-44.
    [172]. Alexia C, Lasfer M, Groyer A. Role of constitutively activated and insulin-like growth factor-stimulated ERK1/2 signaling in human hepatoma cell proliferation and apoptosis:evidence for heterogeneity of tumor cell lines. Ann N Y Acad Sci. 2004 Dec;1030:219-29.
    [173].GeneCards:ESR1. http://www.uniprot.org/uniprot/P03372#section comments.
    [174].Zhai Y, Zhou G, Deng G, Xie W, Dong X, Zhang X, et al. Estrogen receptor alpha polymorphisms associated with susceptibility to hepatocellular carcinoma in hepatitis B virus carriers. Gastroenterology.2006 Jun;130(7):2001-9.
    [175]. Liu WH, Yeh SH, Lu CC, Yu SL, Chen HY, Lin CY, et al. MicroRNA-18a prevents estrogen receptor-alpha expression, promoting proliferation of hepatocellular carcinoma cells. Gastroenterology.2009 Feb;136(2):683-93.
    [176]. GeneCards:SP1. http://www. genecards. org/cgi-bin/carddisp. pl?gene=SP1&search=SP1.
    [177]. Kong LM, Liao CG, Chen L, Yang HS, Zhang SH, Zhang Z, et al. Promoter hypomethylation up-regulates CD147 expression through increasing Spl binding and associates with poor prognosis in human hepatocellular carcinoma. J Cell Mol Med. 2010 Jun;15(6):1415-28.
    [178]. Yuan JH, Yang F, Chen BF, Lu Z, Huo XS, Zhou WP, et al. The histone deacetylase 4/SP1/microrna-200a regulatory network contributes to aberrant histone acetylation in hepatocellular carcinoma. Hepatology.2011 Dec;54(6):2025-35.
    [179].NCBI Gene:HNF4A. http://www.ncbi.nlm.nih.gov/gene/3172.
    [180]. Tseng YP, Kuo YH, Hu CP, Jeng KS, Janmanchi D, Lin CH, et al. The role of helioxanthin in inhibiting human hepatitis B viral replication and gene expression by interfering with the host transcriptional machinery of viral promoters. Antiviral Res.2008 Mar;77(3):206-14.
    [181]. Zhang A, London R, Schulz FM, Giguere-Simmonds PW, Delriviere L, Chandraratana H, et al. Human liver progenitor cell lines are readily established from non-tumorous tissue adjacent to hepatocellular carcinoma. Stem Cells Dev.2009 Aug;19 (8):1277-84.
    [182]. NCBI Gene:HDAC1. http://www.ncbi.nlm.nih.gov/gene/3065.
    [183]. Yang Z, Zhou L, Wu LM, Xie HY, Zhang F, Zheng SS. Combination of polymorphisms within the HDAC1 and HDAC3 gene predict tumor recurrence in hepatocellular carcinoma patients that have undergone transplant therapy. Clin Chem Lab Med.2010 Dec;48(12):1785-91.
    [184]. Xie HJ, Noh JH, Kim JK, Jung KH, Eun JW, Bae HJ, et al. HDAC1 Inactivation Induces Mitotic Defect and Caspase-Independent Autophagic Cell Death in Liver Cancer. PLoS One.2012;7(3):e34265.
    [185]. NCBI Gene:Androgen receptor. http://www.ncbi.nlm.nih.gov/protein/AAA51772.1.
    [186]. Ma WL, Hsu CL, Wu MH, Wu CT, Wu CC, Lai JJ, et al. Androgen receptor is a new potential therapeutic target for the treatment of hepatocellular carcinoma. Gastroenterology.2008 Sep;135(3):947-55,55 e1-5.
    [187]. NCBI Gene:c-myc. http://ww. ncbi. nlm. nih. gov/gene/4609.
    [188]. Lin CP, Liu CR, Lee CN, Chan TS, Liu HE. Targeting c-Myc as a novel approach for hepatocellular carcinoma. World J Hepatol. Jan 27;2(1):16-20.
    [189].百度百科:p53基因. http://baike.baidu.com/view/533835.htm.
    [190].康光明方,Martin Volkmann.肝细胞癌病人中p53基因突变状况探讨.中华实验和临床病毒学杂志.2001.
    [191]. NCBI Gene:APP. http://www.ncbi.nlm.nih.gov/gene/351.
    [192]. NCBI Gene:HIST1H2BG. http://www.ncbi.nlm.nih.gov/gene/8339.
    [193].Lilleberg SL, Cabonce MA, Raju NR, Wagner LM, Kier LD. Alterations in the structural gene and the expression of p53 in rat liver tumors induced by aflatoxin Bl. Mol Carcinog.1992; 6 (2):159-72.
    [194].NCBI Gene:WNT1. http://www.ncbi.nlm.nih.gov/gene/7471.
    [195].维基百科:Wnt 信号通路. zh. wikipedia. org/wiki/Wnt 信号同路.
    [196]. Hu J, Dong A, Fernandez-Ruiz V, Shan J, Kawa M, Martinez-Anso E, et al. Blockade of Wnt signaling inhibits angiogenesis and tumor growth in hepatocellular carcinoma. Cancer Res.2009 Sep 1; 69 (17):6951-9.
    [197].Cui J, Zhou X, Liu Y, Tang Z, Romeih M. Wnt signaling in hepatocellular carcinoma: analysis of mutation and expression of beta-catenin, T-cell factor-4 and glycogen synthase kinase 3-beta genes. J Gastroenterol Hepatol.2003 Mar;18(3):280-7.
    [198]. Lee HC, Kim M, Wands JR. Wnt/Frizzled signaling in hepatocellular carcinoma. Front Biosci.2006:11:1901-15.
    [199]. Kim YD, Park CH, Kim HS, Choi SK, Rew JS, Kim DY, et al. Genetic alterations of Wnt signaling pathway-associated genes in hepatocellular carcinoma. J Gastroenterol Hepatol.2008 Jan;23(1):110-8.
    [200].百度百科:肌动蛋白.http://baike. baidu. com/view/63515. htm.
    [201].Nishiyama M, Ozturk M, Frohlich M, Mafune K, Steele G, Jr., Wands JR. Expression of human alpha-actinin in human hepatocellular carcinoma. Cancer Res.1990 Oct 1;50(19):6291-4.
    [202].百度百科:MHC. http://baike. baidu. com/view/396705. htm.
    [203]. Chen W, Cai MY, Wei DP, Wang X. Pivotal molecules of MHC I pathway in human primary hepatocellular carcinoma. World J Gastroenterol.2005 Jun 7;11(21):3297-9.
    [204].Kohga K, Takehara T, Tatsumi T, Ohkawa K, Miyagi T, Hiramatsu N, et al. Serum levels of soluble major histocompatibility complex (MHC) class I-related chain A in patients with chronic liver diseases and changes during transcatheter arterial embolization for hepatocellular carcinoma. Cancer Sci.2000 Aug; 99 (8):1643-9.
    [205]. Jinushi M, Takehara T, Tatsumi T, Hiramatsu N, Sakamori R, Yamaguchi S, et al. Impairment of natural killer cell and dendritic cell functions by the soluble form of MHC class I-related chain A in advanced human hepatocellular carcinomas. J Hepatol.2005 Dec;43(6):1013-20.
    [206].百度百科:组蛋白.http://baike. baidu. com/view/32445. htm.
    [207]. Khare SP, Sharma A, Deodhar KK, Gupta S. Overexpression of histone variant H2A.1 and cellular transformation are related in N-nitrosodiethylamine-induced sequential hepatocarcinogenesis. Exp Biol Med (Maywood).2011 Jan;236(1):30-5.
    [208].百度百科:蛋白酶体.http://baike. baidu. com/view/1351382. htm.
    [209].Cervello M, Giannitrapani L, La Rosa M, Notarbartolo M, Labbozzetta M, Poma P, et al. Induction of apoptosis by the proteasome inhibitor MG132 in human HCC cells: Possible correlation with specific caspase-dependent cleavage of beta-catenin and inhibition of beta-catenin-mediated transactivation. Int J Mol Med.2004 May; 13 (5):741-8.
    [210]. Hui B, Shi YH, Ding ZB, Zhou J, Gu CY, Peng YF, et al. Proteasome inhibitor interacts synergistically with autophagy inhibitor to suppress proliferation and induce apoptosis in hepatocellular carcinoma. Cancer.2012 Apr 19.
    [211].NCBI Gene:ARF6. http://www.ncbi.nlm.nih.gov/gene/382.
    [212].Gene Cards:GNA15. http://www. genecards. org/cgi-bin/carddisp. pl?gene=GNA15&search=GNA15.
    [213]. Wei Z, Hurtt R, Ciccarelli M, Koch WJ, Doria C. Growth inhibition of human hepatocellular carcinoma cells by overexpression of G-protein-coupled receptor kinase 2..1 Cell Physiol.2011 Jun;227(6):2371-7.
    [214]. NCBI Gene:SNRPE. http://www.ncbi.nlm.nih.gov/gene/6635.
    [215].Jia D, Wei L, Guo W, Zha R, Bao M, Chen Z, et al. Genome-wide copy number analyses identified novel cancer genes in hepatocellular carcinoma. Hepatology.2011 Oct;54(4):1227-36.
    [216].NCBI Gene:MAPK14. http://www.ncbi.nlm.nih.gov/gene/1432.
    [217]. Wang YH, Xia JL, Wang WM, Yang BW, Cui JF, Wang XD, et al. [TNFalpha induced IL-8 production through p38 MAPK-NF-kB pathway in human hepatocellular carcinoma cells]. Zhonghua Gan Zang Bing Za Zhi.2012 Dec;19(12):912-6.
    [218].Zhu B, Shi S, Ma YG, Fan F, Yao ZZ. Lysophosphatidic Acid Enhances Human Hepatocellular Carcinoma Cell Migration, Invasion and Adhesion through P38 MAPK Pathway. Hepatogastroenterology.2011 May-Jun;59(115):785-9.
    [219].Thompson KJ, Lau KN, Johnson S, Martinie JB, Iannitti DA, McKillop IH, et al. Leptin inhibits hepatocellular carcinoma proliferation via p38-MAPK-dependent signalling. HPB (Oxford).2011 Apr;13(4):225-33.
    [220]. Jin CY, Park C, Kim GY, Lee SJ, Kim WJ, Choi YH. Genistein enhances TRAIL-induced apoptosis through inhibition of p38 MAPK signaling in human hepatocellular carcinoma Hep3B cells. Chem Biol Interact.2009 Jul 15;180(2):143-50.
    [221].Gao Y, Lin LP, Zhu CH, Chen Y, Hou YT, Ding J. Growth arrest induced by C75, A fatty acid synthase inhibitor, was partially modulated by p38 MAPK but not by p53 in human hepatocellular carcinoma. Cancer Biol Ther.2006 Aug;5(8):978-85.
    [222].GeneCards:KCNJ1. http://www. genecards. org/cgi-bin/carddisp. pl?gene=KCNJl&search=Kcnjl.
    [223].Cho YG, Kim CJ, Song JH, Rhie DJ, Park YK, Kim SY, et al. Genetic and expression analysis of the KCNRG gene in hepatocellular carcinomas. Exp Mol Med.2006 Jun 30;38 (3):247-55.
    [224]. NCBI Gene:SHC1. http://www.ncbi.nlm.nih.gov/gene/6464.
    [225]. NCBI Gene:TERT. http://www.ncbi.nlm.nih.gov/gene/7015.
    [226].Hu Y, Shen Y, Ji B, Wang L, Zhang Z, Zhang Y. Combinational RNAi gene therapy of hepatocellular carcinoma by targeting human EGFR and TERT. Eur J Pharm Sci.2011 Mar 18;42(4):387-91.
    [227]. Zhang W, Cai R, Luo J, Wang Y, Cui Q, Wei X, et al. The oncolytic adenovirus targeting to TERT and RB pathway induced specific and potent anti-tumor efficacy in vitro and in vivo for hepatocellular carcinoma. Cancer Biol Ther.2007 Nov;6(11):1726-32.
    [228].NCBI Gene:RAPIB. http://www.ncbi. nlm. nih. gov/gene/5908.
    [229].Davie JR, Delcuve GP. Characterization and chromatin distribution of the HI histones and high-mobility-group non-histone chromosomal proteins of trout liver and hepatocellular carcinoma. Biochem J.1991 Dec 1;280 (Pt 2):491-7.
    [230]. Bao F, Qiu J, Zhang H. Potential role of beta-elemene on histone HI in the H22 ascites hepatoma cell line. Mol Med Report.2012 Jul;6(1):185-90.
    [231].NCBI Gene:CFTR. http://www.ncbi.nlm.nih.gov/gene/1080.
    [232]. Ding S, Gong BD, Yu J, Gu J, Zhang HY, Shang ZB, et al. Methylation profile of the promoter CpG islands of 14 "drug-resistance" genes in hepatocellular carcinoma. World J Gastroenterol.2004 Dec 1;10(23):3433-40.
    [233]. NCBI Gene:HOXA9. http://www. ncbi. nlm. nih. gov/gene/3205.
    [234]. Shin SH, Kim BH, Jang JJ, Suh KS, Kang GH. Identification of novel methylation markers in hepatocellular carcinoma using a methylation array. J Korean Med Sci. 2010 Aug;25(8):1152-9.
    [235]. Feng Q, Stern JE, Hawes SE, Lu H, Jiang M, Kiviat NB. DNA methylation changes in normal liver tissues and hepatocellular carcinoma with different viral infection. Exp Mol Pathol.2010 Apr;88(2):287-92.
    [236]. NCBI Gene:GABRG2. http://www.ncbi.nlm.nih.gov/gene/2566.
    [237]. Zhang M, Gong Y, Assy N, Minuk GY. Increased GABAergic activity inhibits alpha-fetoprotein mRNA expression and the proliferative activity of the HepG2 human hepatocellular carcinoma cell line. J Hepatol.2000 Jan;32(1):85-91.
    [238].Minuk GY, Zhang M, Gong Y, Minuk L, Dienes H, Pettigrew N, et al. Decreased hepatocyte membrane potential differences and GABAA-beta3 expression in human hepatocellular carcinoma. Hepatology.2007 Mar;45(3):735-45.
    [239].百度百科:β-catenin. http://baike.baidu.com/view/4057550.htm.
    [240].NCBI Gene:CTNNB1. http://ww.ncbi.nlm.nih.gov/gene/1499.
    [241].Hong JJ, Pan FY, Qian Y, Cheng LC, Zhang HX, Xue B, et al. Overexpression of beta-catenin is responsible for the development of portal hypertension during liver cirrhosis. Anat Rec (Hoboken).2009 Jun;292(6):818-26.
    [242]. Kondo Y, Kanai Y, Sakamoto M, Genda T, Mizokami M, Ueda R, et al. Beta-catenin accumulation and mutation of exon 3 of the beta-catenin gene in hepatocellular carcinoma. Jpn J Cancer Res.1999 Dec;90(12):1301-9.
    [243].Terris B, Pineau P, Bregeaud L, Valla D, Belghiti J, Tiollais P, et al. Close correlation between beta-catenin gene alterations and nuclear accumulation of the protein in human hepatocellular carcinomas. Oncogene.1999 Nov 11; 18 (47):6583-8.
    [244]. NCBI Gene:EP300. http://www.ncbi.nlm.nih.gov/gene/2033.
    [245]. Yokomizo C, Yamaguchi K, Itoh Y, Nishimura T, Umemura A, Minami M, et al. High expression of p300 in HCC predicts shortened overall survival in association with enhanced epithelial mesenchymal transition of HCC cells. Cancer Lett.2011 Nov 28:310(2):140-7.
    [246]. Li M, Luo RZ, Chen JW, Cao Y, Lu JB, He JH, et al. High expression of transcriptional coactivator p300 correlates with aggressive features and poor prognosis of hepatocellular carcinoma. J Transl Med.2011;9:5.
    [247].NCBI Gene:CREB1. http://www.ncbi.nlm.nih.gov/gene/1385.
    [248].Liu Q, Chen J, Liu L, Zhang J, Wang D, Ma L, et al. The X protein of hepatitis B virus inhibits apoptosis in hepatoma cells through enhancing the methionine adenosyltransferase 2A gene expression and reducing S-adenosylmethionine production. J Biol Chem.2011 May 13; 286 (19):17168-80.
    [249].Limin X, Wenjie H, Dean T, Hongwu Z, Yongguo Z, Hao H, et al. Upregulated FoxMl expression induced by hepatitis B virus X protein promotes tumor metastasis and indicates poor prognosis in hepatitis B virus-related hepatocellular carcinoma. J Hepatol.2012 May 18.
    [250].NCBI Gene:TP73. http://www.ncbi.nlm.nih.gov/gene/7161.
    [251].Castillo J, Goni S, Latasa MU, Perugorria MJ, Calvo A, Muntane J, et al. Amphiregulin induces the alternative splicing of p73 into its oncogenic isoform DeltaEx2p73 in human hepatocellular tumors. Gastroenterology.2009 Nov; 137(5):1805-15 e1-4.
    [252].Aoki T, Miyamoto A, Marubashi S, Nagano H, Umeshita K, Fujiwara Y, et al. Clinical value of alterations in p73 gene, related to p53 at Ip36, in human hepatocellular carcinoma. Int J Oncol.2004 Feb; 24(2):441-6.
    [253].NCBI Gene:RUNX2. http://www.ncbi.nlm.nih.gov/gene/860.
    [254].Miyagawa K, Sakakura C, Nakashima S, Yoshikawa T, Kin S, Nakase Y, et al. Down-regulation of RUNX1, RUNX3 and CBFbeta in hepatocellular carcinomas in an early stage of hepatocarcinogenesis. Anticancer Res.2006 Sep-Oct;26(5B):3633-43.
    [255].NCBI Gene:PAR2. http://www.ncbi.nlm.nih.gov/gene/2150.
    [256]. Schaffner F, Ruf W. Tissue factor and PAR2 signaling in the tumor microenvironment. Arterioscler Thromb Vase Biol.2009 Dec;29(12):1999-2004.
    [257].Dutra-01iveira A, Monteiro RQ, Mariano-Oliveira A. Protease-activated receptor-2 (PAR2) mediates VEGF production through the ERK1/2 pathway in human glioblastoma cell lines. Biochem Biophys Res Commun.2012 May 4;421(2):221-7.
    [258].Rattenholl A, Seeliger S, Buddenkotte J, Schon M, Schon MP, Stander S, et al. Proteinase-activated receptor-2 (PAR2):a tumor suppressor in skin carcinogenesis. J Invest Dermatol.2007 Sep; 127 (9):2245-52.
    [259].NCBI Gene:ITGAV integrin, alpha V. http://www.ncbi.nlm.nih.gov/gene/3685.
    [260].百度百科:整联蛋白.http://baike. baidu. com/view/57507. htm.
    [261].Giannelli G, Bergamini C, Fransvea E, Marinosci F, Quaranta V, Antonaci S. Human hepatocellular carcinoma (HCC) cells require both alpha3betal integrin and matrix metalloproteinases activity for migration and invasion. Lab Invest.2001 Apr;81(4):613-27.
    [262].Mizuno H, Ogura M, Saito Y, Sekine W, Sano R, Gotou T, et al. Changes in adhesive and migratory characteristics of hepatocellular carcinoma (HCC) cells induced by expression of alpha3betal integrin. Biochim Biophys Acta.2008 Mar;1780(3):564-70.
    [263].Ke AW, Shi GM, Zhou J, Huang XY, Shi YH, Ding ZB, et al. CD151 amplifies signaling by integrin alpha6betal to PI3K and induces the epithelial-mesenchymal transition in HCC cells. Gastroenterology.2011 May;140(5):1629-41 e15.
    [264].百度百科:复合物I. http://baike.baidu.com/view/434569.htm.
    [265]. Fujinaga H, Tsutsumi T, Yotsuyanagi H, Moriya K, Koike K. Hepatocarcinogenesis in hepatitis C:HCV shrewdly exacerbates oxidative stress by modulating both production and scavenging of reactive oxygen species. Oncology.2012;81 Suppl 1:11-7.
    [266]. NCBI Gene:WASL. http://www.ncbi.nlm.nih.gov/gene/8976.
    [267].Chattopadhyay I, Phukan R, Singh A, Vasudevan M, Purkayastha J, Hewitt S, et al. Molecular profiling to identify molecular mechanism in esophageal cancer with familial clustering. Oncol Rep.2009 May;21(5):1135-46.
    [268]. NCBI Gene:DNM1. http://www.ncbi.nlm.nih.gov/gene/1759.
    [269]. NCBI Gene:PLD2. http://www.ncbi.nlm.nih.gov/gene/5338.
    [270].Henkels KM, Farkaly T, Mahankali M, Segal1 JE, Gomez-Cambronero J. Cell invasion of highly metastatic MTLn3 cancer cells is dependent on phospholipase D2 (PLD2) and Janus kinase 3 (JAK3). J Mol Biol.2011 May 20;408(5):850-62.
    [271].Ideker T, Krogan NJ. Differential network biology. Mol Syst Biol.2012;8:565.
    [272].the Protein Ontology, http://proconsortium.org/.
    [273].OBO-Edit. http://oboedit. org/.
    [274]. Support Vector Machine. http://en.wikipedia.org/wiki/Support vector machine.
    [275]. Liu P, Li, M. and Wang, T. Features for directional protein-protein interaction extraction. Conference of China Information Retrieval 2009.2009:552-61.
    [276]. BioCreAtIvE-PPI. http://biocreative. sourceforge. net/.
    [277]. Krallinger M, Leitner F, Rodriguez-Penagos C, Valencia A. Overview of the protein-protein interaction annotation extraction task of BioCreative II. Genome Biology.2008;9(Suppl 2):S4.
    [278]. Zhang SW, Li YJ, Xia L, Pan Q. PPLook:an automated data mining tool for protein-protein interaction. BMC Bioinformatics.2010;11:326.
    [279].Jimeno A, Jimenez-Ruiz E, Lee V, Gaudan S, Berlanga R, Rebholz-Schuhmann D. Assessment of disease named entity recognition on a corpus of annotated sentences. BMC Bioinformatics.2008;9 Suppl 3:S3.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700