用户名: 密码: 验证码:
汉族人群高血压易感基因研究及血压反应性的遗传度分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高血压是人类最重要的健康问题之一,也是心脑血管疾病和肾脏病的主要危险因素。随着生活方式和饮食结构的改变以及期望寿命的增加,高血压的患病率也大幅度增加。我国以往调查资料显示,在过去的几十年中,高血压的患病率和绝对数正在快速增长。2002年全国营养和健康调查结果显示成年人高血压的患病率为18.8%,患者达到1.6亿多人。
     原发性高血压是一种复杂性疾病,受遗传和环境两方面因素的影响。研究表明血压变异的30%-50%受到遗传因素的影响,而这些遗传因素包括多个基因的作用。高血压的生物学进程涉及到多种调节机制,而每种机制又涉及多种基因产物,因此高血压潜在的遗传机制不仅依赖于多个微效基因的单独作用,同时也依赖于基因-基因之间的交互作用。为了验证这一假设,我们从涉及高血压发生和发展的相关基因中选择具有代表性11个高血压候选基因(ACE、AGTR1、CYP11B2、ADRA1A、ADRB2、TH、LPL、GNB3、NOS3、GRK4、WNK4),综合运用PCR-PFLP和基因组测序等常用的基因型检测技术,采用病例对照研究方法分析基因单个位点以及单体型与高血压发生的关联关系(本论文将重点阐述ADRA1A、CYP11B2和TH基因与高血压的关系),同时评价11个基因在高血压发生中可能存在的致病交互作用。此外,为了从分子水平揭示TH基因rs2070762多态在高血压发病过程中的作用,我们对该多态位点进行初步的生物学功能研究。
     目前遗传流行病学研究已经发现了一些与高血压发生相关的候选基因,然而,每个基因只能解释非常小的血压变异。所以认为遗传因素对血压变异的作用可能不是独立的,而会受到环境暴露的影响。盐作为重要的环境因素,与高血压的发生发展密切相关。流行病学研究结果显示膳食钠摄入与血压呈正相关。然而血压对钠摄入的反应性在个体中的变异非常大。遗传因素可能影响着个体血压对膳食钠摄入的反应性。为了评价遗传因素的效应,我们设计了“盐敏感性遗传流行病学网络研究(GenSalt Study)”,测量我国人群血压对膳食钠、钾摄入反应性的遗传度。
     本研究结果对于进一步阐明高血压发生的分子遗传学机制以及可能存在的基因-基因/基因-环境交互作用等具有重要的理论意义。本研究的结果支持高血压病因学的多基因本质,同时也为今后的研究提供了检测复杂性疾病基因-基因交互分析的模型。本研究评价了遗传因素在个体血压对膳食钠摄入的反应性中所起的重要作用,这将有助于发现那些新的血压盐敏感性基因,对高血压的个体化防治具有积极的意义。
     第一部分肾上腺素受体α_(1A)基因变异与高血压的关联研究
     肾上腺素受体α_1(α_(1A)~-,α_(1B)~-,α_(1D)~-)是一个G蛋白偶联跨膜受体的家族,通过结合儿茶酚胺、肾上腺素和去甲肾上腺素来调节交感神经系统的活动。α_1肾上腺素受体调节心血管功能,在血压的形成过程中可能起到重要作用。我们以前报道了人染色体8p22与原发性高血压和血压水平存在显著的连锁,而这一区段与肾上腺素受体α_(1A)基因(ADRA1A)定位相邻。为此,我们采用病例对照研究来检验ADRA1A多态与中国北方汉族人群原发性高血压的关联关系。
     本研究所有DNA样本和临床资料均来自亚洲国际心血管病协作研究(TheInternational Collaborative Study of Cardiovascular Disease in Asia,InterASIA)中国部分。我们选取了480对2期高血压患者和年龄(相差2岁以内)、性别和地区匹配的健康对照,2期高血压定义为收缩压(SBP)≥160mmHg和/或舒张压(DBP)≥100mmHg。对照组血压要求SBP低于140mmHg且DBP低于90mmHg。排除了有继发性高血压、冠心病和糖尿病的患者。通过对随机选择的48个高血压病例和48个对照的基因测序确定了7个多态位点,并对所有研究对象进行基因型鉴定。采用McNemar检验来估计每个多态位点引起高血压的OR值。条件logistic回归分析时控制传统高血压危险因素,如BMI、胆固醇、血糖和甘油三酯,结果用OR的95%可信区间表示。估计每个单体型的频率并用单体型趋势回归分析各个单体型与高血压的关联。
     病例组中347Arg和2457G等位基因频率显著高于对照组(P=0.04和0.007)。McNemar检验显示2457G等位基因携带者发生高血压的危险性较高,OR为3.00(95%CI 1.23-8.35)。条件Logistic回归分析结果显示调整了高血压的传统危险因素后2457G等位基因携带者发生高血压相对危险度为2.84(95%CI1.15-6.99)。用PHASE估计单体型频率并且进行单体型趋势回归分析,发现调整了高血压的传统危险因素后单体型7与原发性高血压关联(P=0.02)
     我们的结果显示ADRA1A基因变异与高血压存在显著关联,可能在中国人群高血压的发生中起到重要作用。
     第二部分醛固酮合酶基因与高血压的关联研究
     人类醛固酮合酶(CYP11B2)是一种类固醇11β羟化酶或18-羟化酶和18-氧化酶,催化肾上腺球状带细胞中醛固酮的终末合成。本研究旨在了解醛固酮合酶基因CYP11B2(T-344C,Lys173Arg和一个内含子转换[IC]多态)与中国北方汉族人群2期高血压的关系。我们共收集了503对高血压病人和经年龄、性别和地区匹配的正常对照。结果显示女性高血压病人中-344T,173Lys和IC-转换等位基因的频率显著高于正常对照组(P值分别为0.002,0.002和0.014)。女性高血压病例组中由-344T,173Lys和IC-转换等位基因组成的单体型4的频率显著高于对照组(P=0.007)。在使用计分检验(Score Test)调整相关协变量之后,单体型4与女性高血压的关系依然显著(P=0.003)。而由T-Arg-WT组成的单体型3则在男性和女性中均具有保护作用(P值分别为0.03和0.006)。结果显示CYP11B2基因的173Lys和IC-转换多态能增加中国北方女性人群2期高血压的发病风险。
     第三部分酪氨酸羟化酶基因与高血压关联研究及初步功能分析
     酪氨酸羟化酶(TH)是儿茶酚胺合成的限速酶,在交感神经系统中发挥重要的生理作用。虽然TH是原发性高血压的候选基因之一,但仍没有关于TH与高血压发生的系统研究。我们选择了503名高血压患者和在年龄、性别和地区上均匹配的490名对照,对TH基因与高血压进行关联分析。根据HapMap和dbSNP数据,选择了TH基因的4个多态位点:rs6356、rs6357、rs2070762和rs1800033,进行基因分型。rs1800033位点在我们的研究人群中不存在多态性。rs6356和rs6357多态在高血压和非高血压人群中分布没有显著差别。但是rs2070762位点的基因型(P<0.001)和等位基因频率(P=0.005)在病例组和对照组中均存在显著差异。rs6356和rs6357位点与rs2070762存在弱连锁不平衡。单体型分析显示,研究人群中共有8种单体型,单体型频率总的分布在高血压人群和非高血压人群中存在显著差别。单体型A-A-C(rs6356-rs6357-rs2070762)和A-G-C在高血压人群中频率显著高于非高血压人群(P值分别为0.003和0.013),且A-A-C仅在高血压人群中存在。校正协变量后,单体型G-G-C携带者发生高血压风险比最常见单体型A-G-T携带者高1.83倍(P=0.0049)。功能分析结果表明,与T等位基因相比,C等位基因使启动子转录活性增强2倍;未知核蛋白因子特异性结合到T等位基因,而不结合C等位基因。这提示,可能存在一种转录抑制因子,协同T等位基因抑制启动子转录活性。功能研究结果为TH基因rs2070762多态与高血压的关联关系提供了重要证据,并提示rs2070762多态C等位基因由于不结合转录抑制因子而使TH基因表达上调,可能参与高血压的发病过程。
     第四部分11个基因的33SNPs与中国人群高血压的关联研究
     原发性高血压是一种典型的复杂性疾病,是环境因素和多个基因共同作用的结果。单个位点的结果很难重复,其中一个原因就是高血压潜在的遗传机制不仅依赖于多个微效基因的单独作用,同时也依赖于基因-基因之间的交互作用。为了检验这种假设,我们在中国人群中进行了一项病例对照研究来检测单位点及多位点的效应。从涉及高血压发生和发展的相关基因中,挑选了11个候选基因和33个多态位点,并在503名高血压患者和490名年龄、性别和地区匹配的对照中对这些位点进行基因型鉴定。本研究既采用了传统的logistic回归进行单位点的关联分析,又使用了分类回归树(classification and regression trees,CART)和多元适应性回归样条(multivariate adaptive regression splines,MARS)进行多位点关联分析。使用Bonferroni校正或交叉验证来选择最终的模型。我们发现TH~*rs2070762、ADRB2~*Q27E和GRK4~*A486V三个多态与中国人群的原发性高血压的发生独立相关。另外,发现CYP11B2和AGTR1基因在高血压的发病中存在交互作用。这些发现支持原发性高血压病因学的多基因本质,同时也为今后提供了一个研究基因-基因交互作用的模型。
     第五部分血压对膳食钠和钾摄入反应性的遗传度研究
     目前缺乏血压对膳食干预反应性的遗传度的研究报道。本研究通过膳食干预,在中国北方农村的1906个研究对象中检测了血压对膳食钠、钾摄入反应的遗传度。膳食干预包括7天低钠饮食(钠摄入量为每天51.3mmol),7天高钠饮食(钠摄入量为每天307.8mmol),和7天高钠补钾(钾摄入量为每天60mmol)饮食。在干预前三天的基线期测量9次血压,在每个干预期的最后3天也测量9次血压。血压测量采用“随机零点血压计”。遗传度采用方差组分模型下的最大似然比法来计算,所有的计算使用SOLAR程序来完成。基线期收缩压的遗传度为0.31,舒张压的遗传度为0.32,平均动脉压的遗传度为0.34。膳食干预下遗传度显著增加,低钠期上述三种血压的遗传度分别为0.49、0.49和0.51;高钠期为0.47、0.49和0.51;高钠补钾期为0.51、0.52和0.53。对于低钠膳食干预,收缩压、舒张压和平均动脉压改变百分比的遗传度为0.20、0.21和0.23;对于高钠膳食干预,其遗传度分别为0.22、0.33和0.33;对于高钠补钾膳食干预,遗传度分别为0.24、0.21和0.25。我们的研究表明控制膳食钠、钾摄入时血压的遗传度显著高于通常饮食时(未特意控制钠、钾摄入)血压的遗传度。此外,在本研究人群中血压对膳食钠、钾摄入反应的遗传度是适度的。
Hypertension is an important worldwide public-health challenge because of it is one of the most important modifiable risk factors for CVD and renal disease.With changes in lifestyle and diet and an increase in life expectancy,the morbidity and mortality of hypertension have greatly increased.According to previous national surveys conducted in China,the prevalence and absolute numbers of hypertension have increased dramatically during the past several decades.It was estimated that 18.8%of the adult population in 2002 had hypertension,and the total number of adults with hypertension was 160 million.
     Essential hypertension is considered to be a typical complex disease and is influenced by both genetic and environmental factors.The genetic contribution to blood pressure(BP) variation ranges from 30 to 50%.It is likely that a number of genes with smaller effects account for the heritability of this complex disorder.Since the biological process of hypertension involves multiple physiological pathways,each of which may be affected by multiple gene products,the underlying genetics of hypertension is not only based on multiple genes with minor effects,but also on gene-gene interactions.To test this hypothesis,we focused on 11 representive candidate genes involved in multiple biochemical pathways that have been implicated in the development and progression of hypertension(ACE,AGTR1,CYP11B2, ADRA1A,ADRB2,TH,LPL,GNB3,NOS3,GRK4,WNK4),performed PCR-PFLP or direct sequencing for the genotyping,and tested their associations with hypertension in a case-control study(in this paper,the associations of three genes, ADRA1A,CYP11B2 and TH,with hypertension were shown).We also evaluated the influence of gene-gene interactions on the risk of hypertension.Furthermore,the biological relevance of the significantly associated rs2070762 in TH gene was studied by various functional assays in vitro.
     Genetic epidemiology studies have identified many biological candidate genes that were related to BP.However,it is generally found that association of any of these genes accounts for a very little variance.Thus,genetic factors may not independently affect BP,and the effect on BP is influenced by environmental factors.The increased dietary intake of salt as an importantly environmental factor plays a pathogenic role in essential hypertension.Epidemiological studies have shown that dietary sodium intake was positively associated with blood pressure.However,BP response to dietary sodium intake varies considerably among individual subjects.Genetic factors might play an important role in determining the BP responses of an individual subject to dietary sodium intake.To evaluate the effect of genetic factors,the Genetic Epidemiology Network of Salt Sensitivity(GenSalt) Study was designed to examine the genetic influence on BP responses to dietary sodium and potassium intake in Chinese families.
     Our study improve our understanding of mechanisms of hypertension and multiple gene-gene/gene-environment interactions.The findings support the multigenic nature of the etiology of essential hypertension and propose a potential gene-gene interactive model for future studies.Our study also measures the heritability of BP response to dietary sodium intake.Understanding the genetic effects has important implications for identifying important novel genes for salt sensitivity of BP,and contributes to individualized prevention and therapy on hypertension.
     SECTION ONE ADRA1A gene variants and hypertension
     α_1-adrenergic receptors(α_(1A)-,α_(1B)-,α_(1D)-) are a family of G protein-coupled transmembrane receptors that mediate actions in the sympathetic nervous system through binding the catecholamines,epinephrine and norepinephrine,α_1-adrenergic receptors regulate cardiovascular function and may play a role on the development of hypertension.Our previous report linked human chromosome 8p22,which is near the location of humanα_(1A)adrenergic receptor(ADRA1A) gene,to essential hypertension and blood pressure.Upon this,here we present a case-control study on the relationship between ADRA1A gene variants and hypertension in northern Han Chinese.
     All DNA samples and clinical data were collected from the International Collaborative Study of Cardiovascular Disease in Asia(InterASIA).The measurements and interviews were taken under standard conditions.We enrolled 480 unrelated stage-2 hypertensive patients and their individually age-(within 2 years), gender-and area-matched healthy control subjects.Stage-2 hypertension was defined as an average SBP≥160 mm Hg and/or DBP≥100 mm Hg.Control subjects had SBP and DBP<140 mm Hg and<90 mm Hg.Subjects with a clinical history of secondary hypertension,coronary heart disease and diabetes were excluded from the study.The interview included questions related to the diagnosis and treatment of hypertension.Anthropometrical measurements,including height,weight,waist and hip circumferences were taken.Concentrations of serum lipids were also determined by standard protocols.Seven polymorphisms were identified by direct sequencing of genomic DNA derived from 48 randomly recruited hypertensives and 48 healthy subjects.We used McNemar's test to estimate the odds ratio(OR) for hypertension for each polymorphism.Conditional logistic regression analysis was used to assess whether the genetic variation was associated independently with hypertension after adjustment for covariates.The extent of pairwise linkage disequilibrium was expressed in terms of D',and the pairwise correlation was presented as r~2.Haplotype Trend Regression(HTR) was used to test the association between each haplotype and hypertension..
     We observed significantly higher frequencies of the 347Arg allele and 2547G alleles in the cases compared to their controls(P=0.04 and 0.007,respectively). McNemar's test revealed carriers of 2547G alleles were at a higher risk for EH with an OR of 3.00(95%CI:1.23-8.35).We then performed a conditional logistic regression to adjust the effects of conventional risk factors,revealing an OR of 2.84 for carriers of 2547G allele(95%CI:1.15-6.99).With the haplotypic probabilities estimated using the PHASE software,we performed the Haplotype Trend Regression analysis,showing a significant association between haplotype 7 and EH(P=0.02), after adjustment for conventional risk factors.
     Our findings suggest that the genetic variations in the ADRA1A gene are significantly associated with EH and may play an important role in the development of essential hypertension in this Chinese population.
     SECTION TWO CYP11B2 gene haplotypes and hypertension
     Human aldosterone synthase(CYP11B2),a steroid 11β-hydroxylase as well as an 18-hydroxylase and an 18-oxidase,catalyzes the terminal steps of aldosterone biosynthesis in the zona glomerulosa cells of the adrenal.The objective of this study was to investigate the association of polymorphisms in the aldosterone synthase gene CYP11B2(T-344C,Lys173Arg,and an intronic conversion[IC]) with stage-2 hypertension in northern Han Chinese.A total of 503 hypertensives and their age-, gender- and area-matched controls were included in this study.The female hypertensives had significantly higher frequencies of the -344T,173Lys and IC-conversion alleles(p=0.002,0.002 and 0.014,respectively).The estimated frequency of haplotype composed of the -344T,173Lys and IC-conversion alleles (haplotype 4) was significantly higher in the female hypertensives compared with their controls(p=0.007).Using a multivariate score test,we found that haplotype 4 remained associated with female hypertension after the adjustment for covariates (p=0.003),while the haplotype 3 of T-Arg-WT showed a protective effect both in the males and in the females(p=0.03 and 0.006,respectively).These results indicate that the 173Lys and the IC-conversion allele of the CYP11B2 gene confer an increased risk for stage-2 hypertension in northern Han Chinese women.
     SECTION THREE Association study of TH Gene with Hypertension and Primary Functional Analysis
     The tyrosine hydroxylase(TH) gene encodes the rate-limiting enzyme of catecholamine biosynthesis,thus it plays a pivotal role in the physiology of sympathetic nervous system.However,as one of the candidate genes of essential hypertension,the relation between the variants of TH gene and hypertension had not been extensively studied.We designed a case-control study consisting of 490 normotensive(NT) controls and 503 hypertensive(HT) cases matched in area,age and gender to systematically investigate the relationship between TH gene and hypertension.Based on the HapMap and dbSNP data,four SNPs,rs6356,rs6357, rs2070762 and rs1800033 in the TH gene were selected for genotyping.The SNP rs1800033 did not present polymorphic in our studied population.No significant distribution differences were observed for rs6356 and rs6357 between HT and NT groups.However,both the genotype and allele frequencies of rs2070762 showed significant differences between cases and controls(P<0.001 and P=0.005, respectively).The SNP rs6356 and rs6357 were both in weak linkage disequilibrium with rs2070762.In haplotype analysis,total eight haplotypes are observed in the entire population and the overall frequency distributions differ significantly between HT group and NT group.Specifically,haplotype A-A-C(in the order of rs6356-rs6357-rs2070762) occurs only in HT group and A-G-C occurs more often in HT subjects than in NT subjects(P=0.003 and P=0.013,respectively).Moreover, haplotype G-G-C carriers get about 1.83-fold higher risk for hypertension than non-carriers(p=0.0049) after adjustment for covariates.Functional analyses showed that C allele confered a two-fold higher promoter activity when fused to a heterologous promoter than the T allele,and unidentified nuclear factor(s) binded specifically to T allele,but not C allele.This suggested the existence of transcriptional repressor(s) responsible for the lower promoter activity regulated by T allele.These results provide evidence for an association of the functional SNP rs2070762 of TH gene with essential hypertension and suggest that the up-regulated expression of TH gene by rs2070762 C allele without binding transcriptional repressor(s) might be involved in the pathogenesis of hypertension.
     SECTION FOUR Association Study with 33 SNPs in 11 Candidate Genes for Hypertension
     Essential hypertension is considered to be a typical complex disease with multifactorial etiology,which leads to inconsistent findings in genetic studies.One possibility of failure to replicate some single-locus results is that the underlying genetics of hypertension is not only based on multiple genes with minor effects,but also on gene-gene interactions.To test this hypothesis,a case-control study was constructed in Chinese,detecting both single locus and multilocus effects.Eleven candidate genes were selected from related genes that have been implicated in the development and progression of hypertension and thirty-three polymorphisms were evaluated in 503 hypertension patients and 490 age-,gender-matched controls. Single-locus associations,using traditional logistic regression analyses,and multi-locus associations,using classification and regression trees(CART) and multivariate adaptive regression splines(MARS) were both explored in this study. Final models were selected using either Bonferroni correction or cross-validation. Three polymorphisms,TH~*rs2070762,ADRB2~*Q27E and GRK4~*A486V,were found to be independently associated with essential hypertension in Chinese.In addition to these individual predictors,a potential interaction of CYP11B2-AGTR1 is also involved in the etiology of hypertension.These findings support the multigenic nature of the etiology of essential hypertension and propose a potential gene-gene interactive model for future studies.
     SECTION FIVE Heritability of Blood Pressure Responses to Dietary Sodium and Potassium Intake
     The heritability of blood pressure responses to dietary intervention has not been well studied.We examined the heritability of blood pressure responses to dietary sodium and potassium intake in a family feeding study among 1906 study participants living in rural North China.The dietary intervention included a 7-day low-sodium feeding(51.3mmol per day),a 7-day high-sodium feeding(307.8 mmol per day),and a 7-day high-sodium plus potassium supplementation(60 mmol per day).Blood pressure was measured 9 times during the 3-day baseline period preceding the intervention and also during the last 3 days of each intervention phase using a random-0 sphygmomanometer.Heritability was computed using maximum likelihood methods under a variance components model as implemented in the computer program SOLAR.The heritabilities of baseline blood pressure were 0.31 for systolic, 0.32 for diastolic,and 0.34 for mean arterial pressure.The heritabilities increased significantly under dietary intervention and were 0.49,0.49,and 0.51 during low sodium;0.47,0.49,and 0.51 during high sodium;and 0.51,0.52,and 0.53 during potassium supplementation for systolic,diastolic,and mean arterial pressure, respectively.The heritabilities for percentage of blood pressure responses to low sodium were 0.20,0.21,and 0.23;to high-sodium were 0.22,0.33,and 0.33;and to potassium supplementation were 0.24,0.21,and 0.25 for systolic,diastolic,and mean arterial pressure,respectively.Our study indicated that the heritabilities of blood pressure under controlled dietary sodium and potassium intake were significantly higher than those under a usual diet.In addition,the heritabilities of blood pressure responses to dietary sodium and potassium intake were moderate in this study population.
引文
1.Hoehe MR,Berrettini WH,Schwinn DA,Hsieh WT.A two-allele PstI RFLP for the alpha-1C adrenergic receptor gene(ADRA 1C).Hum Mol Genet.1992;1(5):349.
    2.Hirasawa A,Horie K,Tanaka T,Takagaki K,Murai M,Yano J,Tsujimoto G.Cloning,functional expression and tissue distribution of human cDNA for the alpha 1C-adrenergic receptor.Biochem Biophys Res Commun.1993;195(2):902-909.
    3.Hirasawa A,Shibata K,Horie K,Takei Y,Obika K,Tanaka T,Muramoto N,Takagaki K,Yano J,Tsujimoto G.Cloning,functional expression and tissue distribution of human alpha 1c-adrenoceptor splice variants.FEBS Lett.1995;363(3):256-260.
    4.Chang DJ,Chang TK,Yamanishi SS,Salazar FH,Kosaka AH,Khare R,Bhakta S,Jasper JR,Shieh IS,Lesnick JD,Ford AP,Daniels DV,Eglen RM,Clarke DE,Bach C,Chan HW.Molecular cloning,genomic characterization and expression of novel human alpha 1A-adrenoceptor isoforms.FEBS Lett.1998;422(2):279-283.
    5.Weinberg DH,Trivedi P,Tan CP,Mitra S,Perkins-Barrow A,Borkowski D,Strader CD,Bayne M.Cloning,expression and characterization of human alpha adrenergic receptors alpha 1a,alpha 1b and alpha 1c.Biochem Biophys Res Commun.1994;201(3):1296-1304.
    6.Esler M,Rumantir M,Kaye D,Jennings G,Hastings J,Socratous F,Lambert G.Sympathetic nerve biology in essential hypertension.Clin Exp Pharmacol Physiol.2001;28(12):986-989.
    7.DeQuattro V,Feng M.The sympathetic nervous system:the muse of primary hypertension.J Hum Hypertens.2002;16(Suppl 1):S64-69.
    8.Koshimizu TA,Tanoue A,Hirasawa A,Yamauchi J,Tsujimoto G.Recent advances in alphal-adrenoceptor pharmacology.Pharmacol Ther.2003;98(2):235-244.
    9.Rorabaugh BR,Ross SA,Gaivin RJ,Papay RS,McCune DF,Simpson PC, Perez DM. alpha1A- but not alpha1B-adrenergic receptors precondition the ischemic heart by a staurosporine-sensitive, chelerythrine-insensitive mechanism. Cardiovasc Res. 2005;65(2):436-445.
    
    10. Wangensteen R, O'Valle F, Del Moral R, Vargas F, Osuna A. Chronic alpha 1-adrenergic blockade improves hypertension and renal injury in L-NAME and low-renin L-NAME-DOCA hypertensive rats. Med Sci Monit. 2002;8(9):BR378-384.
    
    11. Salvi SS. Alpha 1-adrenergic hypothesis for pulmonary hypertension. Chest. 1999; 115(6): 1708-1719.
    
    12. Xie HG, Kim RB, Stein CM, Gainer JV, Brown NJ, Wood AJ. Alpha1A-adrenergic receptor polymorphism: association with ethnicity but not essential hypertension. Pharmacogenetics. 1999;9(5):651-656.
    
    13. Forray C, Bard JA, Wetzel JM, Chiu G, Shapiro E, Tang R, Lepor H, Hartig PR, Weinshank RL, Branchek TA, et al. The alpha 1-adrenergic receptor that mediates smooth muscle contraction in human prostate has the pharmacological properties of the cloned human alpha 1c subtype. Mol Pharmacol. 1994;45(4):703-708.
    
    14. Frishman WH, Kotob F. Alpha-adrenergic blocking drugs in clinical medicine. J Clin Pharmacol. 1999;39(1):7-16.
    
    15. Flordellis C, Paris H, Karabinis A, Lymperopoulos A. Pharmacogenomics of adrenoceptors. Pharmacogenomics. 2004;5(7):803-817.
    
    16. Yang WJ, Huang JF, Yao CL, Fan ZJ, Ge DL, Gan WQ, Huang GY, Hui RT, Shen Y, Qiang BQ, Gu DF. Evidence for linkage and association of the markers near the LPL gene with hypertension in Chinese families. J Med Genet. 2003;40(5):e57.
    
    17. Wu X, Duan X, Gu D, Hao J, Tao S, Fan D. Prevalence of hypertension and its trends in Chinese populations. Int J Cardiol. 1995;52(1):39-44.
    
    18. Reynolds K, Gu D, Muntner P, Wu X, Chen J, Huang G, Duan X, Whelton PK, He J; InterASIA Collaborative Group. Geographic variations in the prevalence, awareness, treatment and control of hypertension in China. J Hypertens. 2003 ;21 (7): 1273-1281.
    
    19. Gu D, Reynolds K, Wu X, Chen J, Duan X, Muntner P, Huang G, Reynolds RF, Su S, Whelton PK, He J; InterASIA Collaborative Group. The International Collaborative Study of Cardiovascular Disease in ASIA. Prevalence, awareness, treatment, and control of hypertension in china. Hypertension. 2002;40(6):920-927.
    
    20. Gu D, Reynolds K, Wu X, Chen J, Duan X, Reynolds RF, Whelton PK, He J; InterASIA Collaborative Group. Prevalence of the metabolic syndrome and overweight among adults in China. Lancet. 2005;365(9468):1398-1405.
    
    21. Perloff D, Grim C, Flack J, Frohlich ED, Hill M, McDonald M, Morgenstern BZ. Human blood pressure determination by sphygmomanometry. Circulation. 1993;88(5 Pt 1):2460-2470.
    
    22. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL Jr, Jones DW, Materson BJ, Oparil S, Wright JT Jr, Roccella EJ; Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. National Heart, Lung, and Blood Institute; National High Blood Pressure Education Program Coordinating Committee. Seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Hypertension. 2003;42(6):1206-1252.
    
    23. Joseph S, David WR. Isolation of high-molecular-weight DNA from mammalian cells using proteinase K and phenol. In: Joseph S, David WR, ed. Molecular cloning: a laboratory manual. 3rd ed. New York: Cold Spring Harbor Laboratory Press; 2001:6.4-6.11.
    
    24. Abou Jamra R, Schumacher J, Golla A, Richter C, Otte AC, Schulze TG, Ohlraun S, Maier W, Rietschel M, Cichon S, Propping P, Nothen MM. Family-based association studies of alpha-adrenergic receptor genes in chromosomal regions with linkage to bipolar affective disorder. Am J Med Genet B Neuropsychiatr Genet. 2004;126(1):79-81.
    
    25. Barr CL, Wigg K, Zai G, Roberts W, Malone M, Schachar R, Tannock R, Kennedy JL. Attention-deficit hyperactivity disorder and the adrenergic receptors alpha 1C and alpha 2C. Mol Psychiatry. 2001;6(3):334-337.
    
    26. Abecasis GR, Cookson WO. GOLD—graphical overview of linkage disequilibrium. Bioinformatics. 2000;16(2):182-183.
    
    27. Stephens M, Smith NJ, Donnelly P. A new statistical method for haplotype reconstruction from population data. Am J Hum Genet. 2001;68(4):978-989.
    
    28. Stephens M, Donnelly P. A comparison of bayesian methods for haplotype reconstruction from population genotype data. Am J Hum Genet. 2003;73(5): 1162-1169.
    
    29. Zaykin DV, Westfall PH, Young SS, Karnoub MA, Wagner MJ, Ehm MG Testing association of statistically inferred haplotypes with discrete and continuous traits in samples of unrelated individuals. Hum Hered. 2002;53(2):79-91.
    
    30. Lake SL, Lyon H, Tantisira K, Silverman EK, Weiss ST, Laird NM, Schaid DJ. Estimation and tests of haplotype-environment interaction when linkage phase is ambiguous. Hum Hered. 2003;55(1):56-65.
    
    31. Feinleib M, Garrison RJ, Fabsitz R, Christian JC, Hrubec Z, Borhani NO, Kannel WB, Rosenman R, Schwartz JT, Wagner JO. The NHLBI twin study of cardiovascular disease risk factors: methodology and summary of results. Am J Epidemiol. 1977;106:284-285.
    
    32. Weinberg R, Shear CL, Avet LM, Frerichs RR, Fox M. Path analysis of environmental and genetic influences on blood pressure. Am J Epidemiol. 1979;109(5):588-596.
    
    33. Rice T, Vogler GP, Perusse L, Bouchard C, Rao DC. Cardiovascular risk factors in a French Canadian population: resolution of genetic and familial environmental effects on blood pressure using twins, adoptees, and extensive information on environmental correlates. Genet Epidemiol. 1989;6(5):571-588.
    
    34. Newton-Cheh C, Hirschhorn JN. Genetic association studies of complex traits: design and analysis issues. Mutat Res. 2005;572(1-2):54-69.
    
    35. Hirschhorn JN, Altshuler D. Once and Again — Issues Surrounding Replication in Genetic Association Studies.J Clin Endocrinol Metab.2002;87(10):4438-4441.
    36.Pritchard PK.Are Rare Variants Responsible for Susceptibility to Complex Diseases? Am.J.Hum.Genet.2001;69(1):124-137.
    37.Pritchard JK,Cox NJ.The allelic architecture of human disease genes:common disease-common variant.or not? Hum Mol Genet.Oct 12002;11(20):2417-2423.
    38.Cohen JC,Kiss RS,Pertsemlidis A,et al.Multiple rare alleles contribute to low plasma levels of HDL cholesterol.Science.Aug 62004;305(5685):869-872.
    39.Blangero J.Localization and identification of human quantitative trait loci:king harvest has surely come.Curr Opin Genet Dev.Jun 2004;14(3):233-240.
    1. Kawamoto T, Mitsuuchi Y, Toda K et al. Role of steroid 11b-hydroxylase and steroid 18-hydroxylase in the biosynthesis of glucocorticoids and mineralocorticoids in humans. Proc Natl Acad Sci U S A 1992: 89:1458 -1462.
    
    2. Curnow KM, Tusie-Luna MT, Pascoe L et al. The product of the CYP11B2 gene is required for aldosterone biosynthesis in the human adrenal cortex. Mol Endocrinol 1991: 5:1513-1522.
    
    3. Fardella CE, Rodriguez H, Montero J et al. Genetic variation in P450c11AS in Chilean patients with low renin hypertension. J Clin Endocrinol Metab 1996: 81:4347-4351.
    
    4. Brand E, Chatelain N, Mulatero P et al. Structural analysis and evaluation of the aldosterone synthase gene in hypertension. Hypertension 1998: 32:198-204.
    
    5. Tamaki S, Iwai N, Tsujita Y, Kinoshita M. Genetic polymorphisms of CYP11B2 gene and hypertension in Japanese. Hypertension 1999: 33[part II]:266-270.
    
    6. Lim PO, Macdonald TM, Holloway C et al. Variation at the aldosterone synthase (CYP11B2) locus contributes to hypertension in subjects with a raised aldosterone-to-renin ratio. J Clin Endocrinol Metab 2002: 87:4398-4402.
    
    7. Davies E, Kenyon CJ. CYP11B2 polymorphisms and cardiovascular risk factors. J Hypertens 2003: 21:1249-1253.
    
    8. Nicod J, Bruhin D, Auer L et al. A Biallelic Gene Polymorphism of CYP11B2 Predicts Increased Aldosterone to Renin Ratio in Selected Hypertensive Patients. J Clin Endocrinol Metab 2003: 88(6):2495-2500.
    
    9. White PC, Slutsker L. Haplotype analysis of CYP11B2. Endocrinol Res 1995: 21:437-442.
    
    10. Clyne CD, Zhang Y, Slutsker L et al. Angiotensin II and potassium regulate human CYP11B2 transcription through common cis-elements. Mol Endocrinol 1997: 11:638-649.
    
    11. Kupari M, Hautanen A, Lankinen L et al. Association between human aldosterone synthase (CYP11B2) gene polymorphisms and left ventricular size, mass and function. Circulation 1998: 97:569-575.
    12. Komiya I, Yamada T, Takara M et al. Lys173Arg and -344T/C variants of CYP11B2 in Japanese patients with low-renin hypertension. Hypertension 2000: 35:699-703.
    
    13. Wu X, Duan X, Gu D et al. Prevalence of hypertension and its trends in Chinese population. International J Cardiol 1995: 52:39-45.
    
    14. Ge D, Yang W, Huang J et al. Linkage analysis of 2q14-q23 and 5q22 with blood pressure quantitative traits in Chinese sib pairs. J Hypertens 2003: 21:305-310.
    
    15. Gu D, Reynolds K, Wu X et al. Prevalence, Awareness, treatment, and control of hypertension in China. Hypertension 2002: 40:920-927.
    
    16. Perloff D, Grim C, Flack J et al. Human blood pressure determination by sphygmomanometry. Circulation 1993: 88(5 pt 1): 2460-2470.
    
    17. JNC 7. Classification of Blood Pressure. In: The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. U.S. Department of Health and Human Services, National Institutes of Health, National Heart, Lung, and Blood Institute, 2003: 2-3.
    
    18. Joseph S, David WR. Isolation of high-molecular-weight DNA from mammalian cells using proteinase K and phenol. In: Joseph S, David WR, eds. Molecular cloning: a laboratory manual. -3rd ed. New York: Cold Spring Harbor Laboratory Press, 2001: 6.4-6.11.
    
    19. Davies E, Holloway CD, Ingram MC et al. Aldosterone excretion rate and blood pressure in essential hypertension are related to polymorphic differences in the aldosterone synthase gene CYP11B2. Hypertension 1999: 33:703-707.
    
    20. Xie X, Ott J. Testing linkage disequilibrium between a disease gene and marker loci. Am J Hum Genet, suppl. 1993: 53:1107.
    
    21. Zhao JH, Curtis D, Sham PC. Model-free analysis and permutation tests for allelic associations. Hum Hered 2000: 50(2): 133-9.
    
    22. Zapata C, Carollo C, Rodriguez S. Sampling variance and distribution of the D' measure of overall gametic disequlibrium between multiallelic loci. Ann Hum Genet 2001: 65:395-406.
    
    23. Schaid DJ, Rowland CM, Tines DE et al. Score tests for association between traits and haplotypes when linkage phase is ambiguous. Am J Hum Genet 2002: 70:425-434.
    
    24. Lake SL, Lyon H, Tantisira K et al. Estimation and tests of haplotype-environment interaction when linkage phase is ambiguous. Hum Hered 2003: 55:56-65.
    
    25. Song J, Narita I, Goto S et al. Gender specific association of aldosterone synthase gene polymorphism with renal survival in patients with IgA nephropathy. J Med Genet 2003: 40:372-376.
    
    26. Kumar NN, Benjafield AV, Lin RC et al. Haplotype analysis of aldosterone synthase gene (CYP11B2) polymorphisms shows association with essential hypertension. J Hypertens 2003: 21:1331-1337.
    
    27. Reckelhoff JF, Zhang H, Granger JP. Testosterone exacerbates hypertension and reduces pressure-natriuresis in male spontaneously hypertensive rats. Hypertension 1998: 31:435-9.
    
    28. Reckelhoff JF, Zhang H, Srivastava K et al. Gender differences in hypertension in spontaneously hypertensive rats: role of androgens and androgen receptor. Hypertension 1999: 34:920-3.
    
    29. Giacche M, Vuagnat A, Hunt SC et al. Aldosterone stimulation by angiotensin II: influence of gender, plasma renin, and familial resemblance. Hypertension 2000: 35:710-16.
    
    30. Tsukada K, Ishimitsu T, Teranishi M et al. Positive association of CYP11B2 gene polymorphism with genetic predisposition to essential hypertension. J Hum Hypertens 2002: 16(11):789-93.
    
    31. Matsubara M, Sato T, Nishimura T et al. CYP11B2 polymorphisms and home blood pressure in a population-based cohort in Japanese: the Ohasama study. Hypertens Res. 2004;27(1):1-6.
    
    32. Hautanena A, Lankinen L, Kupari M et al. Associations between aldosterone synthase gene polymorphism and the adrenocortical function in males. J Intern Med 1998: 244(1):11-8.
    
    33. Silvestre J-S, Robert V, Heymes C et al. Myocardial production of aldosterone and corticosterone in the rat. J Biol Chem 1998: 237:4883-4891.
    
    34. MacKenzie SM, Clark CJ, Fraser R et al. Expression of 11β-hydroxylase and aldosterone synthase genes in the rat brain. J Mol Endocrinol 2000: 24:321-328.
    
    35. Gomez-Sanchez CE, Zhou M, Cozza EN et al. Aldosterone biosynthesis in the rat brain. Endocrinology 1997: 138:3369-3373.
    
    36. Wu P, Guo Z, Zhang Y et al. Aldosterone overproduction and CYP11B2 mRNA overexpression in vessels of spontaneously hypertensive rats. Horm Res 1998: 50:28-31.
    
    37. Sirianni R, Seely JB, Attia G et al. Liver receptor homologue-1 is expressed in human steroidogenic tissues and activates transcription of genes encoding steroidogenic enzymes. J Endocrinol 2002: 174:R13-R17.
    1. D S Goldstein, Stress, Catecholamines and Cardiovascular Disease, Oxford University Press, New York, 1995.
    
    2. D S Goldstein. Plasma catecholamines and essential hypertension. an analytical review. Hypertension, 5(1):86-99, 1983.
    
    3. D S Timberlake, D T O'Connor, and R J Partner. Molecular genetics of essential hypertension: recent results and emerging strategies. Curr Opin Nephrol Hypertens, 10(1):71-9,2001.
    
    4. K L O'Malley, M J Anhalt, B M Martin, J R Kelsoe, S L Winfield, and E I Ginns. Isolation and characterization of the human tyrosine hydroxylase gene: identification of 5' alternative splice sites responsible for multiple mrnas. Biochemistry, 26(22):6910-4, 1987.
    
    5.R A Furlong, J S Rubinsztein, L Ho, C Walsh, T A Coleman, W J Muir, E S Paykel, D H Blackwood, and D C Rubinsztein. Analysis and metaanalysis of two polymorphisms within the tyrosine hydroxylase gene in bipolar and unipolar affective disorders. Am J Med Genet, 88(1):88-94, 1999.
    
    6. Helen M Chao and Mary Ann Richardson. Aromatic amino acid hydroxylase genes and schizophrenia. Am J Med Genet, 114(6):626-30, 2002.
    
    7. Richard J L Anney, Craig A Olsson, Mehrnoush Lotfi-Miri, George C Patton, and Robert Williamson. Nicotine dependence in a prospective population-based study of adolescents: the protective role of a functional tyrosine hydroxylase polymorphism. Pharmacogenetics, 14(2):73—81, 2004.
    
    8. Pankaj Sharma, Aroon Hingorani, Haiyan Jia, Mike Ashby, Ruth Hopper, David Clayton, and Morris J. Brown. Positive association of tyrosine hydroxylase microsatellite marker to essential hypertension. Hypertension, 32(4):676-682, 1998.
    
    9. Lian Zhang, Fangwen Rao, Jennifer Wessel, Brian P Kennedy, Brinda K Rana, Laurent Taupenot, Elizabeth O Lillie, Myles Cockburn, Nicholas J Schork, Michael G Ziegler, and Daniel T O'Connor. Functional allelic heterogeneity and pleiotropy of a repeat polymorphism in tyrosine hydroxylase: prediction of catecholamines and response to stress in twins. Physiol Genomics, 19(3):277-91, 2004.
    
    10. Michael Klintschar, Uta-Dorothee Immel, Dankwart Stiller, and Manfred Kleiber. Th01, a tetrameric short tandem repeat locus in the tyrosine hydroxylase gene: Association with myocardial hypertrophy and death from myocardial infarction? Dis Markers, 21(1):9-12, 2005.
    
    11. Dongfeng Gu, Kristi Reynolds, Xigui Wu, Jing Chen, Xiufang Duan, Paul Muntner, Guanyong Huang, Robert F Reynolds, Shaoyong Su, Paul K Whelton, and Jiang He. Prevalence, awareness, treatment, and control of hypertension in china. Hypertension, 40(6):920-7, 2002.
    
    12. J D Rioux, M J Daly, M S Silverberg, K Lindblad, H Steinhart, Z Cohen, T Delmonte, K Kocher, K Miller, S Guschwan, E J Kulbokas, S O'Leary, E Winchester, K Dewar, T Green, V Stone, C Chow, A Cohen, D Langelier, G Lapointe, D Gaudet, J Faith, N Branco, S B Bull, R S McLeod, A MGriffiths, A Bitton, G R Greenberg, E S Lander, K A Siminovitch, and T J Hudson. Genetic variation in the 5q31 cytokine gene cluster confers susceptibility to crohn disease. Nat Genet, 29(2):223-8, 2001.
    
    13. MJ Daly, J D Rioux, S F Schaffner, T J Hudson, and E S Lander. High-resolution haplotype structure in the human genome. Nat Genet, 29(2):229-32, 2001.
    
    14. G C Johnson, L Esposito, B J Barratt, A N Smith, J Heward, G Di Genova, H Ueda, H J Cordell, I A Eaves, F Dudbridge, R C Twells, F Payne, W Hughes, S Nutland, H Stevens, P Carr, E Tuomilehto-Wolf, J Tuomilehto, S C Gough, D G Clayton, and J A Todd. Haplotype tagging for the identification of common disease genes. Nat Genet, 29(2):233-7, 2001.
    
    15. J Akey, L Jin, and M Xiong. Haplotypes vs single marker linkage disequilibrium tests: what do we gain? Eur J Hum Genet, 9(4):291-300, 2001.
    
    16. ShamPak. Statistics in Human Genetics. Arnold applications of Statistics. Oxford University Press, New York, 1998.
    
    17. Wen-Chung Lee. Searching for disease-susceptibility loci by testing for hardyweinberg disequilibrium in a gene bank of affected individuals. Am J Epidemiol, 158(5):397-400, 2003.
    18. Atchison ML, Meyuhas 0, Perry RP.Localization of transcriptional regulatory elements and nuclear factor binding sites in mouse ribosomal protein gene rpL32.Mol Cell Biol. 1989 May;9(5):2067-74.
    
    19. Chung S, Perry RP.The importance of downstream delta-factor binding elements for the activity of the rpL32 promoter.Nucleic Acids Res. 1993 Jul 11;21(14):3301-8.
    
    20. Oshima RG, Abrams L, Kulesh D. Activation of an intron enhancer within the keratin 18 gene by expression of c-fos and c-jun in undifferentiated F9 embryonal carcinoma cells. Genes Dev. 1990 May;4(5):835-48
    
    21. Schultz JR, Tansey T, Gremke L, Storti RV.A muscle-specific intron enhancer required for rescue of indirect flight muscle and jump muscle function regulates Drosophila tropomyosin I gene expression. Mol Cell Biol. 1991 Apr; 11 (4): 1901-11.
    
    22. Levy-Wilson B, Paulweber B, Antes TJ, Goodart SA, Lee SY. An open chromatin structure in a liver-specific enhancer that confers high level expression to human apolipoprotein b transgenes in mice. Mol Cell Biol Res Commun. 2000 Oct;4(4):206-11.
    
    23. Henkel G, Brown MA. PU.1 and GATA: components of a mast cell-specific interleukin 4 intronic enhancer.Proc Natl Acad Sci U S A. 1994 Aug 2;91(16):7737-41.
    
    24. Hural JA, Kwan M, Henkel G, Hock MB, Brown MA. An intron transcriptional enhancer element regulates IL-4 gene locus accessibility in mast cells.J Immunol. 2000 Sep 15;165(6):3239-49.
    
    25. Zhang X, Xing G, Fraizer GC, Saunders GF.Transactivation of an intronic hematopoietic-specific enhancer of the human Wilms' tumor 1 gene by GATA-1 and c-Myb. J Biol Chem. 1997 Nov 14;272(46):29272-80.
    
    26. Howell M, Hill CS. XSmad2 directly activates the activin-inducible, dorsal mesoderm gene XFKH1 in Xenopus embryos.EMBO J. 1997 Dec 15;16(24):7411-21.
    
    27. Gregori C, Porteu A, Lopez S, Kahn A, Pichard AL. Characterization of the aldolase B intronic enhancer. J Biol Chem. 1998 Sep 25;273(39):25237-43.
    28. Schjerven H, Brandtzaeg P, Johansen FE. A novel NF-kappa B/Rel site in intron 1 cooperates with proximal promoter elements to mediate TNF-alpha-induced transcription of the human polymeric Ig receptor.J Immunol. 2001 Dec l;167(11):6412-20.
    
    29. Hwang ES, Choi A, Ho IC Transcriptional regulation of GATA-3 by an intronic regulatory region and fetal liver zinc finger protein 1. J Immunol. 2002 Jul 1;169(1):248-53.
    
    30. Palii SS, Chen H, Kilberg MS. Transcriptional control of the human sodium-coupled neutral amino acid transporter system A gene by amino acid availability is mediated by an intronic element. J Biol Chem. 2004 Jan 30;279(5):3463-71.
    
    31. Gaunitz F, Heise K, Gebhardt R. A silencer element in the first intron of the glutamine synthetase gene represses induction by glucocorticoids.Mol Endocrinol. 2004 Jan;18(1):63-9.
    
    32. Wardrop SL, Brown MA; kConFab Investigators. Identification of two evolutionarily conserved and functional regulatory elements in intron 2 of the human BRCA1 gene. Genomics. 2005 Sep;86(3):316-28.
    
    33. DeLong CJ, Smith WL. An intronic enhancer regulates cyclooxygenase-1 gene expression. Biochem Biophys Res Commun. 2005 Dec 9;338(1):53-61.
    
    34. Shirai T, Miyagi S, Horiuchi D, et al. Identification of an enhancer that controls up-regulation of fibronectin during differentiation of embryonic stem cells into extraembryonic endoderm.J Biol Chem. 2005 Feb 25;280(8):7244-52.
    
    35. Hisatsune H, Matsumura K, Ogawa M, et al.High level of endothelial cell-specific gene expression by a combination of the 5' flanking region and the 5' half of the first intron of the VE-cadherin gene. Blood. 2005 Jun 15; 105(12):4657-63.
    
    36. Stemmler MP, Hecht A, Kemler R. E-cadherin intron 2 contains cis-regulatory elements essential for gene expression. Development. 2005 Mar;132(5):965-76.
    
    37. Meng F, Zolova O, Kokorina NA, Dobretsova A, Wight PA. Characterization of an intronic enhancer that regulates myelin proteolipid protein (Plp) gene expression in oligodendrocytes.J Neurosci Res. 2005 Nov 1;82(3):346-56.
    38. Tokuhiro S, Yamada R, Chang X, et al., An intronic SNP in a RUNX1 binding site of SLC22A4, encoding an organic cation transporter, is associated with rheumatoid arthritis.Nat Genet. 2003 Dec;35(4):341-8.
    
    39. Kawaida R, Yamada R, Kobayashi K, Tokuhiro S, Suzuki A, Kochi Y, Chang X, Sekine A, Tsunoda T, Sawada T, Furukawa H, Nakamura Y, Yamamoto K. CUL1, a component of E3 ubiquitin ligase, alters lymphocyte signal transduction with possible effect on rheumatoid arthritis.Genes Immun. 2005 May;6(3):194-202.
    
    40. Ozaki K, Ohnishi Y, Iida A, Sekine A, Yamada R, Tsunoda T, Sato H, Sato H, Hori M, Nakamura Y, Tanaka T. Functional SNPs in the lymphotoxin-alpha gene that are associated with susceptibility to myocardial infarction. Nat Genet. 2002 Dec;32(4):650-4.
    
    41. Ozaki K, Inoue K, Sato H, Iida A, Ohnishi Y, Sekine A, Sato H, Odashiro K, Nobuyoshi M, Hori M, Nakamura Y, Tanaka T. Functional variation in LGALS2 confers risk of myocardial infarction and regulates lymphotoxin-alpha secretion in vitro. Nature. 2004 May 6;429(6987):72-5.
    
    42. Meloni R, Albanese V, Ravassard P, Treilhou F, Mallet J. A tetranucleotide polymorphic microsatellite, located in the first intron of the tyrosine hydroxylase gene, acts as a transcription regulatory element in vitro. Hum Mol Genet. 1998 Mar;7(3):423-8.
    
    43. Albanese V, Biguet NF, Kiefer H, Bayard E, Mallet J, Meloni R. Quantitative effects on gene silencing by allelic variation at a tetranucleotide microsatellite. Hum Mol Genet. 2001 Aug 15;10(17):1785-92.
    
    44. Kumer SC, Vrana KE. Intricate regulation of tyrosine hydroxylase activity and gene expression.J Neurochem. 1996 Aug;67(2):443-62.
    
    45. Mallet J. Tyrosine hydroxylase from cloning to neuropsychiatric disorders. Brain Res Bull. 1999 Nov 15-Dec;50(5-6):381-2.
    
    46. Fossom LH, Sterling C, Tank AW. Activation of tyrosine hydroxylase by nicotine in rat adrenal gland. J Neurochem. 1991 Dec;57(6):2070-7.
    
    47. Sabban EL, Kvetnansky R. Stress-triggered activation of gene expression in catecholaminergic systems: dynamics of transcriptional events.Trends Neurosci. 2001 Feb;24(2):91-8.
    48.Fung BP,Yoon SO,Chikaraishi DMSequences that direct rat tyrosine hydroxylase gene expression..J Neurochem.1992 Jun;58(6):2044-52.
    49.Nakashima A,Ota A,Sabban EL.Interactions between Egrl and AP1 factors in regulation of tyrosine hydroxylase transcription.Brain Res Mol Brain Res.2003Apr 10;112(1-2):61-9.
    50.Milsted A,Serova L,Sabban EL,Dunphy G,Turner ME,Ely DL.Regulation of tyrosine hydroxylase gene transcription by Sry.Neurosci Lett.2004 Oct 21;369(3):203-7.
    1. Luft FC. Geneticism of essential hypertension. Hypertension. 2004;43:1155-1159.
    
    2. Kaplan N. Clinical Hypertension. Philadelphia, PA: Lippincott Williams & Wilkins; 2002.
    
    3. Halushka MK, Fan JB, Bentley K, Hsie L, Shen N, Weder A, Cooper R, Lipshutz R, Chakravarti A. Patterns of single-nucleotide polymorphisms in candidate genes for blood-pressure homeostasis. Nat Genet. 1999;22: 239-247.
    
    4. Timberlake DS, O'Connor DT, Parmer RJ. Molecular genetics of essential hypertension: recent results and emerging strategies. Curr Opin Nephrol Hypertens. 2001; 10:71-79.
    
    5. Fornage M, Amos CI, Kardia S, Sing CF, Turner ST, Boerwinkle E. Variation in the region of the angiotensin-converting enzyme gene influences interindividual differences in blood pressure levels in young white males. Circulation. 1998;97:1773-1779.
    
    6. O'Donnell CJ, Lindpaintner K, Larson MG, Rao VS, Ordovas JM, Schaefer EJ, Myers RH, Levy D. Evidence for association and genetic linkage of the angiotensin-converting enzyme locus with hypertension and blood pressure in men but not women in the Framingham Heart Study. Circulation. 1998;97:1766 -1772.
    
    7. Higaki J, Baba S, Katsuya T, Sato N, Ishikawa K, Mannami T, Ogata J, Ogihara T. Deletion allele of angiotensin-converting enzyme gene increases risk of essential hypertension in Japanese men: the Suita Study. Circulation. 2000;101:2060 -2065.
    
    8. Staessen JA, Wang JG, Ginocchio G, Petrov V, Saavedra AP, Soubrier F, Vlietinck R, Fagard R. The deletion/insertion polymorphism of the angiotensin converting enzyme gene and cardiovascular-renal risk. J Hypertens. 1997;15:1579 -1592.
    
    9. Wang JG, Staessen JA. Genetic polymorphisms in the renin-angiotensin system: relevance for susceptibility to cardiovascular disease. Eur J Pharmacol. 2000;410:289-302.
    10. Agerholm-Larsen B, Nordestgaard BG, Tybjaerg-Hansen A. ACE gene polymorphism in cardiovascular disease: meta-analyses of small and large studies in whites. Arterioscler Thromb Vasc Biol. 2000;20: 484-492.
    
    11. Harrap SB, Tzourio C, Cambien F, Poirier O, Raoux S, Chalmers J, Chapman N, Colman S, Leguennec S, MacMahon S, Neal B, Ohkubo T, Woodward M. The ACE gene I/D polymorphism is not associated with the blood pressure and cardiovascular benefits of ACE inhibition. Hypertension. 2003;42:297-303.
    
    12. Jeunemaitre X, Lifton RP, Hunt SC, Williams RR, Lalouel JM. Absence of linkage between the angiotensin converting enzyme locus and human essential hypertension. Nat Genet. 1992; 1:72-75.
    
    13. Barley J, Blackwood A, Miller M, Markandu ND, Carter ND, Jeffery S, Cappuccio FP, MacGregor GA, Sagnella GA. Angiotensin converting enzyme gene I/D polymorphism, blood pressure and the renin-angiotensin system in Caucasian and Afro-Caribbean peoples. J Hum Hypertens. 1996;10:31-35.
    
    14. Moore JH, Williams SM. New strategies for identifying gene-gene interactions in hypertension. Ann Med. 2002;34:88 -95.
    
    15. Siani A, Russo P, Paolo Cappuccio F, Iacone R, Venezia A, Russo O, Barba G, Iacoviello L, Strazzullo P. Combination of renin-angiotensin system polymorphisms is associated with altered renal sodium handling and hypertension. Hypertension. 2004;43:598-602.
    
    16. Williams SM, Addy JH, Phillips JA, 3rd, Dai M, Kpodonu J, Afful J, Jackson H, Joseph K, Eason F, Murray MM, Epperson P, Aduonum A, Wong LJ, Jose PA, Felder RA. Combinations of variations in multiple genes are associated with hypertension. Hypertension. 2000;36:2- 6.
    
    17. Moore JH. The ubiquitous nature of epistasis in determining susceptibility to common human diseases. Hum Hered. 2003;56:73- 82.
    
    18. Lim PO, Macdonald TM, Holloway C, Friel E, Anderson NH, Dow E, Jung RT, Davies E, Fraser R, Connell JM. Variation at the aldosterone synthase (CYP11B2) locus contributes to hypertension in subjects with a raised aldosterone-to-renin ratio. J Clin Endocrinol Metab. 2002;87: 4398-4402.
    19. Esler M, Rumantir M, Kaye D, Jennings G, Hastings J, Socratous F, Lambert G. Sympathetic nerve biology in essential hypertension. Clin Exp Pharmacol Physiol. 2001 ;28:986 -989.
    
    20. DeQuattro V, Feng M. The sympathetic nervous system: the muse of primary hypertension. J Hum Hypertens. 2002;16(suppl 1):S64 -S69.
    
    21. Yang WJ, Huang JF, Yao CL, Fan ZJ, Ge DL, Gan WQ, Huang GY, Hui RT, Shen Y, Qiang BQ, Gu DF. Evidence for linkage and association of the markers near the LPL gene with hypertension in Chinese families. J Med Genet. 2003;40:e57.
    
    22. Hamm HE. The many faces of G protein signaling. J Biol Chem. 1998; 273:669-672.
    
    23. Miyamoto Y, Saito Y, Kajiyama N, Yoshimura M, Shimasaki Y, Nakayama M, Kamitani S, Harada M, Ishikawa M, Kuwahara K, Ogawa E, Hamanaka I, Takahashi N, Kaneshige T, Teraoka H, Akamizu T, Azuma N, Yoshimasa Y, Yoshimasa T, Itoh H, Masuda I, Yasue H, Nakao K. Endothelial nitric oxide synthase gene is positively associated with essential hypertension. Hypertension. 1998;32:3-8.
    
    24. Felder RA, Sanada H, Xu J, Yu PY, Wang Z, Watanabe H, Asico LD, Wang W, Zheng S, Yamaguchi I, Williams SM, Gainer J, Brown NJ, Hazen-Martin D, Wong LJ, Robillard JE, Carey RM, Eisner GM, Jose PA. G protein-coupled receptor kinase 4 gene variants in human essential hypertension. Proc Natl Acad Sci U S A. 2002;99:3872-3877.
    
    25. Wilson FH, Disse-Nicodeme S, Choate KA, Ishikawa K, Nelson-Williams C, Desitter I, Gunel M, Milford DV, Lipkin GW, Achard JM, Feely MP, Dussol B, Berland Y, Unwin RJ, Mayan H, Simon DB, Farfel Z, Jeunemaitre X, Lifton RP. Human hypertension caused by mutations in WNK kinases. Science. 2001;293:1107-1112.
    
    26. Breiman L FJ, Olshen RA, Stone CJ. Classification and Regression Trees. Belmont, CA: Chapman & Hall/CRC; 1984.
    
    27. Friedman JH, Roosen CB. An introduction to multivariate adaptive regression splines. Stat Methods Med Res. 1995;4:197-217.
    28. Gu D, Reynolds K, Wu X, Chen J, Duan X, Muntner P, Huang G, Reynolds RF, Su S, Whelton PK, He J. Prevalence, awareness, treatment, and control of hypertension in china. Hypertension. 2002;40:920 -927.
    
    29. Perloff D, Grim C, Flack J, Frohlich ED, Hill M, McDonald M, Morgenstern BZ. Human blood pressure determination by sphygmomanometry. Circulation. 1993;88:2460-2470.
    
    30. Devlin B, Roeder K. Genomic control for association studies. Biometrics. 1999;55:997-1004.
    
    31. Bacanu SA, Devlin B, Roeder K. The power of genomic control. Am J Hum Genet. 2000;66:1933-1944.
    
    32. Abecasis GR, Cookson WO. GOLD-graphical overview of linkage disequilibrium. Bioinformatics. 2000; 16:182-183.
    
    33. Schaid DJ, Rowland CM, Tines DE, Jacobson RM, Poland GA. Score tests for association between traits and haplotypes when linkage phase is ambiguous. Am J Hum Genet. 2002;70:425- 434.
    
    34. Wu X, Duan X, Gu D, Hao J, Tao S, Fan D. Prevalence of hypertension and its trends in Chinese populations. Int J Cardiol. 1995;52:39-44.
    
    35. Goldstein DS. Plasma catecholamines and essential hypertension. An analytical review. Hypertension. 1983;5:86-99.
    
    36. Rockman HA, Koch WJ, Lefkowitz RJ. Cardiac function in genetically engineered mice with altered adrenergic receptor signaling. Am J Physiol. 1997;272:H1553-H1559.
    
    37. Bray MS, Krushkal J, Li L, Ferrell R, Kardia S, Sing CF, Turner ST, Boerwinkle E. Positional genomic analysis identifies the P(2)-adrenergic receptor gene as a susceptibility locus for human hypertension. Circulation. 2000; 101:2877-2882.
    
    38. Krushkal J, Ferrell R, Mockrin SC, Turner ST, Sing CF, Boerwinkle E. Genome-wide linkage analyses of systolic blood pressure using highly discordant siblings. Circulation. 1999;99:1407-1410.
    
    39. Busjahn A, Li GH, Faulhaber HD, Rosenthal M, Becker A, Jeschke E, Schuster H, Timmermann B, Hoehe MR, Luft FC. β-2 adrenergic receptor gene variations, blood pressure, and heart size in normal twins. Hypertension. 2000;35:555-560.
    
    40. Jose PA, Eisner GM, Felder RA. Dopamine and the kidney: a role in hypertension? Curr Opin Nephrol Hypertens. 2003;12:189 -194.
    
    41. Zeng C, Sanada H, Watanabe H, Eisner GM, Felder RA, Jose PA. Functional genomics of the dopaminergic system in hypertension. Physiol Genomics. 2004; 19:233-246.
    
    42. Speirs HJ, Katyk K, Kumar NN, Benjafield AV, Wang WY, Morris BJ. Association of G-protein-coupled receptor kinase 4 haplotypes, but not HSD3B1 or PTP1B polymorphisms, with essential hypertension. J Hypertens. 2004;22:931-936.
    
    43. Williams SM, Ritchie MD, Phillips JA, 3rd, Dawson E, Prince M, Dzhura E, Willis A, Semenya A, Summar M, White BC, Addy JH, Kpodonu J, Wong LJ, Felder RA, Jose PA, Moore JH. Multilocus analysis of hypertension: a hierarchical approach. Hum Hered. 2004;57:28 -38.
    
    44. Xue C, Siragy HM. Local renal aldosterone system and its regulation by salt, diabetes, and angiotensin II type 1 receptor. Hypertension. 2005;46:584-590.
    
    45. Culverhouse R, Suarez BK, Lin J, Reich T. A perspective on epistasis: limits of models displaying no main effect. Am J Hum Genet. 2002;70:461-471.
    
    46. Zhang H, Bonney G. Use of classification trees for association studies. Genet Epidemiol. 2000; 19:323-332.
    
    47. York TP, Eaves LJ. Common disease analysis using Multivariate Adaptive Regression Splines (MARS): Genetic Analysis Workshop 12 simulated sequence data. Genet Epidemiol. 2001;21(suppl 1):S649 -S654.
    
    48. Cook NR, Zee RY, Ridker PM. Tree and spline based association analysis of gene-gene interaction models for ischemic stroke. Stat Med. 2004;23: 1439-1453.
    1.Elliott P,Stamler J,Nichols R,Dyer AR,Stamler R,Kesteloot H,Marmot M.Intersalt revisited:further analyses of 24 hour sodium excretion and blood pressure within and across populations.BMJ.1996;312:1249-1253.
    2.He J,Tell GS,Tang YC,Mo PS,He GQ.Relation of electrolytes to blood pressure in men.Hypertension.1991;17:378 -385.
    3.Chobanian AV,Hill M.National Heart,Lung,and Blood Institute Workshop on Sodium and Blood Pressure.A critical review of current scientific evidence.Hypertension.2000;35:858-863.
    4.Cutler JA,Follmann D,Allender PS.Randomized trials of sodium reduction:an overview.Am J Clin Nutr.1997;65(suppl):643S-651S.
    5.Midgley JP,Matthew AG,Greenwood CM,Logan AG.Effect of reduced dietary sodium on blood pressure:a meta-analysis of randomized controlled trials.JAMA.1996;275:1590 -1597.
    6.Whelton PK,He J,Cutler JA,Brancati FL,Appel LJ,Follmann D,Klag MJ.Effects of oral potassium on blood pressure.Meta-analysis of randomized controlled clinical trials.JAMA.1997;277:1624-1632.
    7.Weinberger MH.Salt sensitivity of blood pressure in humans.Hypertension.1996;27:481-490.
    8.Obarzanek K,Proschan MA,Vollmer WM,Moore TJ,Sacks FM,Appel LJ,Svetkey LP,Most-Windhauser MM,Cutler JA.Individual blood pressure responses to changes in salt intake:results from the DASHsodium trial.Hypertension.2003;42:459-467.
    9.Vollmer WM,Sacks FM,Ard J,Appel LJ,Bray GA,Simons-Morton DG,Conlin PR,Svetkey LP,Erlinger TP,Moore TJ,Karanja N,for the DASH-Sodium Trial Collaborative Research Group.Effects of diet and sodium intake on blood pressure:subgroup analysis of the DASH-Sodium trial.Ann Intern Med.2001;135:1019-1028.
    10.Wright JT Jr,Rahman M,Scarpa A,Fatholahi M,Griffin V,Jean-Baptiste R,Islam M,Eissa M,White S,Douglas JG.Determinants of salt sensitivity in black and white normotensive and hypertensive women. Hypertension. 2003; 42: 1087-1092.
    
    11 .Beeks E, Kessels AG, Kroon AA, van der Klauw MM, de Leeuw PW. Genetic predisposition to salt-sensitivity: a systematic review. J Hypertens. 2004; 22: 1243-1249.
    
    12. Barlassina C, Lanzani C, Manunta P, Bianchi G. Genetics of essential hypertension: From families to genes. J Am Soc Nephrol. 2002; 13: S155-S164.
    
    13. Svetkey LP, McKeown SP, Wilson AF. Heritability of salt sensitivity in Black Americans. Hypertension. 1996; 287: 854-858.
    
    14. Gensalt Collaborative Research Group. Genetic Epidemiology Network of Salt Sensitivity (GenSalt): rationale, design, methods, and baseline characteristics of study participants. J Human Hypertens. In press.
    
    15. Perloff D, Grim C, Flack J, Frohlich ED, Hill M, McDonald M, Morgenstern BZ. Human blood pressure determination by sphygmomanometer. Circulation. 1993; 88: 2460-2470.
    
    16. Almasy L, Blangero J. Multipoint quantitative-trait linkage analysis in general pedigrees. Am J Hum Genet. 1998; 62: 1198-1211.
    
    17. Saavedra JM. Studies on genes and hypertension: a daunting task. J Hypertens. 2005; 23: 929-932.
    
    18. Rotimi CN, Cooper RS, Cao G, Ogunbiyi O, Ladipo M, Owoaje E, Ward R. Maximum-likelihood generalized heritability estimate for blood pressure in Nigerian families. Hypertension. 1999; 33: 874-878.
    
    19. Mitchell GF, DeStefano AL, Larson MG, Benjamin EJ, Chen MH, Vasan RS, Vita JA, Levy D. Heritability and a genome-wide linkage scan for arterial stiffness, wave reflection, and mean arterial pressure: the Framingham Heart Study. Circulation. 2005; 112: 194-199.
    
    20. Svetkey LP. McKeown SP. Wilson AF. Heritability of salt sensitivity in black Americans. Hypertension. 1996; 28: 854-858.
    
    21. Miller JZ, Weinberger MH, Christian JE, Daugherty SA. Familial resemblance in the blood pressure response to sodium restriction. Am J Epidemiol. 1987; 126: 822- 830.
    22.Marteau JB,Zaiou M,Siest G,Visvikis-Siest S.Genetic determinants of blood pressure regulation.J Hypertens.2005;23:2127-2143.
    1.Carlson CS, Eberle MA, Kruglyak L, Nickerson DA. Mapping complex disease loci in whole-genome association studies. Nature. 2004;429:446-452.
    2.Brookes AJ. Rethinking genetic strategies to study complex diseases. Trends in molecular medicine. 2001 ;7:512-516.
    3.Barnetche T, Gourraud PA, Cambon-Thomsen A. Strategies in analysis of the genetic component of multifactorial diseases; biostatistical aspects. Transplant immunology. 2005;14:255-266.
    4.Wang WY, Barratt BJ, Clayton DG, Todd JA. Genome-wide association studies: theoretical and practical concerns. Nature reviews. 2005;6:109-118.
    5.Hirschhorn JN, Daly MJ. Genome-wide association studies for common diseases and complex traits. Nature reviews. 2005;6:95-108.
    6.Abecasis GR, Ghosh D, Nichols TE. Linkage disequilibrium: ancient history drives the new genetics. Human heredity. 2005;59:118-124.
    7. Foster MW, Sharp RR. Beyond race: towards a whole-genome perspective on human populations and genetic variation. Nature reviews. 2004;5:790-796.
    8.Hafler DA, De Jager PL. Applying a new generation of genetic maps to understand human inflammatory disease. Nat Rev Immunol. 2005;5:83-91.
    9.Hinds DA, Stuve LL, Nilsen GB, Halperin E, Eskin E, Ballinger DG, Frazer KA, Cox DR. Whole-genome patterns of common DNA variation in three human populations. Science .2005;307:1072-1079.
    10.Zhu X, Luke A, Cooper RS, Quertermous T, Hanis C, Mosley T, Gu CC, Tang H, Rao DC, Risch N, Weder A. Admixture mapping for hypertension loci with genome-scan markers. Nature genetics. 2005;37:177-181.
    11 .Zollner S, Pritchard JK. Coalescent-based association mapping and fine mapping of complex trait loci. Genetics. 2005; 169:1071-1092.
    12.Hunter DJ. Gene-environment interactions in human diseases. Nature reviews. 2005;6:287-298.
    13.Khoury MJ, Flanders WD. Nontraditional epidemiologic approaches in the analysis of gene-environment interaction: case-control studies with no controls! American journal of epidemiology. 1996; 144:207-213.
    14.Cordell HJ. Epistasis: what it means, what it doesn't mean, and statistical methods to detect it in humans. Human molecular genetics. 2002; 11:2463-2468.
     15.Ritchie MD, Hahn LW, Roodi N, Bailey LR, Dupont WD, Parl FF, Moore JH. Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer. American journal of human genetics. 2001;69:138-147.
    16.Wacholder S, Chanock S, Garcia-Closas M, El Ghormli L, Rothman N. Assessing the probability that a positive report is false: an approach for molecular epidemiology studies. Journal of the National Cancer Institute. 2004;96:434-442.
    17.Newton-Cheh C, Hirschhorn JN. Genetic association studies of complex traits: design and analysis issues. Mutation research. 2005;573:54-69.
    18.Province MA. A single, sequential, genome-wide test to identify simultaneously all promising areas in a linkage scan. Genetic epidemiology. 2000;19:301-322.
    19.Suh Y, Vijg J. SNP discovery in associating genetic variation with human disease phenotypes. Mutation research. 2005;573:41-53.
    20.Reiman EM. In this issue: entering the era of high-density genome-wide association studies. The Journal of clinical psychiatry. 2007;68:611-612.
    21.Zeggini E, Weedon MN, Lindgren CM, et.al. Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science.. 2007;316:1336-1341.
    22.Yeager M, Orr N, Hayes RB, et.al. Genome-wide association study of prostate cancer identifies a second risk locus at 8q24. Nature genetics. 2007;39:645-649.
    
    23.Sladek R, Rocheleau G, Rung J, et.al. A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature. 2007;445:881-885.
    24.Hunter DJ, Kraft P, Jacobs KB, et.al. A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer. Nature genetics. 2007;39:870-874.
    25.Hampe J, Franke A, Rosenstiel P, et.al. A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nature genetics. 2007;39:207-211.
    26.Grupe A, Abraham R, Li Y, et.al. Evidence for novel susceptibility genes for late-onset Alzheimer's disease from a genome-wide association study of putative functional variants. Human molecular genetics. 2007; 16:865-873.
    27.Duerr RH. Genome-wide association studies herald a new era of rapid discoveries in inflammatory bowel disease research. Gastroenterology. 2007; 132:2045-2049.
    28.Yang EH, McConnell JP, Lennon RJ, Barsness GW, Pumper G, Hartman SJ, Rihal CS, Lerman LO, Lerman A. Lipoprotein-associated phospholipase A2 is an independent marker for coronary endothelial dysfunction in humans. Arteriosclerosis, thrombosis, and vascular biology. 2006;26:106-111.
    29.McPherson R, Pertsemlidis A, Kavaslar N, et.al. A common allele on chromosome 9 associated with coronary heart disease. Science. 2007;316:1488-1491.
    30.Helgadottir A, Thorleifsson G, Manolescu A, et.al. A common variant on chromosome 9p21 affects the risk of myocardial infarction. Science. 2007;316:1491-1493.
    31.Scott LJ, Mohlke KL, Bonnycastle LL, et.al. A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science. 2007;316:1341-1345.
    32.Saxena R, Voight BF, Lyssenko V, et.al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science. 2007;316:1331-1336.
    33.Laird NM, Lange C. Family-based designs in the age of large-scale gene-association studies. Nature reviews. 2006;7:385-394.
    34.Lange C, DeMeo D, Silverman EK, Weiss ST, Laird NM. PBAT: tools for family-based association studies. American journal of human genetics. 2004;74:367-369.
    35.Lange C, DeMeo D, Silverman EK, Weiss ST, Laird NM. Using the noninformative families in family-based association tests: a powerful new testing strategy. American journal of human genetics. 2003;73:801-811.
    36.Van Steen K, McQueen MB, Herbert A, et.al. Genomic screening and replication using the same data set in family-based association testing.Nature genetics.2005;37:683-691.
    37.Herbert A,Gerry NP,McQueen MB,et.al.A common genetic variant is associated with adult and childhood obesity.Science.2006;312:279-283.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700