用户名: 密码: 验证码:
IgA肾病肾脏淋巴管新生和异位淋巴结形成与病变程度、预后相关
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
IgA肾病(IgAN)因其肾小球系膜区IgA的沉积而命名,是全世界最常见的一类肾小球疾病。按照现有牛津分级标准,肾小球出现系膜细胞增生;节段性肾小球硬化(或粘连);毛细血管内增生和肾小管萎缩/间质纤维化与IgAN肾脏预后相关。有关慢性肾脏病中肾脏淋巴管新生和异位淋巴结形成的研究在最近几年开始受到关注,但是它们在慢性肾脏病中特别是IgAN中的确切角色还不清楚,为此我们依托同济医院肾病实验室肾穿标本库的资源设计了前瞻性的实验,来明确肾脏淋巴管新生和异位淋巴结形成与肾脏病变和预后的关系。152例肾穿之前未经激素和免疫抑制剂治疗的IgAN患者按照相关纳入和排除标准作为研究对象。34个月的随访期后,72例患者有着完整的预后资料,其中63例患者在肾穿刺后进行了正规的激素治疗。我们采用检测每一例患者肾组织内新生淋巴管、异位淋巴结以及CD68+,DC-SIGN+,CD4+,CD8+,CD20+炎症细胞,并对它们的密度进行统计。我们发现IgAN患者肾间质新生淋巴管分布于肾小球周围和病变的肾间质部位。新生淋巴管参与不同类型炎症细胞的转运。新生淋巴管的密度与血肌酐、蛋白尿以及间质炎症细胞评分、小管萎缩/间质纤维化评分、小血管内膜增厚、小血管玻璃样变程度关系密切。随访期内激素治疗“敏感组”肾间质新生淋巴管和DC-SIGN+树突状细胞密度显著低于“不敏感组”,肾间质淋巴管密度和CD68+,DC-SIGN+,CD4+,CD8+,CD20+细胞密度与随访期内血清肌酐进展密切相关。多元回归分析显示肾间质淋巴管密度高是IgAN患者血肌酐进展的独立危险因素。我们还发现IgAN肾组织异位淋巴结结构内CD20+B细胞位于中央,CD4+、CD8+T细胞分布于外周,DC-SIGN+树突状细胞和CD68+单核细胞,散在分布于异位淋巴结,D2-40阳性淋巴管分布于异位淋巴结结构的周围或中央。细胞成分分泌多种促炎症因子,T淋巴细胞处于活化状态,散在少量分泌IgG和IgM的浆细胞。肾间质异位淋巴结结构的越多的患者蛋白尿水平、血肌酐水平、有新月体、间质和小血管损伤较重的比例高于肾间质异位淋巴结结构较少的患者。随访期内肾脏异位淋巴结较多的患者血肌酐进展的比例较大。IgAN患者肾脏新生淋巴管和异位淋巴结的出现反映了肾脏局部的炎症反应的活化状态,它们可能参与IgAN患者肾脏损伤和进展。
     第一部分IgA肾病间质炎症细胞评分与病变程度、预后的关系
     目的探讨间质炎症细胞浸润评分与IgAN病变程度和预后间的关联度
     方法按照纳入和排除标准选取入组患者,纳入组IgAN患者肾病病变按牛津分级进行评分,对间质炎症细胞的浸润程度评分。比较不同炎症细胞评分的IgAN患者的临床、病理指标和随访期内血肌酐进展的比例之间的差异。对CD45, IL-1β,TNFα,IFN-γ和IL-17进行免疫组化染色。
     结果间质炎症细胞评分与IgAN患者肾小球C3、IgG沉积、蛋白尿和血肌酐水平、系膜增生程度、肾小球有新月体的比例、间质和小血管病变程度关系密切。间质炎症细胞与炎症因子在连续切片呈现共定位。在随访数据中,间质炎症细胞评分高的患者,34月后血肌酐进展的比例较高。
     结论炎症细胞浸润程度反映了整个肾脏的炎症反应水平。间质炎症细胞可能通过分泌炎症因子参与IgAN的进展。间质炎症细胞评分较高的IgAN患者预后不良的风险大。
     第二部分IgA肾病肾间质不同类型炎症细胞与病变程度、预后的关系
     目的探讨不同类型间质炎症细胞浸润与IgAN病变程度间的关联度
     方法按照纳入和排除标准选取入组患者,纳入组IgAN患者肾病病变按牛津分级进行评分。选取同一片号的连续切片分别进行CD68+,DC-SIGN+,CD4+,CD8+,CD20+免疫组化染色。统计不同片号各种类型炎症细胞的密度。对不同类型炎症细胞的密度与IgAN患者的临床、病理指标和随访期内血肌酐进展的比例之间的进行相关性分析。
     结果IgAN患者肾间质CD68+,DC-SIGN+,CD4+,CD8+,CD20+炎症细胞分布于肾小球周围和病变的肾间质部位,免疫荧光双标显示这些炎症细胞是活化的,部分炎症细胞还分泌炎症因子。CD68+,DC-SIGN+,CD4+,CD8+,CD20+炎症细胞的密度与血肌酐、蛋白尿以及间质炎症细胞评分、小管萎缩/间质纤维化评分、小血管内膜增厚、小血管玻璃样变程度关系密切。随访期内激素治疗“敏感组”肾间质DC-SIGN+细胞的密度显著低于“不敏感组”,肌酐“进展组”肾间质CD68+,DC-SIGN+,CD4+, CD8+,CD20+炎症细胞的密度显著高于“稳定组”。
     结论间质浸润的炎症细胞的密度与IgAN患者临床指标、肾脏病变程度和预后密切相关,因而反映了IgAN的肾脏病变程度,另一方面间质浸润的炎症细胞因其活化状态可能直接或间接加重IgAN的损伤,参与IgAN的进展。IgAN肾间质DC-SIGN+细胞密度与患者对激素的敏感程度相关。
     第三部分IgAN患者肾间质新生淋巴管与病变程度、预后的关系
     目的探讨IgAN患者肾组织中新生淋巴管与IgAN病变程度间的关联度
     方法按照纳入和排除标准选取入组患者,纳入组IgAN患者肾病病变按牛津分级进行评分。选取同一片号的连续切片分别进行D2-40和CD31免疫组化染色。统计不同片号间质新生淋巴管和间质微血管的密度。对新生淋巴管的密度与IgAN患者的临床、病理指标和随访期内血肌酐进展的比例之间的进行相关性分析。
     结果IgAN患者肾间质新生淋巴管分布于肾小球周围和病变的肾间质部位。新生淋巴管参与不同类型炎症细胞的转运。新生淋巴管的密度与血肌酐、蛋白尿以及间质炎症细胞评分、小管萎缩/间质纤维化评分、小血管内膜增厚、小血管玻璃样变程度关系密切。随访期内激素治疗“敏感组”肾间质新生淋巴管的密度显著低于“不敏感组”,肌酐“进展组”肾间质淋巴管密度显著高于“稳定组”。多元回归分析显示肾间质淋巴管密度高是IgAN患者血肌酐进展的独立危险因素。
     结论新生淋巴管的密度与IgAN患者临床指标、肾脏病变程度和预后密切相关,因而反映了IgAN的肾脏病变程度,另一方面作为炎症细胞的转运通道,新生淋巴管可能直接参与IgAN的肾脏损伤和肾功能进展。IgAN肾间质新生淋巴管密度与患者对激素的敏感程度相关。
     第四部分IgAN患者肾间质异位淋巴结与病变程度、预后的关系
     目的探讨IgAN患者肾组织异位淋巴结与IgAN病变程度间的关联度
     方法按照纳入和排除标准选取入组患者,纳入组IgAN患者肾病病变按牛津分级进行评分。对异位淋巴结的数量进行评分。分析异位淋巴结的密度等级与IgAN患者的临床、病理指标和随访期内血肌酐进展的比例之间的相关性。检测异位淋巴结内CD68+,DC-SIGN+,CD4+,CD8+,CD20+,CD45+,CD138+炎症细胞、淋巴管和炎症因子的表达。
     结果CD20+B细胞位于中央,CD4+、CD8+T细胞分布于外周,DC-SIGN+树突状细胞和CD68+单核细胞,散在分布于异位淋巴结,淋巴管分布于异位淋巴结结构的周围或中央。肾间质异位淋巴结结构的越多的患者蛋白尿水平、血肌酐水平、有新月体、间质和小血管损伤较重的比例高于肾间质异位淋巴结结构较少的患者。34个月随访期内异位淋巴结结构的越多的患者血清肌酐进展的比例高于肾间质异位淋巴结结构较少的患者。IgAN肾组织异位淋巴结结构内细胞成分分泌多种促炎症因子,T淋巴细胞处于活化状态,散在少量分泌IgG和IgM的浆细胞。
     结论肾脏异位淋巴结内B淋巴细胞与活化的T细胞、DC-SIGN+的树突状细胞和淋巴管相伴存在,还包含有产生抗体的浆细胞,是肾脏局部的炎症反应灶,可能参与IgAN的进展。肾脏异位淋巴结与IgAN肾脏病变程度密切相关,肾脏异位淋巴结较多的患者随访期内血肌酐进展的比例较大。
IgA Nephropathy(IgAN), which features IgA deposition in the glomerular mesangium, is the most common form of primary glomerulonephritis worldwide.Previous studies have identified histologic features such as mesangial hypercellularity,segmental glomerulosclerosis, endocapillary hypercellularity and tubular atrophy/interstitial fibrosiswere associated with renal outcome of IgAN according to the Oxford classification.Lymphangiogenesis and tertiary lymphoid organs formation were newly identified in the kidney of patients with chronic kidney disease(CKD). However, there is not much information about the exact role in the progression of IgAN.We performed this prospective study to determine the realtionship between these two" new players" and the renal lesion and prognosis of IgAN.We selected152IgAN paitents who did not receive glucocorticoid or immunosuppressant treatment before renal biopsy.72patients had integrated outcome data after34months follow-up.63patient receive regular glucocorticoids treatment were finally left in the analysis involve prognosis.The density of the density of renal newly formed lymphatic vessels(LVD) and inflammatory cells and the grade of tertiary lymphoid organs(TLO) were evaluated. We found that renal newly formed lymphatic vessels served as "transport channel" of inflammatory cells,the LVD in IgAN renal tissue was correlated with the density of CD68+, DC-SIGN+, CD4+, CD8+, CD20+cells and the interstitial and arterial lesions of kidney and also sensitivity to glucocorticoid treatment.A linear regression analysis revealed the LVD was a significant predictor of an increase of serum creatinine34months after the biopsy. CD68+, DC-SIGN+, CD4+, CD8+, CD20+,CD45RO+,CD138+cells,lymphatic vessels and inflammatory cytokines were found in renal TLO.Patients with more TLO suffered decreased renal function, heavy proteinuria, severe interstitial and arterial lesions.TLO were also associated with progression of IgAN after34months follow up.In conclusion,renal lymphangiogenesis and tertiary lymphoid organs formation reflected the status of the intrarenal inflammatory response,they might also paly an active role in renal lesion by affecting the severity of local immunity. In the future,there will be new strategy to slow the progression of IgAN depending on more detailed mechanism of lymphangiogenesis and TLO.
     Part I The grade of renal interstitial inflammatory cells were correlated with the renal lesion and prognosis of IgAN patients
     Objectives To determine whether the grade of renal inflammatory cells are correlated with the renal lesion of IgAN.
     Methods The renal lesion of IgAN was scored by Oxford Classification. The relationship between the grade of interstitial inflammatory cells and renal lesion was evaluated. Immunohistochemistrial staining for CD45, IL-1β,TNF α,IFN-γ and IL-17were performed to detect inflammatory cells and inflammatory cytokines in renal biopsy tissues from IgAN patients. Sixty-three patients with IgAN were followed for34months.
     Results The grade of inflammatory cells in renal interstitium were closely related to the decreased renal function, heavy proteinuria, severe interstitial and arterial lesions in IgAN kidneys. Patients with higher grade of inflammatory cells sufferred higher risk to progress during34months. CD45+cells colocated with inflammatory cytokines suggested inflammatory cells may take part in the progression of IgAN..
     Conclusion The grade of interstitial inflammatory cells can be used as reliable parameter to evaluate the renal lesion and prognosis of IgAN.
     Part II Different types of renal interstitial inflammatory cells were correlated with the renal lesion and prognosis of IgAN patients
     Objectives To determine the relationship between the density of different types inflammatory cells and the renal lesion of IgAN.
     Methods Immunohistochemistrial staining for CD68, DC-SIGN, CD4, CD8and CD20 were performed to detect macrophages, dendritic cells, T-helper cells, cytotoxic T cells, B cells respectively in renal biopsy tissues from152adult patients with IgAN. The relationship between inflammatory cells and renal lesion was evaluated. Sixty-three patients with IgAN were followed for34months.
     Results The density of CD68+, DC-SIGN+, CD4+, CD8+, and CD20+cells in renal interstitium were closely related to the decreased renal function, heavy proteinuria, severe interstitial and arterial lesions in IgAN kidneys.The patients in the severe group contained more CD68+, DC-SIGN+, CD4+, CD8+, and CD20+cells in renal interstitium.The patients who are not sensitive to glucocorticoid treatment had more DC-SIGN+cells in renal interstitium.
     Conclusions Interstitial infiltrated inflammatory cells reflected the status of the intrarenal inflammatory response, which probably aggravated the renal lesion, and in turn, accelerated the IgAN progression.The sensitivity to glucocorticoid treatment was correlated with density of DC-SIGN+cells
     Part Ⅲ Renal interstitial newly formed lymphatic vessels were correlated with the renal lesion and prognosis of IgAN patients
     Objectives To explore the exact role of newly formed lymphatic vessels in cohort of IgAN patients.
     Methods152patients with biopsy-proven IgAN were selected. The lymphatic vessels in the renal of examined by IHC. The relationship between the lymphatic vessels density and renal lesion was evaluated.in152IgAN patients.A Follow-up was performed for outpatients by telephone.
     Results The LVD in IgAN renal tissue was correlated with the density of CD68+, DC-SIGN+, CD4+, CD8+, CD20+cells and the lesions of kidney.A linear regression analysis revealed the density of lymph vessels was a significant predictor of an increase of serum creatinine34months after the biopsy.
     Conclusions Lymphangiogenesis reflected the status of the intrarenal inflammatory response, their density could be served as a risk factor for IgAN progression.As they served as "transport channel" of inflammatory cells,they might also paly an active role in renal lesion.
     Part IV Renal interstitial tertiary lymphoid organs were correlated with the renal lesion and prognosis of IgAN patients
     Objectives To determine whether interstitial TLO formation are correlated with the renal lesion and progression of IgAN.
     Methods The relationship between TLO and renal lesion was evaluated.in152IgAN patients.CD68,DC-SIGN,CD4,CD8,CD20,CD45,CD138,D2-40,IL-1β,TNF-α,IFN-γ and IL-17were examined in TLO.Sixty-three IgAN patients were followed for30months.
     Results CD68+, DC-SIGN+, CD4+, CD8+, CD20+,CD45+,CD138+cells,lymphatic vessels and inflammatory cytokines were found in renal TLO.Patients with more TLO suffered decreased renal function, heavy proteinuria, severe interstitial and arterial lesions.TLO were associated with the progression of IgAN after30months follow up.
     Conclusions TLO formation reflected the status of the intrarenal inflammatory response, which probably aggravated the renal lesion of IgAN. They could be served as a risk factor for IgAN progression.
引文
1.Alitalo K. The lymphatic vasculature in disease. Nat Med. 2011.17(11):p.1371-1380
    2.Schulte-Merker S, Sabine A, Petrova TV.Lymphatic vascular morphogenesis in development, physiology, and disease J Cell Biol.2011.193(4):p.607-618.
    3.Johnson LA, Clasper S, Holt AP, Lalor PF, Baban D, Jackson DG.An inflammation-induced mechanism for leukocyte transmigration across lymphatic vessel endothelium. The Journal of Experimental Medicine, 2006 203(12):p.2763-2777.
    4.Huggenberger R, Siddiqui SS, Brander D, Ullmann S, Zimmermann K, Antsiferova M, Werner S, Alitalo K, Detmar M. An important role of lymphatic vessel activation in limiting acute inflammation Blood.2011.28; 117(17):p.4667-4678
    5. Jeon BH, Jang C, Han J, Kataru RP, Piao L, Jung K, Cha HJ, Schwendener RA, Jang KY, Pasquali S, van der Ploeg AP, Mocellin S, Stretch JR, Thompson JF, Scolyer RA.Lymphatic biomarkers in primary melanomas as predictors of regional lymph node metastasis and patient outcomes.Pigment Cell Melanoma Res.2013;26(3):326-37.
    6.Bromley SK, Thomas SY, Luster AD Chemokine receptor CCR7 guides T cell exit from peripheral tissues and entry into afferent lymphatics. Nat Immunol, 2005.6:p.895-901.
    7.Zhang T, Guan G, Liu G, Sun J, Chen B, Li X, Hou X, Wang H.Disturbance of lymph circulation develops renal fibrosis in rats with or without contralateral nephrectomy. Nephrology, 2008.13(2):p.128-138.
    8.Matsui K, Nagy-Bojarsky K, Laakkonen P, Krieger S, Mechtler K, Uchida S, Geleff S, Kang DH, Johnson RJ, Kerjaschki D.Lymphatic microvessels in the rat remnant kidney model of renal fibrosis:aminopeptidase p and podoplanin are discriminatory markers for endothelial cells of blood and lymphatic vessels. J Am Soc Nephrol. 2003; 14(8):1981-9.
    9.Suzuki Y, etal.Transforming growth factor-β induces vascular endothelial growth factor-C expression leading to lymphangiogenesis in rat unilateral ureteral obstruction.Kidney Int. 2012;81(9):865-79
    10.Lee AS, Lee JE, Jung YJ, Kim DH, Kang KP, Lee S, Park SK, Lee SY, Kang MJ, Moon WS, Kim HJ, Jeong YB, Sung MJ, Kim W.Vascular endothelial growth factor-C and -D are involved in lymphangiogenesis in mouse unilateral ureteral obstruction.Kidney Int. 2013; 83(1):50-62
    11.Yazdani S,etal.Proteinuria triggers renal lymphangiogenesis prior to the development of interstitial fibrosis.PLoS One. 2012;7(11):e50209
    12.Kerjaschki D, Regele HM, Moosberger I, Nagy-Bojarski K, Watschinger B, Soleiman A, Birner P, Krieger S, Hovorka A, Silberhumer G, Laakkonen P, Petrova T, Langer B, Raab I.Lymphatic neoangiogenesis in human kidney transplants is associated with immunologically active lymphocytic infiltrates. J Am Soc Nephrol.2004;15:603-612.
    13.Sakamoto I, Ito Y, Mizuno M, Suzuki Y, Sawai A, Tanaka A, Maruyama S, Takei Y, Yuzawa Y, Matsuo S.Lymphatic vessels develop during tubulointerstitial fibrosis.Kidney Int. 2009,75(8):p.828-838
    14.Ishikawa Y, Akasaka Y, Kiguchi H, Akishima-Fukasawa Y, Hasegawa T, Ito K, Kimura-Matsumoto M, Ishiguro S, Morita H, Sato S, Soh S, Ishii T.The human renal lymphatics under normal and pathological conditions. Histopathology, 2006.49(3):p. 265-273.
    15.Page G, Lebecque S, Miossec P.Anatomic localization of immature and mature dendritic cells in an ectopic lymphoid organ:correlation with selective chemokine expression in rheumatoid synovium.J Immunol.2002,15;168(10):5333-41
    16.Marinkovic T, Garin A, Yokota Y, Fu YX, Ruddle NH, Furtado GC, Lira SA.Interaction of mature CD3+CD4+T cells with dendritic cells triggers the development of tertiary lymphoid structures in the thyroid.J Clin Invest. 2006;116(10):2622-32.
    17.Marchal-Somme J, Uzunhan Y, Marchand-Adam S, Valeyre D, Soumelis V, Crestani B, Soler P.Cutting edge:nonproliferating mature immune cells form a novel type of organized lymphoid structure in idiopathic pulmonary fibrosis.J Immunol.200615;176(10):5735-9.
    18.Thaunat, O., Field, A. C., Dai, J., Louedec, L., Patey, N., Bloch, M. F.,Mandet, C.et al., Lymphoid neogenesis in chronic rejection: evidence for a local humoral alloimmune response. Proc. Natl. Acad. Sci. USA 2005.102:14723-14728
    19.Drayton, D.L., S. Liao, R.H. Mounzer, and N.H. Ruddle. Lymphoid organ development: from ontogeny to neogenesis. Nat. Immunol.2006.7:344-353.
    20. Stranford S, Ruddle NH. Follicular dendritic cells, conduits, lymphatic vessels,and high endothelial venules in tertiary lymphoid organs:parallels with lymph node stroma Front Immunol.2012;3:350.
    21. GeurtsvanKessel CH, Willart MA, Bergen IM, van Rijt LS, Muskens F, Elewaut D, Osterhaus AD, Hendriks R, Rimmelzwaan GF, Lambrecht BN. Dendritic cells are crucial for maintenance of tertiary lymphoid structures in the lung of influenza virus-infected mice J Exp Med.2009 Oct 26;206(11):2339-49
    22.Steinmetz OM, Panzer U, Kneissler U, Harendza S, Lipp M, Helmchen U, Stahl RA.BCA-1/CXCL13 expression is associated with CXCR5-positive B-cell cluster formation in acute renal transplant rejection. Kidney Int.2005 Apr;67(4):1616-21.
    23.Florian H, M.T.L., Clemens D. C, Ulrike B,Dan D, Michael F,Matthias K, et al., The Contribution of B Cells to Renal Interstitial Inflammation. Am J Pathol, 2007. 170(2):p. 457-468.
    I.Li LS, Liu ZH: Epidemiologic data of renal diseases from a single unit in China: analysis based on 13,519 renal biopsies. Kidney Int 66:920-923,2004
    2.Lv J, Zhang H, Zhou Y, Li G, Zou W, Wang H:Natural history of immunoglobulin A nephropathy and predictive factors of prognosis:a long-term follow up of 204 cases in China. Nephrology (Carlton) 13:242-246,2008
    3.Risk Stratification of Patients With IgA Nephropathy.Am J Kidney Dis. 59(6):865-873
    4.D'Amico GNatural history of idiopathic IgA nephropathy and factors predictive of disease outcome. Semin Nephrol 24:179-96,2004
    5.Myllymaki J, Honkanen T, Syrjanen J, Helin H, Rantala I, Pasternack A, Mustonen J. Uric acid correlates with the severity of histopathological parameters in IgA nephropathy. Nephrol Dial Transplant20:89-95,2005
    6.Daniel L, Saingra Y, Giorgi R, Bouvier C, Pellissier JF, Berland Y.Tubular lesions determine prognosis of IgA nephropathy. Am J Kidney Dis35:13-20,2000
    7. Wu J, Chen X, Xie Y, Yamanaka N, Shi S, Wu D, Liu S, Cai G. Characteristics and risk factors of intrarenal arterial lesions in patients with IgA nephropathy Nephrol Dial Transplant.2005 Apr;20(4):719-27
    8.Cattran DC, Coppo R, Cook HT, Feehally J,etal.The Oxford classification of IgA nephropathy:rationale, clinicopathological correlations, and classification. Kidney Internationa176,534-545;2009
    9.Cattran DC, Coppo R, Cook HT, Feehally J,etal.The Oxford classification of IgA nephropathy:pathology definitions, correlations, and reproducibility. Kidney International 76,546-556,2009
    10.Haas M. Histologic subclassification of IgA nephropathy: a clinicopathologic study of 244 cases. Am J Kidney Dis29:829-842,1997
    11.Katafuchi R, Kiyoshi Y, Oh Y, Uesugi N, Ikeda K, Yanase T, Fujimi S.Glomerular score as a prognosticator in IgA nephropathy:its usefulness and limitation. Clin Nephro149:1-8,1998
    12. Alamartine E, Sauron C, Laurent B, Sury A, Seffert A, Mariat C.The Use of the Oxford Classification of IgA Nephropathy to Predict Renal Survival.Clin J Am Soc Nephrol 6: 2384-2388,2011.
    13. Roberts IS. Oxford classification of immunoglobulin A nephropathy: an update. Curr Opin Nephrol Hypertens.2013 Mar 20. [Epub ahead of print] PMID:23518465
    14.Kim SJ, Koo HM, Lim BJ, Oh HJ, Yoo DE, Shin DH, Lee MJ, Doh FM, Park JT, Yoo TH,Kang SW, Choi KH, Jeong HJ, Han SH.Decreased circulating C3 levels and mesangial C3 deposition predict renal outcome in patients with IgA nephropathy. PLoS One7:e40495, 2012
    15. Moriyama T, Shimizu A, Takei T, Uchida K, Honda K, Nitta K.Characteristics of immunoglobulin A nephropathy with mesangial immunoglobulin G and immunoglobulin M deposition. Nephrology (Carlton).2010 Dec;15(8):747-54.
    16.Nieuwhof C, Kruytzer M, Frederiks P, van Brenda Vriesman PJC.Chronicity index and mesangial IgG deposition are risk factors for hypertension and renal failure in early IgA nephropathy. Am. J.Kidney Dis. 1998; 31:962-70.
    17.Theilig F.Spread of glomerular to tubulointerstitial disease with a focus on proteinuria Ann Anat.2010 May 20;192(3):125-32
    1.Nelson PJ, Rees AJ, Griffin MD, Hughes J, Kurts C, Duffield J. The renal mononuclear phagocytic system. J Am Soc Nephrol. 2012,23(2):194-203.
    2.Nishida M, Hamaoka K.Macrophage Phenotype and Renal Fibrosis in Obstructive Nephropathy. Nephron Exp Nephrol, 2008.110(1):p.e31-36
    3.Anders HJ, Ryu M.Renal microenvironments and macrophage phenotypes determine progression or resolution of renal inflammation and fibrosis. Kidney Int. 2011,80(9): p.915-925
    4.Eardley KS, Kubal C, Zehnder D, Quinkler M, Lepenies J, Savage CO, Howie AJ, Kaur K, Cooper MS, Adu D, Cockwell P.The role of capillary density, macrophage infiltration and interstitial scarring in the pathogenesis of human chronic kidney disease. Kidney Int74:495-504,2008
    5. kezumi Y, Suzuki T, Karasawa T, Hasegawa H, Yamada T, Imai N, Narita I, Kawachi H, Polkinghorne KR, Nikolic-Paterson DJ, Uchiyama M. Identification of alternatively activated macrophages in new-onset paediatric and adult immunoglobulin A nephropathy: potential role in mesangial matrix expansion(2011) Histopathology 58, 198-210
    6.Kidney Dendritic Cells Become Pathogenic during Crescentic Glomerulonephritis with Proteinuria J Am Soc Nephrol 22:306-316,2011.
    7.Renal Dendritic Cells Stimulate IL-10 Production and Attenuate Nephrotoxic Nephritis.J Am Soc Nephro119:527-537,2008.
    8. Snelgrove SL, Kausman JY, Lo C, Lo C, Ooi JD, Coates PT, Hickey MJ, Holdsworth SR, Kurts C, Engel DR, Kitching AR. Renal Dendritic Cells Adopt a Pro-Inflammatory Phenotype in Obstructive Uropathy to Activate T Cells but Do Not Directly Contribute to Fibrosis. Am J Pathol. 2012 Jan;180(1):91-103
    9. Pathak SK, Skold AE, Mohanram V, Persson C, Johansson U, Spetz AL.Activated apoptotic cells induce dendritic cell maturation via engagement of Toll-like receptor 4 (TLR4), dendritic cell-specific intercellular adhesion molecule 3 (ICAM-3)-grabbing nonintegrin (DC-SIGN), and β2 integrins. J Biol Chem. 2012 Apr 20;287(17):13731-42
    10. Geijtenbeek TB, Torensma R, van Vliet SJ, van Duijnhoven GC, Adema GJ, van Kooyk Y, Figdor CG. Identification of DC-SIGN, a Novel Dendritic Cell-Specific ICAM-3 Receptor that Supports Primary Immune Responses.Cell.2000 Mar 3;100(5):575-85.
    11. Woltman AM, de Fijter JW, Zuidwijk K, Vlug AG, Bajema IM, van der Kooij SW, van Ham V, van Kooten C. Quantification of dendritic cell subsets in human renal tissue under normal and pathological conditions.Kidney Int. 2007 May;71(10):1001-8
    12.Segerer S, Heller F, Lindenmeyer MT, Schmid H, Cohen CD, Draganovici D, Mandelbaum J, Nelson PJ, Grone HJ, Grone EF, Figel AM, Nossner E, Schlondorff D.Compartment specific expression of dendritic cell markers in human glomerulonephritis. Kidney Int74:37-46,2008
    13. Wilde B, van Paassen P, Damoiseaux J, Heerings-Rewinkel P, van Rie H, Witzke O, Tervaert JW. Dendritic cells in renal biopsies of patients with ANCA-associated vasculitis Nephrol Dial Transplant. 2009 Jul;24(7):2151-6.
    14. Liu L, Kou P, Zeng Q, Pei G, Li Y, Liang H, Xu G, Chen S. CD4+ T Lymphocytes, Especially Th2 Cells, Contribute to the Progress of Renal Fibrosis Am J Nephrol 2012; 36: 386-396
    15.Kidney-infiltrating CD4+ T-cell clones promote nephritis in lupus-prone mice Kidney International (2012) 82, 969-979;
    16.Van Es LA, de Heer E, Vleming LJ, van der Wal A, Mallat M, Bajema I, Bruijn JA, de Fijter JW.GMP-17-positive T-lymphocytes in renal tubules predict progression in early stages of IgAnephropathy.Kidney Int. 2008 Jun;73(12):1426-33.
    17.Myllymaki JM, Honkanen TT, Syrjanen JT, Helin HJ, Rantala IS, Pasternack AI, Mustonen JT. Severity of tubulointerstitial inflammation and prognosis in immunoglobulin A nephropathy. Kidney Int.71:343-348,2007
    18.Heller F, Lindenmeyer MT, Cohen CD, Brandt U, Draganovici D, Fischereder M, Kretzler M, Anders HJ, Sitter T, Mosberger I, Kerjaschki D, Regele H, Schlondorff D, Segerer S.The contribution of B cells to renal interstitial inflammation. Am J Pathol.170: 457-468,2007
    19.Heymann F, Meyer-Schwesinger C, Hamilton-Williams EE, Hammerich L, Panzer U, Kaden S, Quaggin SE, Floege J, Grone HJ, Kurts C.Kidney dendritic cell activation is required for progression of renal disease in a mouse model of glomerular injury. J Clin Invest119:1286-1297,2009
    1.Zhang T, Guan G, Liu G, Sun J, Chen B, Li X, Hou X, Wang H.Disturbance of lymph circulation develops renal fibrosis in rats with or without contralateral nephrectomy. Nephrology, 2008.13(2):p.128-138.
    2.Matsui K, Nagy-Bojarsky K, Laakkonen P, Krieger S, Mechtler K, Uchida S, Geleff S, Kang DH, Johnson RJ, Kerjaschki D.Lymphatic microvessels in the rat remnant kidney model of renal fibrosis:aminopeptidase p and podoplanin are discriminatory markers for endothelial cells of blood and lymphatic vessels.J Am Soc Nephrol.2003; 14(8):1981-9.
    3.Suzuki Y, etal.Transforming growth factor-β induces vascular endothelial growth factor-C expression leading to lymphangiogenesis in rat unilateral ureteral obstruction. Kidney Int. 2012;81(9):865-79
    4.Lee AS, Lee JE, Jung YJ, Kim DH, Kang KP, Lee S, Park SK, Lee SY, Kang MJ, Moon WS, Kim HJ, Jeong YB, Sung MJ, Kim W. Vascular endothelial growth factor-C and -D are involved in lymphangiogenesis in mouse unilateral ureteral obstruction.Kidney Int. 2013;83(1):50-62
    5.Yazdani S,etal.Proteinuria triggers renal lymphangiogenesis prior to the development of interstitial fibrosis.PLoS One. 2012;7(11):e50209
    6.Kerjaschki D, Regele HM, Moosberger I, Nagy-Bojarski K, Watschinger B, Soleiman A, Birner P, Krieger S, Hovorka A, Silberhumer G, Laakkonen P, Petrova T, Langer B, Raab I.Lymphatic neoangiogenesis in human kidney transplants is associated with immunologically active lymphocytic infiltrates. J Am Soc Nephrol.2004; 15:603-612.
    7.Sakamoto I, Ito Y, Mizuno M, Suzuki Y, Sawai A, Tanaka A, Maruyama S, Takei Y, Yuzawa Y, Matsuo S.Lymphatic vessels develop during tubulointerstitial fibrosis.Kidney Int. 2009,75(8):p.828-838
    8. Ishikawa Y, Akasaka Y, Kiguchi H, Akishima-Fukasawa Y, Hasegawa T, Ito K, Kimura-Matsumoto M, Ishiguro S, Morita H, Sato S, Soh S, Ishii T.The human renal lymphatics under normal and pathological conditions. Histopathology,2006,49(3):p. 265-273.
    9.Lee JY, Park C, Cho YP, Lee E, Kim H, Kim P, Yun SH, YoonYS.Podoplanin-expressing cells derived from bone marrow play a crucial role in postnatal lymphatic neovascularization. Circulation.2010,122(14):p1413-1425
    10..Kerjaschki D, Huttary N, Raab I et al. Lymphatic endothelial progenitor cells contribute to de novo lymphangiogenesis in human renal transplants. Nat Med 2006;12: 230-234.
    11.Kataru RP, Jung K, Jang C, Yang H, Schwendener RA, Baik JE, Han SH, Alitalo K, Koh GY.Critical role of CDllb+macrophages and VEGF in inflammatory lymphangiogenesis, antigen clearance, and inflammation resolution.Blood,2009.113(22): p.5650-5659.
    12.Kim KS, Alitalo K, Koh GY.Profound but Dysfunctional Lymphangiogenesis via Vascular Endothelial Growth Factor LIgAnds from CDllb+ Macrophages in Advanced Ovarian Cancer. Cancer Res, 2008.68(4):p.1100-1109
    13.Angeli V, Randolph GJ.Inflammation, lymphatic function, and dendritic cell migration. Lymphat Res Biol, 2006.4(4):p.217-228.
    14.Kriz W, Hartmann I, Hosser H, Hahnel B, Kranzlin B, Provoost A, Gretz N.Tracer studies in the rat demonstrate misdirected filtration and peritubular filtrate spreading in nephrons with segmental glomerulosclerosis. J Am Soc Nephrol 2001;12:496-506.
    15.Schulte-Merker S, Sabine A, Petrova TV.Lymphatic vascular morphogenesis in development, physiology, and disease J Cell Biol.2011.193(4):p.607-618.
    16.Sugaya M, Kuwano Y, Suga H, Miyagaki T, Ohmatsu H, Kadono T, Okochi H, Blauvelt A, Tamaki K, Sato S.Lymphatic Dysfunction Impairs Antigen-Specific Immunization, but Augments Tissue Swelling Following Contact with Allergens. J Invest Dermatol.2012,
    17.Zhou Q, Guo R, Wood R, Boyce BF, Liang Q, Wang YJ, Schwarz EM, Xing L.Vascular endothelial growth factor C attenuates joint damage in chronic inflammatory arthritis by accelerating local lymphatic drainage in mice. Arthritis Rheum.2011,63(8):2318-2328
    18.Tammela T, Saaristo A, Holopainen T, Lyytikka J. Kotronen A, Pitkonen M, Abo-Ramadan U, Yla-Herttuala S, Petrova TV, Alitalo K.Therapeutic differentiation and maturation of lymphatic vessels after lymph node dissection and transplantation. Nat Med, 2007.13(12):p.1458-1466.
    19.Nykanen AI, Sandelin H, Krebs R, Keranen MA, Tuuminen R, Karpanen T, Wu Y, Pytowski B, Koskinen PK, Yla-Herttuala S, Alitalo K, Lemstrom KB.Targeting lymphatic vessel activation and CCL21 production by vascular endothelial growth factor receptor-3 inhibition has novel immunomodulatory and antiarteriosclerotic effects in cardiac allografts. Circulation. 2010,121(12):p.1413-22
    20.Huggenberger R, Ullmann S, Proulx ST, Pytowski B, Alitalo K, Detmar M.Stimulation of lymphangiogenesis via VEGFR-3 inhibits chronic skin inflammation. J Exp Med. 2010;207(10):2255-69
    21.Nakamura K, Radhakrishnan K, Wong YM, Rockson SG. Anti-Inflammatory Pharmacotherapy with Ketoprofen Ameliorates Experimenta Lymphatic Vascular Insufficiency in Mice. PLoS One.2009;4(12):e8380.
    1.Page G, Lebecque S, Miossec P.Anatomic localization of immature and mature dendritic cells in an ectopic lymphoid organ: correlation with selective chemokine expression in rheumatoid synovium.J Immunol. 2002,15;168(10):5333-41
    2.Marinkovic T, Garin A, Yokota Y, Fu YX, Ruddle NH, Furtado GC, Lira SA.Interaction of mature CD3+CD4+ T cells with dendritic cells triggers the development of tertiary lymphoid structures in the thyroid.J Clin Invest. 2006;116(10):2622-32.
    3.Marchal-Somme J, Uzunhan Y, Marchand-Adam S, Valeyre D, Soumelis V, Crestani B, Soler P.Cutting edge:nonproliferating mature immune cells form a novel type of organized lymphoid structure in idiopathic pulmonary fibrosis.J Immunol.2006 15;176(10):5735-9.
    4.Thaunat, O., Field, A. C., Dai, J., Louedec, L., Patey, N., Bloch, M. F.,Mandet, C.et al., Lymphoid neogenesis in chronic rejection:evidence for a local humoral alloimmune response. Proc. Natl. Acad. Sci. USA 2005.102:14723-14728
    5.Drayton, D.L., S. Liao, R.H. Mounzer, and N.H. Ruddle. Lymphoid organ development: from ontogeny to neogenesis.Nat. Immunol.2006.7:344-353.
    6. Stranford S, Ruddle NH. Follicular dendritic cells, conduits, lymphatic vessels,and high endothelial venules in tertiary lymphoid organs: parallels with lymph node stroma Front Immunol.2012;3:350.
    7. GeurtsvanKessel CH, Willart MA, Bergen IM, van Rijt LS, Muskens F, Elewaut D, Osterhaus AD, Hendriks R, Rimmelzwaan GF, Lambrecht BN.Dendritic cells are crucial for maintenance of tertiary lymphoid structures in the lung of influenza virus-infected mice J Exp Med. 2009 Oct 26;206(11):2339-49
    8.Steinmetz OM, Panzer U, Kneissler U, Harendza S, Lipp M, Helmchen U, Stahl RA.BCA-1/CXCL13 expression is associated with CXCR5-positive B-cell cluster formation in acute renal transplant rejection. Kidney Int. 2005 Apr;67(4):1616-21.
    9.Florian H, M.T.L., Clemens D. C, Ulrike B,Dan D, Michael F,Matthias K, et al., The Contribution of B Cells to Renal Interstitial Inflammation. Am J Pathol, 2007.170(2):p. 457-468.
    lO.Mandache E, Penescu M.Renal subcapsular tertiary lymphoid aggregates in chronic kidney diseases. Rom J Morphol Embryol. 2011;52(4):1219-25.
    11.Timmer TC, Baltus B, Vondenhoff M, Huizinga TW, Tak PP, Verweij CL, Mebius RE, van der Pouw Kraan TC.Inflammation and TLO in rheumatoid arthritis synovial tissues dissected by genomics technology:identification of the interleukin-7 signaling pathway in tissues with lymphoid neogenesis.Arthritis Rheum.2007 Aug;56(8):2492-502.
    12.Kelly FM, Reddy RN, Roberts BR, Gangappa S, Williams IR, Gooch JL.TGF-beta upregulation drives tertiary lymphoid organ formation and kidney dysfunction in calcineurin A-alpha heterozygous mice.Am J Physiol Renal Physiol. 2009 Mar;296(3): F512-20.
    13.Rangel-Moreno J, Carragher DM, de la Luz Garcia-Hernandez M, Hwang JY, Kusser K, Hartson L, Kolls JK, Khader SA, Randall TD.The development of inducible bronchus-associated lymphoid tissue depends on IL-17. Nat Immunol. 2011 Jun 12;12 (7): 639-46
    14.Carlsen, H. S., Baekkevold, E. S.,Morton, H. C., Haraldsen, G, and Brandtzaeg, P. Monocyte-like and mature macrophages produce CXCL13 (B cell-attracting chemokine 1) in inflammatory lesions with lymphoid neogenesis. Blood. 2004 Nov 15;104(10):3021-7.
    15. Allen CD, Cyster JGFollicular dendritic cell networks of primary follicles and germinal centers:phenotype and function.Semin Immunol. 2008 Feb;20(1):14-25.
    16. Al-Alwan M, Du Q, Hou S, Nashed B, Fan Y, Yang X, Marshall AJ.Follicular Dendritic Cell Secreted Protein(FDC-SP) Regulates Germinal Center and Antibody Responses J Immunol.2007 Jun 15;178(12):7859-67.
    17. Timmer TC, Baltus B, Vondenhoff M, Huizinga TW, Tak PP, Verweij CL, Mebius RE, van der Pouw Kraan TC. Inflammation and Ectopic Lymphoid Structures in Rheumatoid Arthritis Synovial Tissues Dissected by Genomics Technology. Arthritis Rheum. 2007 Aug;56(8):2492-502.
    18.Louedec L, Dai J, Joly E, Morelon E, Soulillou JP, Michel JB, Nicoletti A, Immune Responses Elicited in Tertiary Lymphoid Tissues Display Distinctive Features. PloS one, 2010.5(6):p.1123-1125
    19.Nasr, I. W., Reel, M., Oberbarnscheidt, M. H., Mounzer, R. H., Baddoura F. K., Ruddle, N. H. and Lakkis, F. G, Tertiary lymphoid tissues generate effector and memory T cells that lead to allograft rejection. Am J. Transplant. 2007.7:1071-1079.
    20. Nacionales DC, Weinstein JS, Yan XJ, Albesiano E, Lee PY, Kelly-Scumpia KM, Lyons R, Satoh M, Chiorazzi N, Reeves WH.B Cell Proliferation, Somatic Hypermutation, Class Switch Recombination, and Autoantibody Production in Ectopic Lymphoid Tissue in Murine Lupus J Immunol.2009 Apr 1;182(7):4226-36.
    21. Humby F, Bombardieri M, Manzo A, Kelly S, Blades MC, Kirkham B, Spencer J, Pitzalis C. Ectopic Lymphoid Structures Support Ongoing Production of Class-Switched Autoantibodies in Rheumatoid Synovium.PLoS Med. 2009 Jan 13;6(1):el
    22.Thaunat O, Patey N, Gautreau C, Lechaton S, Fremeaux-Bacchi V, et al. B cell survival in intragraft tertiary lymphoid organs after rituximab therapy. Transplantation.2008 Jun 15;85(11):1648-53.
    23.Steinmetz OM, Stahl RA, Panzer U.Formation of lymphoid-like tissue in the kidney--is there a role for chemokines? Nephrol Dial Transplant. 2007 Feb;22(2):350-2.
    24. Pezzolato M, Maina E, Lonardi S, Bozzetta E, Grassi F, Scanziani E, Radaelli E.Development of tertiary lymphoid structures in the kidneys of pigs with chronic leptospiral nephritis. Vet Immunol Immunopathol. 2012 Jan 15; 145(1-2):546-50.
    1.Steinman RM, Cohn ZA:Identification of a novel cell type in peripheral lymphoid organs of mice. Ⅰ. Morphology, quantitation, tissue distribution. J Exp Med 1973;137:1142-1162.
    2.Steinman RM, Lustig DS, Cohn ZA:Identification of a novel celltypein peripheral lymphoid organs of mice. Ⅲ. Functional proper-ties in vivo. J Exp Med 1974; 139:1431 1445.
    3.Steinman RM, Cohn ZA:Identification of a novel cell type in peripheral lymphoid or-gans of mice. Ⅱ. Functional properties in vitro. J Exp Med 1974; 139:380-397.
    4.Banchereau J, Palucka AK: Dendritic cells as therapeutic vaccines against cancer. Nat Rev Immunol 2005; 5:296-306.
    5.Banchereau J, Steinman RM: Dendritic cells and the control of immunity. Nature 1998;392:245-252.
    6.Mahnke K, Schmitt E, Bonifaz L, Enk AH, Jonuleit H:Immature, but not inactive:the tolerogenic function of immature dendritic cells. Immunol Cell Biol 2002;80:477-483.
    7.Steinman RM, Hawiger D, Nussenzweig MC:Tolerogenic dendritic cells. Annu Rev Immunol 2003; 21:685-711.
    8.Mellman I, Clausen BE:Immunology. Beta-catenin balances immunity. Science 2010;329: 767-769.
    9.Noessner E, Lindenmeyer M, Nelson PJ, Segerer S:Dendritic cells in human renalinflammation. Nephron Exp Nephrol 2011;119:e91-e98.
    10.Geissmann F, Gordon S, Hume DA, Mowat AM, Randolph GJ:Unravelling mononuclear phagocyte heterogeneity. Nat Rev Immu-nol 2010; 10:453-460.
    11.Steinman RM, Idoyaga J: Features of the dendritic cell lineage. Immunol Rev 2010; 234:5-17.
    12.Naik SH:Demystifying the development of dendritic cell subtypes, a little. Immunol Cell Biol 2008;86:439-452.
    13.Auffray C, Sieweke MH, Geissmann F:Blood monocytes:development, heterogeneity, and relationship with dendritic cells. Annu Rev Immunol 2009;27:669-692.
    14.Heath WR, Carbone FR: Dendritic cell sub-sets in primary and secondary T cell responses at body surfaces. Nat Immunol 2009; 10:1237-1244.
    15.Ferenbach D, Hughes J: Macrophages and dendritic cells:what is the difference? Kid-ney Int 2008;74:5-7.
    16.Van Rijt LS, Jung S, Kleinjan A, Vos N, Wil-lart M, Duez C, Hoogsteden HC, Lambrecht BN: In vivo depletion of lung CD11c+ dendritic cells during allergen challenge abrogates the characteristic features of asthma. J Exp Med 2005;201:981-991.
    17.Perussia B, Fanning V, Trinchieri G:A leukocyte subset bearing HLA-DR antigens is responsible for in vitro alpha interferon production in response to viruses. Nat Immun Cell Growth Regul 1985;4:120-137.
    18.Fitzgerald-Bocarsly P, Feldman M, Men-delsohn M, Curl S, Lopez C:Human mono-nuclear cells which produce interferon-alpha during NK(HSV-FS)assays are HLA- DR positive cells distinct from cytolytic natural killer effectors. J Leukoc Biol 1988; 43: 323-334.
    19.Siegal FP, Kadowaki N, Shodell M, Fitzgerald-Bocarsly PA, Shah K, Ho S, A ntonen ko S, Liu YJ:The nature of the principal type 1 interferon-producing cells in human blood. Science 1999;284:1835-1837.
    20.Cella M, Jarrossay D, Facchetti F, Alebardi O, Nakajima H, Lanzavecchia A, Colonna M: Plasmacytoid monocytes migrate to in-flamed lymph nodes and produce large amounts of type I interferon. Nat Med 1999; 5:919-923.
    21.O'Keeffe M, Hochrein H, Vremec D, Scott B, Hertzog P, Tatarczuch L, Shortman K: Den-dritic cell precursor populations of mouse blood: identification of the murine homologues of human blood plasmacytoid pre-DC2 and CD11c+DC1 precursors. Blood 2003;101:1453-1459.
    22.Blasius AL, Giurisato E, Cella M, Schreiber RD, Shaw AS, Colonna M:Bone marrow stromal cell antigen 2 is a specific marker of type I IFN-producing cells in the naive mouse, but a promiscuous cell surface anti-gen following IFN stimulation. J Immunol 2006; 177:3260-3265.
    23.Bedoui S, Whitney PG, Waithman J, Eidsmo L, Wakim L, Caminschi I, Allan RS, Wojta-siak M, Shortman K, Carbone FR, Brooks AG, Heath WR: Cross-presentation of viral and selfantigens by skin-derived CD103+dendritic cells. Nat Immunol 2009; 10:488-495.
    24.del Rio ML, Bernhardt G, Rodriguez-Barbo-sa JI, Forster R:Development and functional specialization of CD103+ dendritic cells. Immunol Rev 2010;234:268-281.
    25.Allen CD, Cyster JG: Follicular dendritic cell networks of primary follicles and germinal centers:phenotype and function. Semin Im-munol 2008;20:14-25.
    26.Helft J, Ginhoux F, Bogunovic M, Merad M:Origin and functional heterogeneity of non-lymphoid tissue dendritic cells in mice. Im-munol Rev 2010;23455-75.
    27.Soos TJ, Sims TN, Barisoni L, Lin K, Littman DR, Dustin ML, Nelson PJ:CX3CR1+ interstitial dendritic cells form a contiguous net-work throughout the entire kidney. Kidney Int 2006;70:591-596.
    28.Kim Z, Nelson PJ:Interfacing kidney stroma with dendritic cells. J Am Soc Nephrol 2009;20:685-686.
    29.Nelson PJ:Renal ischemia-reperfusion injury:renal dendritic cells loudly sound the alarm. Kidney Int 2007;71604-605.
    30.Varol C, Landsman L, Fogg DK, Greenshtein L, Gildor B, Margalit R, Kalchenko V, Geiss-mann F, Jung S:Monocytes give rise to mucosal, butnot splenic, conventional dendritic cells. J Exp Med 2007;204:171-180.
    31.Edelson BT, Kc W, Juang R, Kohyama M, Benoit LA, Klekotka PA, Moon C, Albring JC, Ise W, Michael DG, Bhattacharya D, Stappenbeck TS, Holtzman MJ, Sung SS, Murphy TL, Hildner K, Murphy KM:Peripheral CD103+ dendritic cells form a unified subset developmentally related to CD8alpha+ conventional dendritic cells. J Exp Med 2010;207: 823-836.
    32.Kaissling B, Le Hir M:Characterization and distribution of interstitial cell types in the renal cortex of rats. Kidney Int 1994; 45:709-720.
    33.Austyn JM, Hankins DF, Larsen CP, Morris PJ, Rao AS, Roake JA: Isolation and characterization of dendritic cells from mouse heart and kidney. J Immunol 1994; 152:2401-2410.
    34.Kruger T, Benke D, Eitner F, Lang A, Wirtz M, Hamilton-Williams EE, Engel D, Giese B, Muller-Newen G, Floege J, Kurts C:Identification and functional characterization of dendritic cells in the healthy murine kidney and in experimental glomerulonephritis. J Am Soc Nephrol 2004; 15:613-621.
    35.Rogers NM, Matthews TJ, Kausman JY, Kitching AR, Coates PT: Review article: kidney dendritic cells:their role in homeostasis, inflammation and transplantation. Nephrology (Carlton) 2009;14:625-635.
    36.Matsumoto K, Fukuda N, Abe M, Fujita T: Dendritic cells and macrophages in kidney disease. Clin Exp Nephrol 2010; 14:1-11.
    37.Hochheiser K, Tittel A, Kurts C:Kidney dendritic cells in acute and chronic renal disease. Int J Exp Pathol 2011;92:193-201.
    38.Sung SS, Bolton WK: T cells and dendritic cells in glomerular disease: the new glomerulotubular feedback loop. Kidney Int 2010;77:393-399.
    39.Scholz J, Lukacs-Kornek V, Engel DR, Specht S, Kiss E, Eitner F, Floege J, Groene HJ, Kurts C:Renal dendritic cells stimulate IL-10 production and attenuate nephrotoxic nephritis. J Am Soc Nephrol 2008;19:527-537.
    40.Kitching AR, Katerelos M, Mudge SJ, Tip-ping PG, Power DA, Holdsworth SR: Inter-leukin-10 inhibits experimental mesangial proliferative glomerulonephritis. Clin Exp Immunol 2002;128:36-43.
    41.Hochheiser K, Engel DR, Hammerich L, Heymann F, Knolle PA, Panzer U, Kurts C: Kidney dendritic cells become pathogenic during crescentic glomerulonephritis with proteinuria. J Am Soc Nephrol 2011;22:306-316.
    42.Heymann F, Meyer-Schwesinger C, Hamil-ton-Williams EE, Hammerich L, Panzer U, Kaden S, Quaggin SE, Floege J, Grone HJ, Kurts C:Kidney dendritic cell activation is required for progression of renal disease in a mouse model of glomerular injury. J Clin In-vest 2009; 119:1286-1297.
    43.Bagavant H, Fu SM: Pathogenesis of kidney disease in systemic lupus erythematosus. Curr Opin Rheumatol 2009;21:489-494.
    44.Davidson A, A ranow C:Lupus nephritis:les-sons from murine models. Nat Rev Rheuma-tol 2010;6:13-20.
    45.Tucci M, Ciavarella S, Strippoli S, Dammacco F, Silvestris F:Oversecretion of cytokines and chemokines in lupus nephritis is regulated by intraparenchymal dendritic cells:a review. Ann N Y Acad Sci 2009; 1173:449-457.
    46.Iwata Y, Furuichi K, Sakai N, Yamauchi H, Shinozaki Y, Zhou H, Kurokawa Y, Toyama T, Kitajima S, Okumura T, Yamada S, Maruyama I, Matsushima K, Kaneko S, Wada T: Dendritic cells contribute to auto-immune kidney injury in MRL-Faslpr mice. J Rheumatol 2009;36:306-314.
    47.Castellano G, Trouw LA, Fiore N, Daha MR, Schena FP, van Kooten C:Infiltrating lendritic cells contribute to local synthesis of Clq in murine and human lupus nephritis. Mol Immunol 2010;47:2129-2137.
    8.Dong X, Swaminathan S, Bachman LA, Croatt AJ, Nath KA, Griffin MD:Resident endritic cells are the predominant TNF-secreting cell in early renal ischemia-reperfusion injury. Kidney Int 2007;71:619-628.
    49.Lech M, Avila-Ferrufino A, Allam R, Segerer S, Khandoga A, Krombach F, Garlanda C, Mantovani A, Anders HJ:Resident dendritic cells prevent postischemic acute renal failure by help of single Ig IL-1 receptor-related protein. J Immunol 2009; 183:4109-4118.
    50.Kim MG, Boo CS, Ko YS, Lee HY, Cho WY, Kim HK, Jo SK:Depletion of kidney CDllc+ F4/80+ cells impairs the recovery process in ischaemia/reperfusion-induced acute kidney injury. Nephrol Dial Transplant 2010;25:2908-2921.
    51.Tadagavadi RK, Reeves WB:Renal dendritic cells ameliorate nephrotoxic acute kidney in-jury. J Am Soc Nephrol 2010;21:53-63.
    52.Tadagavadi RK, Reeves WB:Endogenous IL-10 attenuates cisplatin nephrotoxicity:role of dendritic cells. J Immunol 2010; 185:4904-4911.
    53.Isaksson M, Ardesjo B, Ronnblom L, Kampe O, Lassmann H, Eloranta M L, Lobell A: Plasmacytoid DC promote priming of autoimmune Th17 cells and EAE. Eur J Immunol 2009;39:2925-2935.
    54.Banchereau J, Palucka AK:Dendritic cells as therapeutic vaccines against cancer. Nat Rev Immunol 2005;5:296-306.
    55.Banchereau J, Steinman RM:Dendritic cells and the control of immunity. Nature 1998; 392:245-252.
    56.Mahnke K, Schmitt E, Bonifaz L, Enk AH, Jonuleit H:Immature, but not inactive:the tolerogenic function of immature dendritic cells. Immunol Cell Biol 2002;80:477-483.
    57.Steinman RM, Hawiger D, Nussenzweig MC:Tolerogenic dendritic cells. Annu Rev Immunol 2003;21:685-711.
    58.Lindenmeyer M, Noessner E, Nelson PJ, Segerer S:Dendritic cells in experimental renal inflammation. Nephron Exp Nephrol 2011;119:e83-e90.
    59.Varol C, Landsman L, Fogg DK, Greenshtein L, Gildor B, Margalit R, Kalchenko V, Geiss-mann F, Jung S:Monocytes give rise to mucosal, but not splenic, conventional dendritic cells. J Exp Med 2007;204:171-180.
    60.Geissmann F, Gordon S, Hume DA, Mowat AM, Randolph GJ:Unravelling mononuclear phagocyte heterogeneity. Nat Rev Immunol 2010; 10:453-460.
    61.Randolph GJ, Inaba K, Robbiani DF, Stein-man RM, Muller WA: Differentiation of phagocytic monocytes into lymph node dendritic cells in vivo. Immunity 1999; 11:753 761.
    62.Robinson SP, Patterson S, English N, Davies D, Knight SC, Reid CD: Human peripheral blood contains two distinct lineages of dendritic cells. Eur J Immunol 1999;29:2769-2778.
    63.Ziegler-Heitbrock L, Ancuta P, Crowe S, Dalod M, Grau V, Hart DN, Leenen PJ, Liu YJ, MacPherson G, Randolph GJ, Scherbe-rich J, Schmitz J, Shortman K, Sozzani S, Strobl H, Zembala M, Austyn JM, Lutz MB:Nomenclature of monocytes and dendritic cells in blood. Blood 2010; 116:e74-e80.
    64.Dzionek A, Fuchs A, Schmidt P, Cremer S, Zysk M, Miltenyi S, Buck DW, Schmitz J: BDCA-2, BDCA-3, and BDCA-4: three markers for distinct subsets of dendritic cells in human peripheral blood. J Immunol 2000; 165:6037-6046.
    65.Jongbloed SL, Kassianos AJ, McDonald KJ, Clark GJ, Ju X, Angel CE, Chen CJ, Dunbar PR, Wadley RB, Jeet V, Vulink AJ, Hart DN, Radford KJ:Human CD141+ (BDCA-3)+dendritic cells (DCs) represent a unique myeloid DC subset that cross-presents necrotic cell antigens. J Exp Med 2010; 207:1247-1260.
    66.Robbins SH, Walzer T, Dembele D, Thibault C, Defays A, Bessou G, Xu H, Vivier E, Sel-lars M, Pierre P, Sharp FR, Chan S, Kastner P, Dalod M:Novel insights into the relation-ships between dendritic cell subsets in human and mouse revealed by genome-wide expression profiling. Genome Biol 2008;9:R17.
    67.Caminschi I, Proietto AI, Ahmet F, Kitsoulis S, Shin Teh J, Lo JC, Rizzitelli A, Wu L, Vre-mec D, van Dommelen SL, Campbell IK, Maraskovsky E, Braley H, Davey GM, Mot-tram P, van de Velde N, Jensen K, Lew AM, Wright MD, Heath WR, Shortman K, La-houd MH:The dendritic cell subtype-restricted C-type lectin CLEC9A is a target for vaccine enhancement. Blood 2008; 112:3264-3273.
    68.Crozat K, Guiton R, Contreras V, Feuillet V, Dutertre CA, Ventre E, Vu Manh TP, Ba-ranek T, Storset AK, Marvel J, Boudinot P, Hosmalin A, Schwartz-Cornil I, Dalod M: The XC chemokine receptor 1 is a conserved selective marker of mammalian cells homologous to mouse CD8alpha+dendritic cells. J Exp Med 2010;207:1283-1292.
    69.Poulin LF, Salio M, Griessinger E, Anjos-Afonso F, Craciun L, Chen JL, Keller AM, Jof-fre O, Zelenay S, Nye E, Le Moine A, Faure F, Donckier V, Sancho D, Cerundolo V, Bonnet D, Reis e Sousa C:Characterization of human DNGR-1+BDCA3+leukocytes as putative equivalents of mouse CD8alpha+dendritic cells. J Exp Med 2010;207:1261-1271.
    70.Contreras V, Urien C, Guiton R, Alexandre Y, Vu Manh TP, Andrieu T, Crozat K, Jou-neau L, Ber t ho N, Epardaud M, Hope J, Savina A, Amigorena S, Bonneau M, Dalod M, Schwartz-Cornil I:Existence of CD8alphalike dendritic cells with a conserved functional specialization and a common molecular signature in distant mammalian species. J Immunol 2010;185:3313-3325.
    71.Allen CD, Cyster JG: Follicular dendritic cell networks of primary follicles and germinal centers:Phenotype and function. Semin Immunol 2008;20:14-25.
    72.Helft J, Ginhoux F, Bogunovic M, Merad M: Origin and functional heterogeneity of non-lymphoid tissue dendritic cells in mice. Immunol Rev 2010;234:55-75.
    73.Bedoui S, Whitney PG, Waithman J, Eidsmo L, Wakim L, Caminschi I, Allan RS, Wojta-siak M, Shortman K, Carbone FR, Brooks AG, Heath WR: Crosspresentation of viral and self antigens by skin-derived CD103+ dendritic cells. Nat Immunol 2009;10:488-495.
    74.Woltman AM, de Fijter JW, Zuidwijk K, Vlug AG, Bajema IM, van der Kooij SW, van Ham V, van Kooten C:Quantification of dendritic cell subsets in human renal tissue under normal and pathological conditions. Kidney Int 2007;71:1001-1008.
    75.Segerer S, Heller F, Lindenmeyer MT, Schmid H, Cohen CD, Draganovici D, Man-delbaum J, Nelson PJ, Grone HJ, Grone EF, Figel AM, Nossner E, Schlondorff D: Compartment specific expression of dendritic cell markers in human glomerulonephritis. Kidney Int 2008;74:37-46.
    76.Castellano G, Trouw LA, Fiore N, Daha MR, Schena FP, van Kooten C:Infiltrating dendritic cells contribute to local synthesis of C1q in murine and human lupus nephritis. Mol Immunol 2010;47:2129-2137.
    77.Hart DN, Fuggle SV, Williams KA, Fabre JW, Ting A, Morris PJ:Localization of HLA-ABC and DR antigens in human kidney. Trans-plantation 1981;31:428-433.
    78.Markovic-Lipkovski J, Muller CA, Risler T, Bohle A, Muller GA: Association of glomerular and interstitial mononuclear leukocytes with different forms of glomerulonephritis. Nephrol Dial Transplant 1990;5:10-17.
    79.EberleinGonska M, Sill H, Wadherr R: Expression of class I and class II histocompatibility antigens in inflammatory kidney dis-eases (in German). Verh Dtsch Ges Pathol 1989;73:117-123.
    80.Cuzic S, Ritz E, Waldherr R: Dendritic cells in glomerulonephritis. Virchows Arch B Cell Pathol Incl Mol Pathol 1992;62:357-363.
    81.Heymann F, Meyer-Schwesinger C, Hamil-ton-Williams EE, Hammerich L, Panzer U, Kaden S, Quaggin SE, Floege J, Grone HJ, Kurts C:Kidney dendritic cell activation is required for progression of renal disease in a mouse model of glomerular injury. J Clin In-vest 2009;119:1286-1297.
    82.Segerer S, Hughes E, Hudkins KL, Mack M, Goodpaster T, Alpers CE:Expression of the fractalkine receptor (CX3CR1) in human kidney diseases. Kidney Int 2002;62:488-495.
    83.Fiore N, Castellano G, Blasi A, Capobianco C, Loverre A, Montinaro V, Netti S, Torres D, Manno C, Grandaliano G, Ranieri E, Schena FP, Gesualdo L:Immature myeloid and plasmacytoid dendritic cells infiltrate renal tubulointerstitium in patients with lupus nephritis. Mol Immunol 2008;45:259-265.
    84.De Palma G, Castellano G, Del Prete A, Soz-zani S, Fiore N, Loverre A, Parmentier M, Gesualdo L, Grandaliano G, Schena FP:The possible role of CHEMR 23/C hemerinaxisin the recruitment of dendritic cells in lupus nephritis. Kidney Int 2011;79:1228-1235.
    85.Tucci M, Quatraro C, Lombardi L, Pellegri-no C, Dammacco F, Silvestris F:Glomerular accumulation of plasmacytoid dendritic cells in active lupus nephritis: role of interleukin-18. Arthritis Rheum 2008;58:251-262.
    86.Steinmetz OM, Velden J, Kneissler U, Marx M, Klein A, Helmchen U, Stahl RA, Panzer U:Analysis and classification of B-cell infiltrates in lupus and ANCA-associated nephritis. Kidney Int 2008;74:448-457.
    87.Kruger T, Benke D, Eitner F, Lang A, Wirtz M, Hamilton-Williams EE, Engel D, Giese B, Muller-Newen G, Floege J, Kurts C:Identification and functional characterization of dendritic cells in the healthy murine kidney and in experimental glomerulonephritis. J Am Soc Nephrol 2004; 15:613-621.
    88.Figel AM, Brech D, Prinz PU, Lettenmeyer UK, Eckl J, Turqueti-Neves A, Mysliwietz J, Anz D, Rieth N, Muenchmeier N, Buchner A, Porubsky S, Siegert SI, Segerer S, Nelson PJ, Noessner E:Human renal cell carcinoma induces a dendritic cell subset that uses T-cell crosstalk for tumor-permissive milieu alterations. Am J Pathol 2011;179:436-451.
    1.Developmental and pathological lymphangiogenesis:from models to human disease. Histochem Cell Biol 2008; 130:1063-1078.
    2.Alitalo K. The lymphatic vasculature in disease. Nat Med 2011; 17:1371-1380.
    3.Wang Y, Oliver G.Current views on the function of the lymphatic vasculature in health and disease.Genes Dev2010; 24:2115-2126.
    4.Seeger H, Bonani M, Segerer S.The role of lymphatics in renal inflammation.Nephrol Dial Transplant2012;27:2634-2641.
    5.Castenholz A. Functional microanatomy of initial lymphatics with special consideration of the extracellular matrix. Lymphology 1998;31:101-118.
    6.Baluk P, Fuxe J, Hashizume H et al.Functionally specialized junctions between endothelial cells of lymphatic vessels. J Exp Med 2007; 204:2349-2362.
    7.Tammela T, Saaristo A, Holopainen Tet al.Therapeutic differentiation and maturation of lymphatic vessels after lymph node dissection and transplantation. Nat Med 2007; 13: 1458-1466.
    8.Solito R, Alessandrini C, Fruschelli M et al.An immunological correlation between the anchoring filaments of initial lymph vessels and the neighboring elastic fibers:a unified morphofunctional concept.Lymphology 1997; 30:194-202.
    9.Tammela T, Alitalo K. Lymphangiogenesis:molecular mechanisms and future promise. Cell 2010; 140:460-476.
    10.Florey H.Observations on the contractility of lacteals: Part Ⅰ. J Physiol 1927; 62:267-272.
    11.Wick N, Saharinen P, Saharinen J et al.Transcriptomal comparison of human dermal lymphatic endothelial cells ex vivo and in vitro.Physiol Genomics2007; 28:179-192
    12.Podgrabinska S, Braun P, Velasco Pet al.Molecular characterization of lymphatic endothelial cells. Proc Natl Acad Sci U S A 2002; 99:16069-16074.
    13.Breiteneder-Geleff S, Matsui K, Soleiman A et al.Podoplanin, novel 43-kd membrane protein of glomerular epithelial cells, is downregulated in puromycin nephrosis. Am J Pathol 1997; 151:1141-1152.
    14.Weninger W, Partanen TA, Breiteneder-Geleff S et al.Expression of vascular endothelial growth factor receptor-3 and podoplanin suggests a lymphatic endothelial cell origin of Kaposi's sarcoma tumor cells. Lab Invest1999; 79:243-251.
    15.Banerji S, Ni J, Wang SX et al.LYVE-1, a new homologue of the CD44 glycoprotein, is a lymph-specific receptor for hyaluronan.J Cell Biol 1999; 144:789-801.
    16.Wigle JT, Oliver C.Proxl function is required for the development of the murine lymphatic system. Cell 1999; 98:769-778.
    17.Kawai Y, Hosaka K, Kaidoh M et al.Heterogeneity in immunohistochemical, genomic, and biological properties of human lymphatic endothelial cells between initial and collecting lymph vessels.Lymphat Res Biol 2008; 6:15-27.
    18.Schulte-Merker S, Sabine A, Petrova TV. Lymphatic vascular morphogenesis in development, physiology, and disease. J Cell Biol.2011; 193:607-618.
    19.Tammela T, Enholm B, Alitalo K et al.The biology of vascular endothelial growth factors. Cardiovasc Res2005; 65:550-563.
    20.Schacht V, Ramirez MI, Hong YK et al.Tl alpha/podoplanin deficiency disrupts normal lymphatic vasculature formation and causes lymphedema. EMBO J 2003; 22:3546-3556.
    21.Alexander JS, Chaitanya GV, Grisham MB et al.Emerging roles of lymphatics in in flammatory bowel disease. Ann N Y Acad Sci 2010; 1207 Suppl 1E75-E85.
    22.Kataru RP, Jung K, Jang Cet al.Critical role of CDllb+ macrophages and VEGF in inflammatory lymphangiogenesis, antigen clearance, and inflammation resolution. Blood20 09; 113:5650-5659.
    23.Huggenberger R, Ullmann S, Proulx ST et al. Stimulation of lymphangiogenesis via VEGFR-3 inhibits chronic skin inflammation.J Exp Med 2010; 207:2255-2269.
    24.Machnik A, Dahlmann A, Kopp C et al.Mononuclear phagocyte system depletion blocks interstitial tonicity-responsive enhancer binding protein/vascular endothelial growth factor C expression and induces salt-sensitive hypertension in rats. Hypertension 2010; 55: 755-761.
    25.Alitalo K, Tammela T, Petrova TV. Lymphangiogenesis in develop-ment and human disease.Nature 2005; 438:946-953.
    26.Baluk P, Tammela T, Ator E et al.Pathogenesis of persistent lym-phatic vessel hyperplasia in chronic airway inflammation. J Clin Invest 2005; 115:247-257.
    27.Cursiefen C, Chen L, Borges LP et al.VEGF-A stimulates lymphangiogenesis and hemangiogenesis in inflammatory neovascularization via macrophage recruitment. J Clin Invest 2004; 113:1040-1050.
    28.Yao LC, Baluk P, Feng J et al.Steroid-resistant lymphatic remodel-ing in chronically inflamed mouse airways. Am J Pathol 2010; 176:1525-1541.
    29.Ristimaki A, Narko K, Enholm B et al.Proinflammatory cytokines regulate expression of the lymphatic endothelial mitogen vascular endothelial growth factor-C. J Biol Chem 1998; 273:8413-8418.
    30.Flister MJ, Wilber A, Hall KL et al.Inflammation induces lymphangiogenesis through up-regulation of VEGFR-3 mediated by NF-kappaB and Proxl. Blood 2010; 115:418-429.
    31.Mounzer RH, Svendsen OS, Baluk P et al.Lymphotoxin-alpha contributes to lymphangiogenesis. Blood 2010; 116:2173-2182.
    32.Kerjaschki D, Huttary N, Raab I et al.Lymphatic endothelial progenitor cells contribute to de novo lymphangiogenesis in human renal transplants. Nat Med 2006; 12:230-234.
    33.Maruyama K, Ii M, Cursiefen C et al.Inflammation-induced lymphangiogenesis in the cornea arises from CD11b-positive macro-phages.J Clin Invest2005; 115:2363-2372.
    34.Machnik A, Neuhofer W, Jantsch J et al.Macrophages regulate salt-dependent volume and blood pressure by a vascular endothelial growth factor-C-dependent buffering mechanism. Nat Med 2009; 15:545-552
    35.Albuquerque RJ, Hayashi T, Cho WG et al.Alternatively spliced vascular endothelial growth factor receptor-2 is an essential endogenous inhibitor of lymphatic vessel growth. Nat Med 2009; 15:1023-1030.
    36.Mackay CR, Marston WL, Dudler L. Naive and memory T cells show distinct pathways of lymphocyte recirculation. J Exp Med 1990; 171:801-817.
    37.Itano AA,McSorley SJ,Reinhardt RL et al.Distinct dendritic cell populations sequentially present antigen to CD4+T cells and stimulate different aspects of cell-mediated immunity. Immunity 2003; 19:47-57.
    38.Roozendaal R, Mebius RE, Kraal G.The conduit system of the lymph node. Int Immunol 2008; 20:1483-1487.
    39.de la Torre YM, Locati M, Buracchi C et al.Increased in flammation in mice deficient for the chemokine decoy receptor D6. Eur J Immunol 2005; 35:1342-1346.
    40.Segerer S, Jedlicka J, Wuthrich RP. Atypical chemokine receptors in renal inflammation. Nephron Exp Nephrol 2010; 115:e89-e95.
    41.Wick N, Haluza D, Gurnhofer E et al.Lymphatic precollectors contain a novel, specialized subpopulation of podoplanin low,CCL27-expressing lymphatic endothelial cells.Am J Pathol 2008; 173:1202-1209.
    42.Pruenster M, Mudde L, Bombosi P et al. The Duffy antigen receptor for chemokines transports chemokines and supports their promigratory activity. Nat Immunol 2009; 10:101-108.
    43.Forster R, Davalos-Misslitz AC, Rot A. CCR 7 and its lIgAnds:balancing immunity and tolerance. Nat Rev Immunol 2008; 8:362-371.
    44.Johnson LA, Jackson DG.Inflammation-induced secretion of CCL21 in lymphatic endothelium is a key regulator of integrin-mediated dendritic cell transmigration. Int Immunol 2010; 22:839-849.
    45.Kriehuber E, Breiteneder-Geleff S, Groeger M et al. Isolation and characterization of dermal lymphatic and blood endothelial cells reveal stable and functionally specialized cell lineages. J Exp Med 2001; 194:797-808.
    46.Pflicke H, Sixt M.Preformed portals facilitate dendritic cell entry into afferent lymphatic vessels. J Exp Med 2009; 206:2925-2935.
    47.Bromley SK, Thomas SY, Luster AD.Chemokine receptor CCR7 guides T cell exit from peripheral tissues and entry into afferent lymphatics.Nat Immunol2005; 6:895-901.
    48.Debes GF, Arnold CN, Young AJ et al.Chemokine receptor CCR7 required for T lymphocyte exit from peripheral tissues. Nat Immunol 2005; 6:889-894.
    49.Kabashima K, Shiraishi N, Sugita K et al. CXCL12-CXCR4 engagement is required for migration of cutaneous dendritic cells. Am J Pathol 2007; 171:1249-1257.
    50.Ledgerwood LG, Lai G, Zhang N et al.The sphingosine 1-phosphate receptor 1 causes tissue retention by inhibiting the entry of peripheral tissue T lymphocytes into afferent lymphatics. Nat Immunol 2008; 9:42-53.
    51.Thangada S, Khanna KM, Blaho VA et al.Cell-surface residence of sphingosine 1-phosphate receptor 1 on lymphocytes determines lymphocyte egress kinetics. J Exp Med 2010; 207:1475-1483.
    52.Johnson LA, Jackson DG..Cell traffic and the lymphatic endothelium. Ann N Y Acad Sci2008; 1131:119-133.
    53.Cera MR, Del Prete A, Vecchi A et al.Increased DC trafficking to lymph nodes and contact hypersensitivity in junctional adhesion molecule-A-deficient mice. J Clin Invest2004; 114:729-738.
    54.Albertine KH, O'Morchoe CC.An integrated light and electron microscopic study on the existence of intramedullary lymphatics in the dog kidney. Lymphology 1980; 13:100-106.
    55.Kriz W. Lymphatic vessels of mammalian kidneys.Verh Anat Ges1969; 63:25-32.
    56.McIntosh GH, Morris B. The lymphatics of the kidney and the formation of renal lymph.J Physiol 1971; 214:365-376.
    57.Peirce EC, 2nd. Renal lymphatics. Anat Ree 1944; 90:315-335.
    58.Lee HW, Qin YX, Kim YM et al. Expression of lymphatic endothelium-specific hyaluronan receptor LYVE-1 in the developing mouse kidney. Cell Tissue Res2011; 343: 429-444.
    59.Sakamoto I, Ito Y, Mizuno M et al. Lymphatic vessels develop during tubulointerstitial fibrosis. Kidney Int2009; 75:828-838.
    60.Heller F, Lind enmeyer MT, Cohen CD et al. The contribution of B cells to renal interstitial inflammation.Am J Pathol 2007; 170:457-468.
    61.Kalof AN, Cooper K. D2-40 immunohistochemistry—so far!. Adv Anat Pathol 2009; 16: 62-64.
    62.Neusser MA, Kraus AK, Regele H et al. The chemokine receptor CXCR7 is expressed on lymphatic endothelial cells during renal allograft rejection. Kidney Int2010; 77:801-808.
    63.Pusztaszeri MP, Seelentag W, Bosman FT. Immunohistochemical expression of endothelial markers CD31, CD34, von Willebrand factor, and Fli-1 in normal human tissues. J Histochem Cytochem 2006; 54:385-395.
    64.Kukk E, Lymboussaki A, Taira S et al. VEGF-C receptor binding and pattern of expression with VEGFR-3 suggests a role in lymphatic vascular development. Development1996; 122:3829-3837.
    65.Bonsib SM. Renal lymphatics, and lymphatic involvement in sinus vein invasive (pT3b) clear cell renal cell carcinoma: a study of 40 cases. Mod Pathol 2006; 19:746-753.
    66.Ishikawa Y, Akasaka Y, Kiguchi H et al. The human renal lymphatics under normal and pathological conditions. Histopathology2006; 49:265-273.
    67.Zhang T, Guan G, Liu G et al. Disturbance of lymph circulation develops renal fi brosis in rats with or without contralateral nephrectomy. Nephrology (Carlton) 2008; 13:128-138.
    68.Jedlicka J, Soleiman A, Draganovici D et al. Interstitial inflammation in Alport syndrome.Hum Pathol 2010; 41:582-593.
    69.Segerer S, Banas B, Wornle M et al.CXCR3 is involved in tubulointerstitial injury in human glomerulonephritis. Am J Pathol 2004;164:635-649.
    70.Matsui K, Nagy-Bojarsky K, Laakkonen P et al.Lymphatic microvessels in the rat remnant kidney model of renal fibrosis:aminopeptidase p and podoplanin are discriminatory marker s for endothelial cells of blood and lymphatic vessels. J A m Soc Nephro 12003; 14:1981-1989.
    71.Suzuki Y, Ito Y, Mizuno M et al.Transforming growth f actor-beta induces vascular endothelial growth factor-C expression leading to lymphangiogenesis in rat unilateral ureteral obstruction. Kidney Int 2012
    72.Zimmer JK, Dahdal S, Muhlfeld C et al.Lymphangiogenesis is up-regulated in kidneys of patients with multiple myeloma. Anat Rec(Hoboken) 2010; 293:1497-1505.
    73.Mobley JE, O'Dell RM.The role of lymphatics in renal transplantation. Renal lymphatic regeneration. J Surg Res 1967; 7:231-233.
    74.Murray JE, Lang S, Miller BF et al.Prolonged functional survival of renal autotransplants in the dog.Surg Gynecol Obstet 1956; 103:15-22.
    75.Malek P, Vrubel J, Kolc J.Lymphatic aspects of experimental and clinical renal transplantation. Bull Soc Int Chir 1969; 28:110-114.
    76.Pedersen NC, Morris B.The role of the lymphatic system in the rejection of homografts: a study of lymph from renal transplants.J Exp Med 1970; 131:936-969.
    77.Kerjas chki D, Regele HM, Moosberger I et al.Lymphatic neoangiogenesis in human kidney transplants is associated with immunologically active lymphocytic infiltrates. J Am Soc Nephrol 2004; 15:603-612.
    78.Stuht S, Gwinner W, Franz I et al.Lymphatic neoangiogenesis in human renal allografts: results from sequential protocol biopsies. Am J Transplant 2007; 7:377-384.
    79.Segerer S, Heller F, Lindenmeyer MT et al.Compartment specific expression of dendritic cell markers in human glomerulonephritis.Kidney Int2008; 74:37-46.
    80.Adair A, Mitchell DR, Kipari T et al.Peritubular capillary rarefaction and lymphangiogenesis in chronic allograft failure. Transplantation 2007; 83:1542-1550.
    81.Kerjaschki D. The crucial role of macrophages in lymphangiogenesis. J Clin Invest2005; 115:2316-2319.
    82.Yin N, Zhang N, Xu Jet al.Targeting lymphangiogenesis after islet transplantation prolongs islet allograft survival. Transplantation 2011; 92:25-30.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700