用户名: 密码: 验证码:
CYP基因单体型与原发性高血压和心肌梗死的相关性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     CYP4A11是细胞色素P450家族成员之一,它的主要功能是催化花生四烯酸生成20-羟二十烷四烯酸(20-HETE),20-HETE具有调节血压的作用。近来有报道,cyp4a14和cyp4a10(人类CYP4A11基因的同形体)基因敲除小鼠引起高血压,而且雄性基因敲除小鼠比雌性基因敲除小鼠血压增加更高。本研究的目的之一是应用病例对照单体型分析的方法研究在不同性别中,CYP4A11基因单体型与高血压的关系。
     CYF4F2,也是细胞色素P450家族成员之一,它不仅参与了白三烯B4的代谢,而且参与了花生四烯酸的代谢。CYF4F2催化花生四烯酸生成20-羟二十烷四烯酸(20-HETE),20-HETE在维护心血管健康方面具有重要的作用。近来证实,CYP4F2基因的一个单核苷酸多态性(SNP,rs2108622)会导致花生四烯酸生成20-HETE的变化。本研究的另一目的就是应用病例对照单体型分析的方法研究在不同性别中,CYP4F2基因单体型与心肌梗死的关系以及与高血压的关系。
     方法:
     304例原发性高血压患者和207例对照分别分为全体,男性,女性。选择CYP4A11基因的3个SNPs(rs2269231,rs9333025,rs1126742)应用TaqMan SNP基因分型方法进行基因分型,并应用病例对照单体型分析方法进行相关性研究。234例心肌梗死患者和248例对照分别分为全体,男性,女性。选择CYPF2基因的5个SNPs(rs3093105,rs3093135,rs1558139,rs2108622,rs3093200),应用TaqMan SNP基因分型的方法进行基因分型,并应用病例对照单体型分析的方法进行相关性研究。
     249例原发性高血压患者和238例年龄匹配的对照分别分为整体组,男性组,女性组。选择CYPF2基因的5个SNPs(rs3093105,rs3093135,rs1558139,rs2108622,rs3093200)应用TaqMan SNP基因分型的方法进行基因分型,并应用病例对照单体型分析的方法进行相关性研究。
     结果:
     CYP4A11基因的研究结果显示,对于全体,rs1126742的基因型分布在高血压组和对照组之间有显著差异(P=0.005);对于全体、男性、女性,rs112674的隐性模式分布(CC versus TC+TT)在高血压组和对照组之间均有显著差异(P=0.007,P=0.043,P=0.045)。Logistic回归分析显示,在剔除一些主要危险因素的干扰后,对于全体、男性,高血压组rs1126742的TC+TT基因型频率显著高于对照组rs1126742的TC+TT基因型频率(P=0.022 and P=0.043).对于男性,高血压组的A-T-G单体型频率显著高于对照组的A-T-G单体型频率(P=0.043)。
     CYP4F2基因的研究结果显示,对于男性,心肌梗死患者rs2108622的G等位基因频率远远高于对照(P=0.001);心肌梗死患者和对照相比较,单体型的总体分布在男性组显著不同(P=0.001);男性组心肌梗死患者的T-C-G单体型频率显著高于对照(P=0.009),男性组心肌梗死患者的T-C-A单体型频率显著低于对照(P=0.002)。
     CYP4F2基因的研究结果显示,高血压患者和对照相比较,rs1558139基因型的显性模式分布(CC versus CT+TT)在整体组和男性组中显著不同,(P=0.037,P=0.005),高血压患者的CC基因型频率显著高于对照的CC基因型频率。Logistic回归分析显示,在剔除一些主要危险因素的干扰后,男性组rs1558139的CC基因型分布在高血压患者和对照之间仍然保持差异(P=0.026),而整体组高血压患者和对照之间CC基因型分布的差异消失(P=0.247)。高血压患者和对照相比较,单体型的总体分布在男性组显著不同(P=0.042),男性组高血压患者的T-T-G单体型频率显著低于对照的T-T-G单体型频率(P=0.009)。
     结论:
     CYP4A11基因的rs1126742位点,其TC+TT基因型与日本男性高血压有关。A-T-G单体型可作为日本男性高血压的易感基因标志。
     CYP4F2基因rs2108622的G等位基因与日本男性心肌梗死相关,T-C-G单体型可做为日本男性心肌梗死的易感基因标记,T-C-A单体型可做为日本男性心肌梗死的抵抗基因标记。
     CYP4F2基因rs1558139的CC基因型和C等位基因可做为日本男性高血压的基因标记,CYP4F2基因的T-T-G单体型可做为日本男性高血压的抵抗性基因标记。
Objective:
     CYP4A11, which is a member of the cytochrome P450 family, acts mainly as an enzyme that converts arachidonic acid to 20-hydroxyeicosatetraenoic acid(20-HETE), a metabolite involved in regulation of blood pressure in humans. Recently, it was reported that disruption of the murine cyp4a14 and cyp4a10 genes, which are homologues of human CYP4A11, causes hypertension. The gene-disrupted male mice had higher blood pressure than the gene-disrupted females. One aim of the present study was to assess the association between the human CYP4A11 gene and essential hypertension(EH), using a haplotype-based case-control study that included a separate analysis of the gender groups. CYP4F2, which is also a member of the cytochrome P450 family, acts mainly as an enzyme that not only the metabolism leukotriene B4 but also arachidonic acid. It converts arachidonic acid to 20-hydroxyeicosatetraenoic acid(20-HETE), a metabolite involved in the maintenance of cardiovascular health. Recently, a functional variant in the human CYP4F2 gene(rs2108622, V433M)was identified which can altered the production of 20-HETE from AA. Another aim of the present study was to assess the association between the human CYP4F2 gene and MI and EH, using a haplotype-based case-control study with a separate analysis of the gender groups.
     Methods:
     There were 304 EH patients and 207 age-matched controls genotyped for 3 SNPs of the human CYP4A11 gene(rs2269231, rs1126742, rs9333025). The data were assessed for 3 separate groups: the total subjects, men and women.
     There were 234 MI patients and 248 control subjects genotyped for 5 SNPs of the human CYP4F2 gene(rs3093105, rs3093135, rs1558139, rs2108622, rs3093200). The data were assessed for 3 separate groups: the total subjects, men and women.
     There were 249 EH patients and 238 age-matched controls genotyped for 5 SNPs of the human CYP4F2 gene (rs3093105, rs3093135, rs1558139, rs2108622, rs3093200). Tata were assessed for 3 separate groups: total subjects, men and women.
     Results:
     The study results of CYP4A11 gene show that for the total, the genotypic distribution of rs1126742 differed significantly between the EH and control groups(P=0.005). For the total, and the men and women groups, the recessive model(CC versus TC+TT)of rs1126742 differed significantly between the EH and control groups(P=0.007, P=0.043, and P=0.045, respectively). Logistic regression analysis showed that the TC+TT genotype was significantly higher in EH patients than in controls for the total subjects and the men(P=0.022 and P=0.043, respectively). The frequency of the A-T-G haplotype(established by rs2269231, rs1126742, rs9333025)was significantly higher in EH men than in control men(P=0.043).
     The study results of CYP4F2 gene show that for men subjects, G allele of was significantly higher in the MI patients than the control subjects. For men, the overall distribution of the haplotypes were significantly different between the MI patients and the control subjects(P=0.001). Also for the men, the frequency of T-C-G haplotype was significantly higher for MI patients than for control subjects(P=0.001), and the frequency of T-C-A haplotype was significantly lower for MI patients than for control subjects(P=0.002).
     The study results of CYP4F2 gene show that for the total and male subjects, the distribution of the dominant model of rs1558139 (CC versus CT + TT) differed significantly between the EH patients and control subjects (P=0.037, P=0.005, respectively), the CC genotype was higher in the EH patients than in the control subjects. Logistic regression showed that for the men, the CC genotype of rs1558139 was higher in the EH patients than in the control subjects (P=0.026), while for the total, the difference disappeared (P=0.247). For men, the overall distribution of the haplotypes was significantly different between the EH patients and the control subjects (P=0.042), and the frequency of the T-T-G haplotype was also significantly lower for EH patients than for control subjects (P=0.009).
     Conclusions:
     The present results indicate that EH is associated with the TC+TT genotype of rs1126742 in the human CYP4A11 gene for Japanese men. The A-T-G haplotype of CYP4A11 gene appears to be a useful genetic marker of EH in Japanese men. The G allele of rs2108622 in CYP4F2 gene is associated with MI in Japanese men. The T-C-G haplotype of CYP4F2 gene appears to be a useful genetic marker of MI in Japanese men.
     The present results indicate the CC genotype and C allele of rs1558139 in CYP4F2 gene might be a genetic marker for EH and the T-T-G haplotype might be a protective genetic marker for EH in Japanese men.
引文
[1] Williams SM, Addy JH, Phillips JA, et al. Combinations of variations in multiple genes are associated with hypertension [J]. Hypertension. 2000, 36 (1): 2-6.
    [2] LitchfieldWR, Hunt SC, Jeunemaitre X, et al. Increased urinary free cortisol: a potential intermediate phenotype of essential hypertension [J]. Hypertension. 1998, 31(2): 569-574.
    [3] Julier C. Genetic susceptibility for human familial essential hypertension in a region of homology with blood p ressure linkageon rat chromosome 10 [J]. Hum Mol Genet. 1997, 6 (12): 2077-2085.
    [4] Levy D, Destefano AL, Larson MG, et al. Evidence for a gene influencing blood pressure on chromosome 17. Genomescan linkage results for longitudinal blood pressure phenotypes in subjects from the Framingham Heart Study [J]. Hypertension. 2000, 36 (4): 477-483.
    [5] Rutherford S, Johnson MP, Curtain RP, et al. Chromosome 17 and the inducible nitric oxide synthase gene in human essential hypertension [J]. Hum Genet. 2001, 109 (4): 408-415.
    [6] Stoll M, Kwitek-Black AE, Cowley AW, et al. New target regions for human hypertension via comparative genomics [J]. Genome Res. 2000, 10 (4): 473-482.
    [7] Sun B, Dronma T , Qin WJ , et al . Polymorphisms of rennin-angio-tensin system in essential hypertension in Chinese Tibetans [J]. Biomed Environ Sci. 2004, 17 (2): 209-216.
    [8] Porto PI, Garcia SI , Dieuzeide G, et al . Renin-angiotensin-aldosterone system loci and multilocus interactions in young onset essentialhypertension [J]. Clin Exp Hypertens. 2003, 25 (2): 117-130.
    [9] Brand-Herrmann SM, Kopke K, Reichenberger F , et al . Angiotensinogen promoter haplotypes are associated with blood pressure in untreated hypertensives [J]. J Hypertens. 2004, 22 (7): 1289-1297.
    [10]李南方,周玲,吴卫东,等.血管紧张素原基因5’端核心启动子区(-6)A-G和(-20)A-C变异与哈萨克族人原发性高血压相关性分析[J].中华医学遗传学杂志. 2004, 21 (1): 23-28.
    [11]张宁,李光.原发性高血压人群AGT基因多态性的研究[J].中国公共卫生. 2004, 20 (7): 867-869.
    [12]刘艳,金玮,姜正文,等.血管紧张素原基因的六种单核苷酸多态与原发性高血压的相关性[J].中华医学遗传学杂志. 2004, 21 (2):116-119.
    [13] Ismail M, Akhtar N, Nasir M, et al. Association between the angiotensin-converting enzyme gene insertion/ deletion polymorphism and essential hypertension in young Pakistani patients [J]. J Biochem Mol Biol. 2004, 37 (5): 552-555.
    [14] Xu Q, Wang YH, Tong WJ, et al. Interaction and relationship between angiotensin converting enzyme gene and environmental factors predisposing to essential hypertension in Mongolian population of China [J]. Biomed Environ Sci. 2004, 17 (2): 177-186.
    [15] Agachan B, IsbirT , YilmazH , et al. Angiotensin converting enzyme I/D, angiotensinogen T174M-M235T and angiotensin II type1 receptor A1166C gene polymorphisms in Turkish hypertensive patients [J]. Exp Mol Med. 2003, 35 (6): 545-549.
    [16]格桑罗布,岑维浚,陈勇,等.藏族原发性高血压与血管紧张素转换酶基因多态性研究[J].中华内科杂志. 2003, 42 (8): 575-576.
    [17]李宏芬,沈志霞,常延河,等.中国人群血管紧张素转换酶基因与血管紧张素Ⅱ-1型受体基因A1166C单核苷酸多态性分析[J].中华检验医学杂志. 2003, 26 (2): 89-92.
    [18] Kobashi G, Hata A, Ohta K, et al. A1166C variant of angiotensin II type 1 receptor gene is associated with severe hypertension in pregnancy independently of T235 variant of angiotensinogen gene [J]. J Hum Genet. 2004, 49 (4): 182-186.
    [19] Jin W, Liu Y, Sheng HH, et al. Single nucleotide polymorphisms in promoter of angiotensin II type 1 receptor gene associated with essential hypertension and coronary heart disease in Chinese population [J]. Acta Pharmacol Sin. 2003, 24 (11): 1083-1088.
    [20] Stankovic A, Zivkovic M, Glisic S, et al. Angiotensin II type 1 receptor gene polymorphism and essential hypertension in Serbian population [J]. Clin Chim Acta. 2003, 327 (122): 181-185.
    [21] Sugimoto K, Kat suya T, Ohkubo T, et al . Association between angiotensin II type 1 receptor gene polymorphism and essential hypertension: the Ohasama Study [J]. Hypertens Res. 2004, 27 (8):551-556.
    [22] Ono K, Mannami T, Baba S, et al. Lack of association betweenangiotensin II type 1 receptor gene polymorphism and hypertension in J apanese [J]. Hypertens Res. 2003, 26 (2): 131-134.
    [23] Kumar NN, Benjafield AV, Lin RC, et al . Haplotype analysis of aldosteronesynthase gene (CYP11B2) polymorphisms shows association with essential hypertension [J]. J Hypertens. 2003, 21 (7):1331-1337.
    [24]徐新娟,汪师贞,林仁勇,等.新疆哈萨克族隔离群醛固酮合成酶基因多态性与原发性高血压的关联性[J].中华医学遗传学杂志. 2004, 21 (6): 622-624.
    [25]李庆祥,张宇清,靳凤艳,等.醛固酮合成酶(CYP11B2)基因T(2344) C多态性与高血压病相关性研究[J].高血压杂志. 2003, 11 (3):238-240.
    [26] Risch NJ. Searching for genetic determinants in the new millennium [J]. Nature. 2000, 405 (6788): 847-856.
    [27] Beeks E, vander Klauw MM, Kroon AA, et al. Alpha-adducin Gly460Trp polymorphism and renal hemodynamics in essential hypertension [J].Hypertension. 2004, 44(4):419-23.
    [28] Perticone F, Sciacqua A, Barlassina C, et al. Gly460Trp alpha-adducin gene polymorphism and endothelial function in untreated hypertensive patients [J]. J Hypertens. 2007, 25(11):2234-2239.
    [29] ShojiM, Tsutaya S, Saito R, et al. Positive association of endothelial notric oxide synthase gene polymorphism with hypertension in northern Japan [J]. Life Sci 2000, 66 (26): 2557-2562.
    [30] Jachymova M, Horky K, Bultas J, et al. Association of the Glu298Asp polymorphism in the endothelial nitric oxide synthase gene with essential hypertension resistant to conventional therapy [J]. Biochem Biophys Res Commun. 2001, 284: 426-430.
    [31] Martín DN, Andreu EP, Ramírez Lorca R, et al. G-protein beta-3 subunit gene C825 T polymorphism: influence on plasma sodium and potassium concentrations in essential hypertensive patients [J]. Life Sci. 2005, 77(23):2879-86.
    [32] Bagos PG, Elefsinioti AL, Nikolopoulos GK, et al. The GNB3 C825T polymorphism and essential hypertension: a meta-analysis of 34 studies including 14,094 cases and 17,760 controls [J]. J Hypertens. 2007, 25(3):487-500.
    [33] Wright AF, Carothers AD, Pirastu M, et al. Population choice in mapping genes for complex diseases [J]. Nat Genet. 1999, 23 (4): 397-404.
    [34] Slatkin M. Linkage disequilium in growing and stable populations [J]. Genetics. 1994, 137(1): 331-336.
    [35] Tuula HH, Kimmo K, Ilkka T, et al. Common variants of the beta and gamma subunits of the ep ithelial sodium channel and their relation to p lasma renin and aldosterone levels inessential hypertension [J]. BMC Medical Genetics. 2005, 6 (4):223-236.
    [36] Slobodan R, Frederick JC. Human cytochrome P450 enzymes: a status report summarizing their reactions, substrates, inducers, and inhibitors [J]. Drug Metabol Rev. 1997, 29:413-580.
    [37] Nelson DR, Koymans L, Kamtaki T, et al. P450 superfamily: update on new sequences, gene mapping, accession numbers and nomenclature [J]. Pharmacogenetics. 1996, 6:1-42.
    [38] Krishan DR, Klotz U. Extrahepatic metabolism of drugs in humans [J]. Clin pharmacok. 1994, 24:144-66.
    [39] Slaughter RL, Edwards DJ. Recent advances: the cytochrome P450 enzymes [J]. Ann pharmacoth. 1995, 29:619-24.
    [40] Guengerich FP, Macdonald TL. Mechanisms of cytochrome P450 catalysis [J]. FASEB J. 1990, 4:2453-9.
    [41] James RH, Guengerich FP, John RB, et al. Contemporary issues in toxicology. Selective inhibitors of cytochromes P450 [J]. Toxicol App Pharmacol. 1994, 125:163-175.
    [42] Warner M, Stromstedt M, Wyss A, et al. Regulation of cytochrome P450 in the Central nervous system [J]. Journal of Steriod Biochem mol Biol. 1993, 47:191-4.
    [43] Makita K, Falck JR, Capdevila JH. Cytochrome p450, the arachidonic acid cascade, and hypertension: new vistas for an old enzyme system [J]. FASEB J. 1996, 10:1456-63.
    [44] Javitt NB. Bile acid synthesis from cholesterol: regulatory and auxillary pathways [J]. FASEB J. 1994, 8:1308-11.
    [45] Satish CD, Murray LW, Brian KM. Transcriptional activation of cytochrome P450 genes by different classes of chemical inducers [J]. Clin Exp Pharmacol physiol. 1998, 25:1-9.
    [46] Ayesh R, Idle JR, Ritchie JC. Metabolic oxidation phenotypes and markers for the susceptibility to lung cancer [J]. Nature. 1984, 312:169-70.
    [47] Thum T, & Borlak J. Testosterone, cytochrome P450, and cardiac hypertrophy [J]. FASEB J. 2002, 12: 1537-1549.
    [48] Yu Z, Huse LM, Adler P, et al. Increased CYP2J expression and epoxyeicosatrienoic acid formation in spontaneously hypertensive rat kidney [J]. Mol Pharmacol. 2000, 5: 1011-1020.
    [49] King LM, Gainer JV, David GL, et al. Single nucleotide polymorphisms in theCYP2J2 and CYP2C8 genes and the risk of hypertension [J]. Pharmacogenet Genom. 2005, 1:7-13.
    [50] Basu AK, Ghosh S, Mohanty PK, et al. Augmented arterial pressure responses to cyclosporine in spontaneously hypertensive rats. Role of cytochrome P-450 3A [J]. Hypertension. 1994, 4: 480-485.
    [51] Kivisto KT, Niemi M, Schaeffeler E, et al. CYP3A5 genotype is associated with diagnosis of hypertension in elderly patients: data from the DEBATE Study [J]. Am J Pharmacogenom. 2005, 3:191-195.
    [52] Fromm MF, Schmidt BM., Pahl A, et al. CYP3A5 genotype is associated with elevated blood pressure [J]. Pharmacogenet Genomics 2005; 10: 737-741.
    [53] Ho H, Pinto A, Hall SD, et al. Association between the CYP3A5 genotype and blood pressure [J]. Hypertension. 2005, 2:294-298.
    [54] Iwai N & Inagami T. Isolation of preferentially expressed genes in the kidneys of hypertensive rats [J]. Hypertension. 1991, 2:161-169.
    [55] Mayer BJ, Lamfers R & Feldstein DA. Clinical Questions. Does celecoxib increase cardiovascular risk [J]? WMJ. 2005, 8:15-16.
    [56] Nakayama T, Soma M, Rahmutula D, et al. Nonsense mutation of prostacyclin synthase gene in a family [J]. Lancet. 1997, 9069:1887-1888.
    [57] Nakayama T, Soma M, Rehemudula D, et al. Association of 5′upstream promoter region of prostacyclin synthase gene variant with cerebral infarction [J]. Am J Hypertens. 2000, 12:1263-1267.
    [58] Dluhy RG & Lifton RP. Glucocorticoid-remediable aldosteronism [J]. J Clin Endocrinol Metab. 1999, 12:4341-4344.
    [59] Komiya I, Yamada T, Takara M, et al. Lys(173)Arg and -344T/C variants of CYP11B2 in Japanese patients with low-renin hypertension [J]. Hypertension. 2000, 3:699-703.
    [60] Henderson SO, Haiman CA & Mack W.Multiple Polymorphisms in the renin-angiotensin-aldosterone system (ACE, CYP11B2, AGTR1) and their contribution to hypertension in African Americans and Latinos in the multiethnic cohort [J]. Am J Med Sci. 2004, 5:266-273.
    [61] Wang XL, Raveendran M & Wang J. Genetic influence on cigarette-induced cardiovascular disease [J]. Prog Cardiovasc Dis. 2003, 5:361-382.
    [62] Cornelis MC, El-Sohemy A & Campos H. Genetic polymorphism of CYP1A2 increases the risk of myocardial infarction [J]. J Med Genet. 2004, 10:758-762.
    [63] Yasar U, Bennet AM, Eliasson E, et al. Allelic variants of cytochromes P450 2C modify the risk for acute myocardial infarction [J]. Pharmacogenetics. 2003, 12:715-720.
    [64] Granville DJ, Tashakkor B, Takeuchi C, et al. Reduction of ischemia and reperfusion-induced myocardial damage by cytochrome P450 inhibitors [J]. Proc Natl Acad Sci U S A. 2004, 5:1321-1326.
    [65] Funk M, Endler G., Freitag R, et al. CYP2C9*2 and CYP2C9*3 alleles confer a lower risk for myocardial infarction [J]. Clin Chem. 2004, 12:2395-2398.
    [66] Seubert J, Yang B, Bradbury JA, et al. Enhanced postischemic functional recovery in CYP2J2 transgenic hearts involves mitochondrial ATP-sensitive K+ channels and p42/p44 MAPK pathway [J]. Circ Res, 2004, 5: 506-514.
    [67] Nakayama T, Soma M, Saito S, et al. Association of a novel single nucleotide polymorphism of the prostacyclin synthase gene with myocardial infarction [J]. Am Heart J. 2002, 5: 797-801.
    [68] Fogelberg M, Bjorkhem I, Diczfalusy U, et al. Stanozolol and experimental atherosclerosis: atherosclerotic development and blood lipids during anabolic steroid therapy of New Zealand white rabbits [J]. Scand J Clin Lab Invest. 1990, 6: 693-696.
    [69] Nathan L, Shi W, Dinh H, et al. Testosterone inhibits early atherogenesis by conversion to estradiol: critical role of aromatase [J]. Proc Natl Acad Sci U S A. 2001, 6: 3589-3593.
    [70] Christmas P, Jones JP, Patten CJ, et al. Alternative splicing determines the function of CYP4F3 by switching substrate specificity [J]. J Biol Chem. 2001, 276: 166-172.
    [71] Imig JD, Zou AP, Stec DE, et al. Formation and actions of 20-hydroxyeicosatetraenoic acid in rat renal arterioles [J]. Am J Physiol. 1996, 1: R217-R227.
    [72] Gebremedhin D, Lange AR, Lowry TF, et al. Production of 20-HETE and its role in autoregulation of cerebral blood flow [J]. Circ Res. 2000, 87: 60-65.
    [73] Randriamboavonjy V, Busse R, Fleming I. 20-HETE-induced contraction of small coronary arteries depends on the activation of Rho-kinase [J]. Hypertension. 2003, 41: 801-806.
    [74] Mulligan SJ, MacVicar BA. Calcium transients in astrocyte endfeet cause cerebrovascular constrictions [J]. Nature. 2004, 431:195-9.
    [75] Sun CW, Falck JR, Okamoto H, et al. Role of cGMP versus 20-HETE in thevasodilatorresponse to nitric oxide in rat cerebral arteries [J]. Am J Physiol Heart Circ Physiol. 2000, 279: H339-H350.
    [76] Hercule HC, Oyekan AO. Cytochrome P-450 v/v-1 hydroxylasederived eicosanoids contribute to endothelin A and endothelin B receptor-mediated vasoconstriction to endothelin-1 in the rat preglomerular arteriole [J]. J Pharmacol Exp Ther. 2000, 292:1153-1160.
    [77] McCarthy ET, Sharma R, Sharma M. Protective effect of 20-hydroxyeicosatetra enoic acid (20-HETE) on glomerular protein permeability barrier [J]. Kidney Int. 2005, 67:152-156.
    [78] Kehl F, Cambji-Sapunar L, Maier KG, et al. 20-HETE contributes to the acute fall in cerebral blood flow after subarachnoid hemorrhage in the rat [J]. Am J Physiol. 2002, 282:H1556-H1565.
    [79] Takeuchi K, Miyata N, Renic M, et al. Hemoglobin, NO, and 20-HETE interactions in mediating cerebral vasoconstriction following SAH [J]. Am J Physiol Regul Integr Comp Physiol. 2006, 290:R84-R89.
    [80] Qin XY, Kwansa H, Bucci E, et al. Role of 202HETE in the pial arteriolar constrictor response to decreased hematocrit after exchange transfusion of cell-free polymeric hemoglobin [J]. J App l Physiol. 2006, 100:336-342.
    [81] Cambj-Sapunar L, Yu M, Harder DR, et al. Contribution of 5-hydroxytryp tamine 1B receptors and 20-hydroxyeiscosatet raenoic acid to fall in cerebral blood flow after subarachnoid hemorrhage [J]. Stroke. 2003, 34:1269-1275.
    [82] Yu M, Cambj-Sapunar L, Kehl F, et al. Effects of a 20-HETE antagonist and agonists on cerebral vascular tone [J]. Eur J Pharmacol. 2004, 486:297-306.
    [83] Honeck H, Gross V, Erdmann B, et al. Cytochrome P-450-dependent renal arachidonic acid metabolism in DOCA-salt hypertensive mice. Hypertension. 2000, 36:610-616.
    [84] Shatara RK, Quest DW, Wilson TW. Fenofibrate lowers blood pressure in two geneticmodels of hypertension. Can J Physiol Pharmacol. 2000, 78:367-371.
    [85] Nithipatikom K, Gross ER, EndsleyMP, et al. Inhibition of cytochrome P450 omega-hydroxylase: a novel endogenous cardioprotective pathway [J]. Circ Res. 2004, 95:e65-e71.
    [86] Hoehe MR. Haplotypes and the systematic analysis of genetic variation in genes and genomes [J]. Pharmacogenomics. 2003, 4(5):547-70.
    [87] Morris RW, Kaplan NL. On the advantage of haplotype analysis in the presence ofm ultiple disease susceptibility alleles [J]. GenetEpidemiol. 2002, 23: 21-33.
    [88] Hoehe MR, Kopke K,Wendel B, et al.Sequence variability and candidate gene analysis in complex disease: association of muopioid receptorgene variation with substance dependence [J].Hum MolGenet. 2000, 9(19): 2895-908.
    [89] Davidson S. Research suggests importance of haplotypes over SNPs [J].Nat Biotechnol. 2000, 18(11): 1134-135.
    [90] Ruano G, Kidd KK, Stephens JC. Haplotype of multiple polymorphisms resolved by enzymatic amplification of single DNA molecules [J].Proc Natl Acad Sci USA. 1990, 87:6296-6300.
    [91] Michalatos-Beloin S, Tishkoff SA, Bentley KL, et al. Molecular haplotyping of genetic markers 10 kb apart by allele-specific long-range PCR [J].Nucleic Acids Res. 1996, 24(23): 4841-843.
    [92] Bradshaw MS, Bollekens JA, Ruddle FH. A new vector for recombination-based cloning of large DNA fragments from yeast artificial chromosomes [J].Nucleic Acids Res. 1995, 23: 4850-856.
    [93] Yan H, Papadopoulos N,Marra G, et al. Conversion of diploidy to haploidy [J].Nature. 2000, 403: 723-724.
    [94] Douglas JA, BoehnkeMG,illanders E, et al. Expermientally-derived haplotypes substantially increase the efficiency of linkage disequilibrium studies [J].Nat Genet. 2001, 28: 361-364.
    [95] Schaid DJ. Relative efficiency of ambiguous vs directly measured haplotype frequencies [J].Genet Epidem iol. 2002, 23: 426-433.
    [96] Sobel E, Lange K.Descentgraphs in pedigree analysis: applications to haplotyping, location scores, and marker sharing statistics [J].Am J Hum Genet. 1996, 58 (6): 1323-1337.
    [97] Kruglyak L, Daly MJ, Reeve-Daly MP, et al. Parametric and nonparametric linkage analysis: a unified m ultipoint approach [J].Am J Hum Genet. 1996, 58 (6): 1347-1363.
    [98] Schaid DJ, McDonnell SK, Wang L, et al. Caution on pedigree haplotype inference withsoftware thatassumes linkage equilibrium [J].Am J Hum Genet. 2002, 71(4): 992-95.
    [99] Excoffier L, Slatkin M. Maximumlikelihood estimation of molecular haplotype frequencies is a diploid population [J]. Mol Biol Evol. 1995, 12:921-27.
    [100]Excoffier L, Laval G, Balding D. Gametic phase estimation over large genomicregions using an adaptive window approach [J]. Hum Genomics. 2003, 1:7-19.
    [101]Clark AG. Inference of haplotypes from PCR-amplified samples of diploid populations [J]. Mol Biol Evol. 1990, 7:111-22.
    [102]Hawley ME, Kidd KK. HAPLO: a program using the EM algorithm to estimate the frequencies of multi-site haplotypes [J]. J Hered. 1995, 86:409-11.
    [103]Niu T, Qin ZS, Xu X, et al. Bayesian haplotype inference for multiple linked single-nucleotide polymorphisms [J]. Am J Hum Genet. 2002, 70:157-69.
    [104]Stephens M, Smith NJ, Donnelly P. Anew statistical method for haplotype reconstruction from population data [J]. Am J Hum Genet. 2001, 68:978-89.
    [105]Stephens M, Donnelly P. Acomparison of Bayesian methods for haplotype reconstruction from population genotype data [J]. Am J Hum Genet. 2003, 73:1162-69.
    [106]Stokes JIII, Kannel WB, Wolf PA, et al. Blood pressure as a risk factor for cardiovascular disease: the Framingham Study: 30 years of follow-up [J]. Hypertension. 1989, 13:I-13-I-18.
    [107]Mosterd AD, Agostino RB, Silbershatz H, et al. Trends in the prevalence of hypertension, antihypertensive therapy, and left ventricular hypertrophy from 1950 to 1989 [J]. N Engl J Med. 1999, 340:1221-1227.
    [108]Barri YM. Hypertension and kidney disease: a deadly connection [J]. Curr Cardiol Rep. 2006, 8:411-417.
    [109]Ruppert V, Maisch B. Genetics of human hypertension [J]. Herz. 2003, 28:655-662.
    [110]Peter A. Doris: Hypertension genetics, single nucleotide polymorphisms, and the common disease: common variant hypothesis [J]. Hypertension. 2002, 39:323-331.
    [111]Lopez MJ, Wong SK, Kishimoto I, et al. Salt-resistant hypertension in mice lacking the guanylyl cyclase-A receptor for atrial natriuretic peptide [J]. Nature. 1995, 378:65-68.
    [112]Bader M. Mouse knockout models of hypertension [J]. Methods Mol Med. 2005, 108:17-32.
    [113]Capdevila JH, Falck JR, Harris RC. Cytochrome P450 and arachidonic acid bioactivation: Molecular and functional properties of the arachidonate monooxygenase [J]. J Lipid Res. 2000, 41:163-181.
    [114]Reem H. Elbekai, Ayman O.S. El-Kadi. Cytochrome P450 enzymes: Central players in cardiovascular health and disease [J]. Pharmacology & Therapeutics. 2006, 112:564-587
    [115]Holla VR, Adas F, Imig JD, et al. Alterations in the regulation of androgen-sensitive Cyp 4a monooxygenases cause hypertension [J]. Proc Natl Acad Sci USA. 2001, 98:5211-5216.
    [116]Nakagawa K, Holla VR, Wei Y, et al. Salt-sensitive hypertension is associated with dysfunctional Cyp4a10 gene and kidney epithelial sodium channel [J]. J Clin Invest. 2006, 116:1696-1702.
    [117]Imaoka S, Ogawa H, Kimura S, Gonzalez FJ. Complete cDNA sequence and cDNA-directed expression of CYP4A11, a fatty acid omegahydroxylase expressed in human kidney [J]. DNA Cell Biol. 1993, 12: 893-899.
    [118]Lasker JM, Chen WB, Wolf I, et al. Formation of 20-hydroxyeicosatetraenoic acid, a vasoactive and natriuretic eicosanoid, in human kidney. Role of Cyp4F2 and Cyp4A11 [J]. J Biol Chem. 2000, 275:4118-4126.
    [119]Gainer JV, Bellamine A, Dawson EP, et al. Functional variant of CYP4A11 20-hydroxyeicosatetraenoic acid synthase is associated with essential hypertension [J]. Circulation. 2005, 111:63-69.
    [120]Mayer B, Lieb W, G?tz A, et al. Association of the T8590C polymorphism of CYP4A11 with hypertension in the MONICA Augsburg echocardiographic substudy [J]. Hypertension. 2005, 46:766-771.
    [121]Haketa A, Soma M, Nakayama T, et al. Two medium-chain acyl-CoA synthetase genes, SAH and MACS1, are associated with plasma HDL cholesterol levels, but they are not associated with essential hypertension [J]. J Hypertens. 2004, 22:1903-1907.
    [122]Dempster AP, Laird NM, Rubin DB. Maximum likelihood from in complete data via the EM algorithm [J]. J R Stat Soc. 1977, 39:1-22.
    [123]Powell PK, Wolf I, Lasker JM. Identification of CYP4A11 as the major lauric acid omega-hydroxylase in human liver microsomes [J]. Arch Biochem Biophys. 1996, 335:219-226.
    [124]McGiff JC, Quilley J. 20-Hydroxyeicosatetraenoic acid and epoxyeicosatrienoic acids and blood pressure [J]. Curr Opin Nephrol Hypertens. 2001, 10:231-237.
    [125]Roman RJ. P-450 metabolites of arachidonic acid in the control of cardiovascular function [J]. Physiol Rev. 2002, 82:131-185.
    [126]Carroll MA, McGiff JC. A new class of lipid mediators: cytochrome P450arachidonate metabolites [J]. Thorax. 2000, 55(suppl 2):S13-S16.
    [127]Laffer CL, Laniado-Schwartzman M, Wang MH, et al. Differential regulation ofnatriuresis by 20-hydroxyeicosatetraenoic acid in human salt-sensitive versus salt-resistant hypertension [J]. Circulation. 2003, 107:574 -578.
    [128]Laffer CL, Laniado-Schwartzman M, Wang MH, et al. 20-HETE and furosemide-induced natriuresis in salt-sensitive essential hypertension [J]. Hypertension. 2003, 41:703-708.
    [129]Mayer B, Lieb W, Gt?z A, et al. Association of a functional polymorphism in the CYP4A11 gene with systolic blood pressure in survivors of myocardial infarction [J]. J Hypertens. 2006, 24:1965-1969.
    [130]Morris RW, Kaplan NL. On the advantage of haplotype analysis in the presence of multiple disease susceptibility alleles [J]. Genet Epidemiol. 2002, 23:221-233.
    [131]O'Donnell CJ, Lindpaintner K, Larson MG, et al. Evidence for association and genetic linkage of the angiotensin-converting enzyme locus with hypertension and blood pressure in men but not women in the Framingham Heart Study [J]. Circulation. 1998, 97:1766-1772.
    [132]Ono K, Mannami T, Iwai N. Association of a promoter variant of the haeme oxygenase-1 gene with hypertension in women [J]. J Hypertens. 2003, 21:1497-1503.
    [133]Frazier L, Johnson RL, Sparks E. Genomics and cardiovascular disease [J]. J Nurs Scholarsh. 2005, 37:315-21.
    [134]Nordlie MA, Wold LE, Kloner RA. Genetic contributors toward increased risk for ischemic heart disease [J]. J Mol Cell Cardiol. 2005, 39:667-79.
    [135]Winkelmann BR, Hager J. Genetic variation in coronary heart disease and myocardial infarction: methodological overview and clinical evidence [J]. Pharmacogenomics. 2000, 1:73-94.
    [136]Ingrid Fleming. Cytochrome P450 and vascular homeostasis [J]. Circ Res. 2001, 89:753-62.
    [137]Elbekai RH, El-Kadi AO. Cytochrome P450 enzymes: central players in cardiovascular health and disease [J]. Pharmacol Ther. 2006, 112:564-87.
    [138]Wang XL, Greco M, Sim AS, et al. Effect of CYP1A1 MspI polymorphism on cigarette smoking related coronary artery disease and diabetes [J]. Atherosclerosis. 2002, 162:391-97.
    [139]Cornelis MC, El-Sohemy A, Campos H. Genetic polymorphism of CYP1A2 increases the risk of myocardial infarction [J]. J Med Genet. 2004, 41:758-62.
    [140]Yasar U, Bennet AM, Eliasson E, et al. Allelic variants of cytochromes P450 2Cmodify the risk for acute myocardial infarction [J]. Pharmacogenetics. 2003, 13:715-20.
    [141]Funk M, Endler G, Freitag R, et al. CYP2C9*2 and CYP2C9*3 alleles confer a lower risk for myocardial infarction [J]. Clin Chem. 2004, 50:2395-8.
    [142]Spiecker M, Darius H, Hankeln T, et al. Risk of coronary artery disease associated with polymorphism of the cytochrome P450 epoxygenase CYP2J2 [J]. Circulation. 2004, 110:2132-6.
    [143]Nakayama T, Soma M, Saito S, et al. Association of a novel single nucleotide polymorphism of the prostacyclin synthase gene with myocardial infarction [J]. Am Heart J. 2002, 143:797-801.
    [144]Hengstenberg C, Holmer SR, Mayer B, et al. Evaluation of the aldosterone synthase (CYP11B2) gene polymorphism in patients with myocardial infarction [J]. Hypertension. 2000, 35:704-09.
    [145]Letonja M, Peterlin B, Bregar D, et al. Are the T/C polymorphism of the CYP17 gene and the tetranucleotide repeat (TTTA) polymorphism of the CYP19 gene genetic markers for premature coronary artery disease in Caucasians [J]? Folia Biol (Praha). 2005, 51:76-81.
    [146]Bylund J, Bylund M, Oliw EH. cDNA cloning and expression of CYP4F12, a novel human cytochrome P450 [J]. Biochem Biophys Res Commun. 2001, 280:892-7.
    [147]Lasker JM, Chen WB, Wolf I, et al. Formation of 20-hydroxyeicosatetraenoic acid, a vasoactive and natriuretic eicosanoid, in human kidney. Role of Cyp4F2 and Cyp4A11 [J]. J Biol Chem. 2000, 275:4118-26.
    [148]Stec DE, Roman RJ, Flasch A, et al. Functional polymorphism in human CYP4F2 decreases 20-HETE production [J]. Physiol Genomics. 2007, 30:74-81.
    [149]Fu Z, Nakayama T, Sato N, et al. A haplotype of the CYP4A11 gene associated with essential hypertension in Japanese men. J Hypertens. 2008, 26(3):453-461.
    [150]Lin F, Rios A, Falck JR, et al. 20-Hydroxyeicosatetraenoic acid is formed in response to EGF and is a mitogen in rat proximal tubule [J]. Am J Physiol. 1995, 269:806-16.
    [151]Muthalif MM, Benter IF, Karzoun N, et al. 20-Hydroxyeicosatetraenoic acid mediates calcium/calmodulin-dependent protein kinase II-induced mitogen-activated protein kinase activation in vascular smooth muscle cells [J]. Proc Natl Acad Sci USA. 1998, 95:12701-6.
    [152]Uddin MR, Muthalif MM, Karzoun NA, et al. Cytochrome P-450 metabolitesmediate norepinephrine-induced mitogenic signaling [J]. Hypertension. 1998, 31:242-7.
    [153]Muthalif MM, Karzoun NA, Gaber L, et al. Angiotensin II-induced hypertension: contribution of Ras GTPase/Mitogen-activated protein kinase and cytochrome P450 metabolites [J]. Hypertension. 2000, 36:604-9.
    [154]Roman RJ. P-450 metabolites of arachidonic acid in the control of cardiovascular function [J]. Physiol Rev. 2002, 82:131-85.
    [155]Vazquez B, Rios A, Escalante B. Arachidonic acid metabolism modulates vasopressin-induced renal vasoconstriction [J]. Life Sci. 1995, 56:1455-66.
    [156]Chu ZM, Croft KD, Kingsbury DA, et al. Cytochrome P450 metabolites of arachidonic acid may be important mediators in angiotensin II-induced vasoconstriction in the rat mesentery in vivo [J]. Clin Sci (Lond). 2000, 98:277-82.
    [157]Imig JD, Pham BT, LeBlanc EA, et al. Cytochrome P450 and cyclooxygenase metabolites contribute to the endothelin-1 afferent arteriolar vasoconstrictor and calcium responses [J]. Hypertension. 2000, 35:307-12.
    [158]Schwartzman ML, Abraham NG, Masferrer J, et al. Cytochrome P450 dependent metabolism of arachidonic acid in bovine corneal epithelium [J]. Biochem Biophys Res Commun. 1985, 132:343-51.
    [159]Quigley R, Baum M, Reddy KM, et al. Effects of 20-HETE and 19(S)-HETE on rabbit proximal straight tubule volume transport [J]. Am J Physiol Renal Physiol. 2000, 278:949-53.
    [160]McGiff JC, Quilley J. 20-Hydroxyeicosatetraenoic acid and epoxyeicosatrienoic acids and blood pressure [J]. Curr Opin Nephrol Hypertens. 2001, 10:231-7.
    [161]Nithipatikom K, Gross ER, Endsley MP, et al. Inhibition of cytochrome P450omega-hydroxylase: a novel endogenous cardioprotective pathway [J]. Circ Res. 2004, 95:e65-71.
    [162]Morris RW, Kaplan NL. On the advantage of haplotype analysis in the presence of multiple disease susceptibility alleles [J]. Genet Epidemiol. 2002, 23:221-33.
    [163]Reckelhoff JF. Gender differences in the regulation of blood pressure [J]. Hypertension. 2001, 37:1199-208.
    [164]Eastwood JA, Doering LV. Gender differences in coronary artery disease [J]. J Cardiovasc Nurs. 2005, 20:340-51.
    [165]Waxman DJ, Ram PA, Pampori NA, et al. Growth hormone regulation of male-specific rat liver P450s 2A2 and 3A2: induction by intermittent growthhormone pulses in male but not female rats rendered growth hormone deficient by neonatal monosodium glutamate [J]. Mol Pharmacol. 1995, 48:790-7.
    [166]Muller DN, Schmidt C, Barbosa-Sicard E, et al. Mouse Cyp4a isoforms: enzymatic properties, gender- and strain-specific expression, and role in renal 20-hydroxyeicosatetraenoic acid formation [J]. Biochem J. 2007, 403:109-18.
    [167]Holla VR, Adas F, Imig JD, et al. Alterations in the regulation of androgen-sensitive Cyp 4a monooxygenases cause hypertension [J]. Proc Natl Acad Sci USA. 2001, 98:5211-6.
    [168]Nakagawa K, Holla VR, Wei Y, et al. Salt-sensitive hypertension is associated with dysfunctional Cyp4a10 gene and kidney epithelial sodium channel [J]. J Clin Invest. 2006, 116:1696-702.
    [169]Ferenchick GS. Are androgenic steroids thrombogenic [J]? N Engl J Med. 1990, 322:476.
    [170]Cavasin MA, Tao ZY, Yu AL, et al. Testosterone enhances early cardiac remodeling after myocardial infarction, causing rupture and degrading cardiac function [J]. Am J Physiol Heart Circ Physiol. 2006, 290:H2043-50.
    [171]Suzuki H, Kanno Y. Efficacy of Candesartan on Outcome in Saitama Trial(E-COST) Group:Effects of candesartan on cardiovascular outcomes in Japanese hypertensive patients[J]. Hypertens Res. 2005, 28:307-314.
    [172]Sugimoto K, Katsuya T, Ohkubo T, et al:Association between angiotensin II type 1 receptor gene polymorphism and essential hypertension:the Ohasama Study[J]. Hypertens Res. 2004, 27:551-556.
    [173]Capdevila JH, Falck JR, Harris RC:Cytochrome P450 and arachidonic acid bioactivation:Molecular and functional properties of the arachidonate monooxygenase[J]. J Lipid Res. 2000, 41:163-181.
    [174]Bylund J, Bylund M, Oliw EH:cDna cloning and expression of CYP4F12, a novel human cytochrome P450[J]. Biochem Biophys Res Commun. 2001, 280:892-897.
    [175]Lasker JM, Chen WB, Wolf I, Bloswick BP, Wilson PD, Powell PK:Formation of 20-hydroxyeicosatetraenoic acid, a vasoactive and natriuretic eicosanoid, in human kidney. Role of Cyp4F2 and Cyp4A11[J]. J Biol Chem. 2000, 275:4118-4126.
    [176]Roman RJ:P-450 metabolites of arachidonic acid in the control of cardiovascular function[J]. Physiol Rev. 2002, 82:131-185.
    [177]Kalsotra A, Cui X, Anakk S, Hinojos CA, Doris PA, Strobel HW:Renal localization, expression, and developmental regulation of P450 4F cytochromes in threesubstrains of spontaneously hypertensive rats[J]. Biochem Biophys Res Commun. 2005, 338:423-431.
    [178]Gainer JV, Bellamine A, Dawson EP, et al:Functional variant of CYP4A11 20-hydroxyeicosatetraenoic acid synthase is associated with essential hypertension[J]. Circulation. 2005, 111:63-69.
    [179]Stec DE, Roman RJ, Flasch A, Rieder MJ:Functional polymorphism in human CYP4F2 decreases 20-HETE production[J]. Physiol Genomics. 2007, 30:74-81.
    [180]Morita A, Nakayama T, Doba N, Hinohara S, Soma M:Polymorphism of the C-reactive protein(CRP) gene is related to serum CRP Level and arterial pulse wave velocity in healthy elderly Japanese[J]. Hypertens Res. 2006, 29:323-331.
    [181]Aoi N, Soma M, Nakayama T, et al:Variable number of tandem repeat of the 5'-flanking region of type-C human natriuretic peptide receptor gene influences blood pressure levels in obesity-associated hypertension[J]. Hypertens Res. 2004, 27:711-716.
    [182]Dempster AP, Laird NM, Rubin DB:Maximum likelihood from in complete data via the EM algorithm[J]. J R Stat Soc. 1977, 39:1-22.
    [183]Kobayashi Y, Nakayama T, Sato N, Izumi Y, Kokubun S, Soma M:Haplotype-based case-control study revealing an association between the adrenomedullin gene and proteinuria in subjects with essential hypertension[J]. Hypertens Res. 2005, 28:229-236.
    [184]King LM, Gainer JV, David GL, et al:Single nucleotide polymorphisms in the CYP2J2 and CYP2C8 genes and the risk of hypertension[J]. Pharmacogenet Genomics. 2005, 15:7-13.
    [185]Yu BN, Luo CH, Wang D, et al:CYP2C9 allele variants in Chinese hypertension patients and healthy controls[J]. Clin Chim Acta. 2004, 348:57-61.
    [186]Kivist? KT, Niemi M, Schaeffeler E, et al:CYP3A5 genotype is associated with diagnosis of hypertension in elderly patients:data from the DEBATE Study[J]. Am J Pharmacogenomics. 2005, 5:191-195.
    [187]Iwai N, Katsuya T, Ishikawa K, et al:Human prostacyclin synthase gene and hypertension :the Suita Study[J]. Circulation. 1999, 100:2231-2236.
    [188]Sookoian S, Gianotti TF, Gonzalez CD, Pirola CJ:Association of the C-344T aldosterone synthase gene variant with essential hypertension:a meta-analysis[J]. J Hypertens. 2007, 25:5-13.
    [189]McGiff JC, Quilley J:20-Hydroxyeicosatetraenoic acid and epoxyeicosatrienoicacids and blood pressure[J]. Curr Opin Nephrol Hypertens. 2001, 10:231-237.
    [190]Zhenyan Fu, Tomohiro Nakayama, Naoyuki Sato, et al:A haplotype of the CYP4A11 gene associated with essential hypertension in Japanese men[J]. J Hypertens. 2008, 26(3):453-461.
    [191] Jin R, Koop DR, Raucy JL, Lasker JM:Role of human CYP4F2 in hepatic catabolism of the proinflammatory agent leukotriene B4[J]. Arch Biochem Biophys. 1998, 359:89-98.
    [192]Morris RW, Kaplan NL. On the advantage of haplotype analysis in the presence of multiple disease susceptibility alleles[J]. Genet Epidemiol. 2002, 23:221-233.
    [193]O'Donnell CJ, Lindpaintner K, Larson MG, et al:Evidence for association and genetic linkage of the angiotensin-converting enzyme locus with hypertension and blood pressure in men but not women in the Framingham Heart Study[J]. Circulation. 1998, 97:1766-1772.
    [194]Ono K, Mannami T, Iwai N:Association of a promoter variant of the haeme oxygenase-1 gene with hypertension in women[J]. J Hypertens. 2003,21:1497-1503.
    [195]Waxman DJ, Ram PA, Pampori NA, Shapiro BH:Growth hormone regulation of male-specific rat liver P450s 2A2 and 3A2:induction by intermittent growth hormone pulses in male but not female rats rendered growth hormone deficient by neonatal monosodium glutamate[J]. Mol Pharmacol. 1995, 48:790-797.
    [196]Muller DN, Schmidt C, Barbosa-Sicard E, et al:Mouse Cyp4a isoforms:enzymatic properties, gender- and strain-specific expression, and role in renal 20-hydroxyeicosatetraenoic acid formation[J]. Biochem J. 2007, 403:109-118.
    [197]Holla VR, Adas F, Imig JD, et al:Alterations in the regulation of androgen-sensitive Cyp 4a monooxygenases cause hypertension[J]. Proc Natl Acad Sci USA. 2001, 98:5211-5216.
    [198]Nakagawa K, Holla VR, Wei Y, et al:Salt-sensitive hypertension is associated with dysfunctional Cyp4a10 gene and kidney epithelial sodium channel[J]. J Clin Invest. 2006, 116:1696-17.
    [1] Capdevila J, Chacos N, Werringloer J, et al. Liver microsomal cytochrome P-450 and the oxidative metabolism of arachidonic acid[J]. Proc Natl Acad Sci U S A. 1981, 78(9):5362-6.
    [2] Morrison AR, Pascoe N. Metabolism of arachidonate through NADPH-dependent oxygenase of renal cortex[J]. Proc Natl Acad Sci U S A. 1981, 78(12):7375-8.
    [3] Oliw EH, Lawson JA, Brash AR, Oates JA. Arachidonic acid metabolism in rabbit renal cortex. Formation of two novel dihydroxyeicosatrienoic acids[J]. J Biol Chem. 1981, 256(19):9924-31.
    [4] Fleming I. Cytochrome p450 and vascular homeostasis[J]. Circ Res. 2001, 89(9):753-62.
    [5] Roman RJ. P-450 metabolites of arachidonic acid in the control of cardiovascular function[J]. Physiol Rev. 2002, 82(1):131-85.
    [6] Capdevila JH, Falck JR. The CYP P450 arachidonic acid monooxygenases: from cell signaling to blood pressure regulation[J]. Biochem Biophys Res Commun. 2001, 285(3):571-6.
    [7] Capdevila JH, Falck JR, Harris RC. Cytochrome P450 and arachidonic acid bioactivation. Molecular and functional properties of the arachidonate monooxygenase[J]. J Lipid Res. 2000, 41(2):163-81.
    [8] Elbekai RH, El-Kadi AO. Cytochrome P450 enzymes: central players in cardiovascular health and disease[J]. Pharmacol Ther. 2006, 112(2):564-87.
    [9] Nebert DW, Roe AL, Dieter MZ, et al. Role of the aromatic hydrocarbon receptor and[Ah] gene battery in the oxidative stress response, cell cycle control, and apoptosis[J]. Biochem Pharmacol. 2000, 59(1):65-85.
    [10] Thum T, Borlak J. Testosterone, cytochrome P450, and cardiac hypertrophy[J]. FASEB J. 2002, 16(12):1537-49.
    [11] Choudhary D, Jansson I, Stoilov I, et al. Metabolism of retinoids and arachidonic acid by human and mouse cytochrome P450 1b1[J]. Drug Metab Dispos. 2004, 32(8):840-7.
    [12] Wang XL, Greco M, Sim AS, et al. Effect of CYP1A1 MspI polymorphism on cigarette smoking related coronary artery disease and diabetes[J]. Atherosclerosis. 2002, 162(2):391-7.
    [13] Lan?a V, Alcantara P, Braz-Nogueira J, Bicho MP. Cytochrome P4501A1(CYP1A1)T6325C polymorphism might modulate essential hypertension- associated stroke risk[J]. Rev Port Cardiol. 2004, 23(3):343-55.
    [14] Gambier N, Marteau JB, Batt AM, et al. Interaction between CYP1A1 T3801C and AHR G1661A polymorphisms according to smoking status on blood pressure in the Stanislas cohort[J]. J Hypertens. 2006, 24(11):2199-205.
    [15] Wu S, Moomaw CR, Tomer KB, et al. Molecular cloning and expression of CYP2J2, a human cytochrome P450 arachidonic acid epoxygenase highly expressed in heart[J]. J Biol Chem. 1996, 271(7):3460-8.
    [16] Scarborough PE, Ma J, Qu W, Zeldin DC. P450 subfamily CYP2J and their role in the bioactivation of arachidonic acid in extrahepatic tissues[J]. Drug Metab Rev. 1999, 31(1):205-34.
    [17] Daikh BE, Lasker JM, Raucy JL, Koop DR. Regio- and stereoselective epoxidation of arachidonic acid by human cytochromes P450 2C8 and 2C9[J]. J Pharmacol Exp Ther. 1994, 271(3):1427-33.
    [18] King LM, Ma J, Srettabunjong S, et al. Cloning of CYP2J2 gene and identification of functional polymorphisms[J]. Mol Pharmacol. 2002, 61(4):840-52.
    [19] Spiecker M, Darius H, Hankeln T, et al. Risk of coronary artery disease associated with polymorphism of the cytochrome P450 epoxygenase CYP2J2[J]. Circulation. 2004, 110(15):2132-6.
    [20] Lee SS, Jeong HE, Liu KH, et al. Identification and functional characterization of novel CYP2J2 variants: G312R variant causes loss of enzyme catalytic activity[J]. Pharmacogenet Genomics. 2005, 15(2):105-13.
    [21] King LM, Gainer JV, David GL, et al. Single nucleotide polymorphisms in the CYP2J2 and CYP2C8 genes and the risk of hypertension[J]. Pharmacogenet Genomics. 2005, 15(1):7-13.
    [22] Yu BN, Luo CH, Wang D, et al. CYP2C9 allele variants in Chinese hypertension patients and healthy controls[J]. Clin Chim Acta. 2004, 348(1-2):57-61.
    [23] Dreisbach AW, Japa S, Sigel A, et al. The Prevalence of CYP2C8, 2C9, 2J2, and soluble epoxide hydrolase polymorphisms in African Americans with hypertension[J]. Am J Hypertens. 2005, 18(10):1276-81.
    [24] Evans WE, Johnson JA. Pharmacogenomics: the inherited basis for interindividual differences in drug response[J]. Annu Rev Genomics Hum Genet. 2001, 2:9-39.
    [25] Waxman DJ, Lapenson DP, Aoyama T, et al. Steroid hormone hydroxylase specificities of eleven cDNA-expressed human cytochrome P450s[J]. Arch BiochemBiophys. 1991, 290(1):160-6.
    [26] Hunt CM, Watkins PB, Saenger P, et al. Heterogeneity of CYP3A isoforms metabolizing erythromycin and cortisol[J]. Clin Pharmacol Ther. 1992, 51(1):18-23.
    [27] Araya Z, Wikvall K. 6alpha-hydroxylation of taurochenodeoxycholic acid and lithocholic acid by CYP3A4 in human liver microsomes[J]. Biochim Biophys Acta. 1999, 1438(1):47-54.
    [28] Ingelman-Sundberg M. Genetic susceptibility to adverse effects of drugs and environmental toxicants. The role of the CYP family of enzymes[J]. Mutat Res. 2001, 482(1-2):11-9.
    [29] Haehner BD, Gorski JC, Vandenbranden M, et al. Bimodal distribution of renal cytochrome P450 3A activity in humans[J]. Mol Pharmacol 1996;50(1):52-9.
    [30] Ghosh S, Grogan WM, Basu A, Watlington C. Renal corticosterone 6 beta-hydroxylase in the spontaneously hypertensive rat[J]. Biochim Biophys Acta. 1993, 1182(2):152-6.
    [31] Ghosh SS, Basu AK, Ghosh S, et al. Renal and hepatic family 3A cytochromes P450(CYP3A)in spontaneously hypertensive rats[J]. Biochem Pharmacol. 1995, 50(1):49-54.
    [32] Watlington CO, Kramer LB, Schuetz EG, et al. Corticosterone 6 beta-hydroxylation correlates with blood pressure in spontaneously hypertensive rats[J]. Am J Physiol. 1992, 262(6 Pt 2):F927-31.
    [33] Duncan RL, Grogan WM, Kramer LB, Watlington CO. Corticosterone's metabolite is an agonist for Na+ transport stimulation in A6 cells[J]. Am J Physiol. 1988, 255(4 Pt 2):F736-48.
    [34] Morris DJ, Latif SA, Rokaw MD, et al. A second enzyme protecting mineralocorticoid receptors from glucocorticoid occupancy[J]. Am J Physiol. 1998, 274(5Pt1):C1245-52.
    [35] . Grogan WM, Fidelman ML, Newton DE, et al. A corticosterone metabolite produced by A6(toad kidney)cells in culture: identification and effects on Na+ transport[J]. Endocrinology. 1985, 116(3):1189-94.
    [36] Givens RC, Lin YS, Dowling AL, et al. CYP3A5 genotype predicts renal CYP3A activity and blood pressure in healthy adults[J]. J Appl Physiol. 2003, 95(3):1297-300.
    [37] Kivist? KT, Niemi M, Schaeffeler E, et al. CYP3A5 genotype is associated with diagnosis of hypertension in elderly patients: data from the DEBATE Study[J]. Am JPharmacog enomics. 2005, 5(3):191-5.
    [38] Fromm MF, Schmidt BM, Pahl A, et al. CYP3A5 genotype is associated with elevated blood pressure[J]. Pharmacogenet Genomics. 2005, 15(10):737-41.
    [39] Ho H, Pinto A, Hall SD, et al. Association between the CYP3A5 genotype and blood pressure[J]. Hypertension. 2005, 45(2):294-8.
    [40] Kreutz R, Zuurman M, Kain S, et al. The role of the cytochrome P450 3A5 enzyme for blood pressure regulation in the general Caucasian population[J]. Pharmacogenet Genomics. 2005, 15(12):831-7.
    [41] Bochud M, Eap CB, Elston RC, et al. Association of CYP3A5 genotypes with blood pressure and renal function in African families[J]. J Hypertens. 2006, 24(5):923-9.
    [42] Lieb W, Bolbrinker J, Doring A, et al. No association of the CYP3A5*1 allele with blood pressure and left ventricular mass and geometry: the KORA/MONICA Augsburg echocardiographic substudy[J]. Clin Sci(Lond). 2006, 111(6):365-72.
    [43] Nguyen X, Wang MH, Reddy KM, et al. Kinetic profile of the rat CYP4A isoforms: arachidonic acid metabolism and isoform-specific inhibitors[J]. Am J Physiol. 1999, 276(6 Pt 2):R1691-700.
    [44] Honeck H, Gross V, Erdmann B, et al. Cytochrome P450-dependent renal arachidonic acid metabolism in desoxycorticosterone acetate-salt hypertensive mice[J]. Hypertension. 2000, 36(4):610-6.
    [45] Lasker JM, Chen WB, Wolf I, et al. Formation of 20-hydroxyeicosatetraenoic acid, a vasoactive and natriuretic eicosanoid, in human kidney[J]. Role of Cyp4F2 and Cyp4A11. J Biol Chem. 2000, 275(6):4118-26.
    [46] Kimura S, Hardwick JP, Kozak CA, Gonzalez FJ. The rat clofibrate-inducible CYP4A subfamily. II. cDNA sequence of IVA3, mapping of the Cyp4a locus to mouse chromosome 4, and coordinate and tissue-specific regulation of the CYP4A genes[J]. DNA. 1989, 8(7):517-25.
    [47] Wang MH, Stec DE, Balazy M, et al. Cloning, sequencing, and cDNA-directed expression of the rat renal CYP4A2: arachidonic acid omega-hydroxylation and 11, 12-epoxidation by CYP4A2 protein[J]. Arch Biochem Biophys. 1996, 336(2):240-50.
    [48] Bell DR, Plant NJ, Rider CG, et al. Species-specific induction of cytochrome P-450 4A RNAs: PCR cloning of partial guinea-pig, human and mouse CYP4A cDNAs[J]. Biochem J. 1993, 294(Pt 1):173-80.
    [49] Powell PK, Wolf I, Jin R, Lasker JM. Metabolism of arachidonic acid to 20-hydroxy-5, 8, 11, 14-eicosatetraenoic acid by P450 enzymes in human liver:involvement of CYP4F2 and CYP4A11[J]. J Pharmacol Exp Ther. 1998, 285(3):1327-36.
    [50] Iwai N, Inagami T. Isolation of preferentially expressed genes in the kidneys of hypertensive rats[J]. Hypertension. 1991, 17(2):161-9.
    [51] Levere RD, Martasek P, Escalante B, et al. Effect of heme arginate administration on blood pressure in spontaneously hypertensive rats[J]. J Clin Invest. 1990, 86(1):213-9.
    [52] Zhang F, Qian JQ, Wang DW. Arachidonate CYP hydroxylases of kidney contribute to formation of hypertension and maintenance of blood pressure[J]. Acta Pharmacol Sin. 2002, 23(6):497-502.
    [53] Zhang F, Chen CL, Qian JQ, et al. Long-term modifications of blood pressure in normotensive and spontaneously hypertensive rats by gene delivery of rAAV-mediated cytochrome P450 arachidonic acid hydroxylase[J]. Cell Res. 2005, 15(9):717-24.
    [54] Wang JS, Singh H, Zhang F, et al. Endothelial dysfunction and hypertension in rats transduced with CYP4A2 adenovirus[J]. Circ Res. 2006, 98(7):962-9.
    [55] Nakagawa K, Holla VR, Wei Y, et al. Salt-sensitive hypertension is associated with dysfunctional Cyp4a10 gene and kidney epithelial sodium channel[J]. J Clin Invest. 2006, 116(6):1696-702.
    [56] Holla VR, Adas F, Imig JD, et al. Alterations in the regulation of androgen-sensitive Cyp 4a monooxygenases cause hypertension[J]. Proc Natl Acad Sci U S A. 2001, 98(9):5211-6.
    [57] Gainer JV, Bellamine A, Dawson EP, et al. Functional variant of CYP4A11 20-hydroxyeicosatetraenoic acid synthase is associated with essential hypertension[J]. Circulation. 2005, 111(1):63-9.
    [58] Mayer B, Lieb W, Gotz A, et al. Association of the T8590C polymorphism of CYP4A11 with hypertension in the MONICA Augsburg echocardiographic substudy[J]. Hypertension. 2005, 46(4):766-71.
    [59] Ingerman-Wojenski C, Silver MJ, Smith JB, Macarak E. Bovine endothelial cells in culture produce thromboxane as well as prostacyclin[J]. J Clin Invest. 1981, 67(5):1292-6.
    [60] Iwai N, Katsuya T, Ishikawa K, et al. Human prostacyclin synthase gene and hypertension : the Suita Study[J]. Circulation. 1999, 100(22):2231-6.
    [61] Nakayama T, Soma M, Rahmutula D, et al. Nonsense mutation of prostacyclinsynthase gene in a family[J]. Lancet. 1997, 349(9069):1887-8.
    [62] Nakayama T, Soma M, Watanabe Y, et al. Splicing mutation of the prostacyclin synthase gene in a family associated with hypertension[J]. Biochem Biophys Res Commun. 2002, 297(5):1135-9.
    [63] Nakayama T, Soma M, Takahashi Y, et al. Polymorphism of the promoter region of prostacyclin synthase gene is not related to essential hypertension[J]. Am J Hypertens. 2001, 14(5 Pt 1):409-11.
    [64] Nakayama T, Soma M, Rahmutula D, et al. Association study between a novel single nucleotide polymorphism of the promoter region of the prostacyclin synthase gene and essential hypertension[J]. Hypertens Res. 2002, 25(1):65-8.
    [65] Zhang G, Miller WL. The human genome contains only two CYP11B(P450c11)genes[J]. J Clin Endocrinol Metab. 1996, 81(9):3254-6.
    [66] Mornet E, Dupont J, Vitek A, White PC. Characterization of two genes encoding human steroid 11 beta-hydroxylase(P-450(11)beta)[J]. J Biol Chem. 1989, 264(35):20961-7.
    [67] White PC, Slutsker L. Haplotype analysis of CYP11B2[J]. Endocr Res. 1995, 21(1-2):437-42.
    [68] Nonaka Y, Okamoto M, Morohashi K, et al. Functional expression of cDNAs for bovine 11 beta-hydroxylase-aldosterone synthases, P450(11 beta)-2 and -3 and their chimeras[J]. J Steroid Biochem Mol Biol. 1992, 41(3-8):779-80.
    [69] Davies E, Holloway CD, Ingram MC, et al. Aldosterone excretion rate and blood pressure in essential hypertension are related to polymorphic differences in the aldosterone synthase gene CYP11B2[J]. Hypertension. 1999, 33(2):703-7.
    [70] Lim PO, Macdonald TM, Holloway C, et al. Variation at the aldosterone synthase(CYP11B2)locus contributes to hypertension in subjects with a raised aldosterone-to-renin ratio[J]. J Clin Endocrinol Metab. 2002, 87(9):4398-402.
    [71] Casiglia E, Tikhonoff V, Mazza A, et al. C-344T polymorphism of the aldosterone synthase gene and blood pressure in the elderly: a population-based study[J]. J Hypertens. 2005, 23(11):1991-6.
    [72] Tsukada K, Ishimitsu T, Teranishi M, et al. Positive association of CYP11B2 gene polymorphism with genetic predisposition to essential hypertension[J]. J Hum Hypertens. 2002, 16(11):789-93.
    [73] Kumar NN, Benjafield AV, Lin RC, et al. Haplotype analysis of aldosterone synthase gene(CYP11B2)polymorphisms shows association with essential hypertension[J]. JHypertens. 2003, 21(7):1331-7.
    [74] Tamaki S, Iwai N, Tsujita Y, Kinoshita M. Genetic polymorphism of CYP11B2 gene and hypertension in Japanese[J]. Hypertension. 1999, 33(1 Pt 2):266-70.
    [75] Henderson SO, Haiman CA, Mack W. Multiple Polymorphisms in the renin- angiotensin-aldosterone system(ACE, CYP11B2, AGTR1)and their contribution to hypertension in African Americans and Latinos in the multiethnic cohort[J]. Am J Med Sci. 2004, 328(5):266-73.
    [76] Tsujita Y, Iwai N, Katsuya T, et al. Lack of association between genetic polymorphism of CYP11B2 and hypertension in Japanese: the Suita Study[J]. Hypertens Res. 2001, 24(2):105-9.
    [77] Davies E, Kenyon CJ. CYP11B2 polymorphisms and cardiovascular risk factors[J]. J Hypertens. 2003, 21(7):1249-53
    [78] Sookoian S, Gianotti TF, Gonzalez CD, Pirola CJ. Association of the C-344T aldosterone synthase gene variant with essential hypertension: a meta-analysis[J]. J Hypertens. 2007, 25(1):5-13.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700