用户名: 密码: 验证码:
牛化脓隐秘杆菌性肺炎的病原分离鉴定及诊断方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近几年大规模牛场犊牛化脓性肺炎发病率呈上升趋势,经检测其病原以化脓性隐秘杆菌(A. pyogenes)为主。本研究旨在建立快速检测A.pyogenes的PCR诊断方法,并表达部分PLO蛋白,将其作为抗原,初步建立间接ELISA检测方法。
     本研究将来源于不同地区的病料,经细菌分离和生化试验初步鉴定为Arcanobacterium,设计4对引物,第一对为16S rRNA通用引物用来扩增A.pyogenes16S rRNA,对分离株进行同源性比较并构建系统进化树;第二对为针对A. pyogenes 16S rRNA设计的特异性引物用来扩增特异性目的基因,建立PCR诊断方法;第三对为扩增PLO全基因引物,分析牛源PLO与GenBank公布的猪源PLO的同源性;第四对针对PLO的生物活性区域设计引物,扩增部分PLO,构建表达载体pQE30-PLO,通过Western Blotting和协同溶血试验(CAMP)检测蛋白生物学活性,并用该蛋白作为抗原,建立间接ELISA检测方法。
     从不同地区患有化脓性肺炎的犊牛体内分离到6株菌株,扩增16S rRNA得到1490~1492bp的目的基因,经Blast分析证实分离菌株是A. pyogenes。6株分离株之间同源性在99.7 %~100%。经系统进化分析,6株分离株均为A. pyogenes。特异性引物扩增目的基因大小为927bp,特异性试验结果表明6株分离株均能扩增出927 bp的目的基因,而其他细菌扩增结果均为阴性。敏感性试验结果表明,PCR最低检出量为42个A. pyogenes。扩增牛源PLO大小为1649bp,与GenBank公布的猪源PLO同源性为97.5%。A. pyogenes PLO生物活性区域扩增目的基因大小为585bp,重组蛋白经SDS-PAGE分析,可以在XL1-blue宿主菌中表达,蛋白大小为27.45 kDa。经Western Blotting检测,重组蛋白具有良好的反应原性,用溶血试验检测,重组蛋白具有溶血活性。用建立的间接ELISA检测方法检测以化脓为主的P.multocida、E.coli、S.aureus及S. pneumoniae等四种细菌抗血清,均未发现交叉反应,表明特异性良好,对临床样本进行检测,符合率为86.67%。
     本研究成功建立了A. pyogenes PCR诊断方法,为A. pyogenes引起的牛化脓性肺炎的快速诊断及流行病学调查提供了新的手段。同时初步构建了A. pyogenes重组原核表达载体pQE30-PLO585,以该重组蛋白作为包被抗原初步建立了间接ELISA检测方法,为进一步完善A. pyogenes临床监测方法提供了新手段,为疫苗的开发研究奠定了基础。
In recent years, the morbility of bovines suppurative pneumonia has been increasing by Arcanobacterium pyogenes infection. This study was to establish a rapid PCR diagnostic method and to analyze the activity of PLO and indirect ELISA method aginst Arcanobacterium pyogenes.
     The clinical samples isolated from different region in Heilongjiang Province, were analyzed by using the bacterial isolated culture and biochemical characteristic, which were identified with Arcanobacterium infection. four pairs of primers were synthesized to conduct further analysis and identification. The first pair of common primers was were used to amplify 16S rRNA, analysised homology and constructing phylogenetic tree;The second pair was were used to amplify a specific gene and established PCR diagnostic methods; The third pairs primers were used to amplify PLO and analyzed homology; The fourth pairs was were used to amplify the activity region of PLO, the target gene was cloned into expression vector PQE-30. Biological activity was identified by Western Blotting and CAMP assay, and use the protein as an antigen, established of indirect ELISA detection methods.
     A 1490 ~ 1492bp spedific fragment could be amplified among six isolates, which shared the identity between 99.7%~100%. Moreover, a specific 927 bp DNA fragment could be amplified from all the six isolates however, failed to be done from other bacterial species. The sensitivity of the PCR suggested that 42 A.pyogenes cells still could be detected by using method built in this study. The 1649bp full-lengh PLO was amplified sequenced, which shared 97.5% homology with swine PLO published in GenBank. The 585bp PLO biological activity region was amplified and a recombinant protein with 27.5kD molecular mass was expressed in E.coli XL1-blue host cells.. The result of Western blot showed the recombinant protein had wonderful reaction ogenicity. The result of CAMP showed the recombinant protein had hemolytic activity. The recombinant antigens had no cross reactions with sera of other four bacteria(P.multocida,E.coli,S.aureus,S. pneumoniae) showed that indirect ELISA methods were had highly specificity.Using the indirect ELISA detected clinical sample, positive rate was 86.67% .
     PCR diagnostic method has established in this study, and provided a new means about bovine suppurative pneumonia for A.pyogenes. while A.pyogenes recombinant prokaryotic expression vector pQE-PLO585 was constructed in this study, the recombinant protein was used to establish an indirect ELISA method, a new means was provided in order to further perfect the clinical monitor methods and laied basis for vaccines study and development.
引文
[1] Charles J. Czuprynski. Host response to bovine respiratory pathogens[J]. Animal Health Research Reviews, 2009, 10(2): 141–143.
    [2] Subramaniam Srikumaran1*, Clayton L. Kelling, Aruna Ambagala. Immune evasion by pathogens of bovine respiratory disease complex[J]. Animal Health Research Reviews, 2008, 8(2); 215–229.
    [3] Thomson R G. Pathogenesis of pneumonia in feedlot cattle. In: Loan RW (ed.) Bovine Respiratory Disease: A Symposium[M]. College Station, TX: Texas A&M University Press, 1984, 326–346.
    [4] Confer A W. Update on bacterial pathogenesis in BRD[J].Anim Health Res Rev. 2009, 10(2):145-8.
    [5] Yun Sang CHO, Hee Soo LEE, Sook-Kyoung LIM, et al. Safety and Efficacy Testing of a Novel Multivalent Bovine Bacterial Respiratory Vaccine Composed of Five Bacterins and Two Immunogens[J]. J. Vet. Med. Sci., 2008, 70(9): 959–964.
    [6] Mihai I. Gagea, Kenneth G. Bateman, Tony van Dreumel, et al. Diseases and pathogens associated with mortality in Ontario beef feedlots[J].J Vet Diagn Invest, 2006, 18: 18–28.
    [7] Jost* B H, Stephen J B. Arcanobacterium pyogenes: molecular pathogenesis of an animal opportunist[J]. Antonie van Leeuwenhoek, 2005, 88: 87–102.
    [8] Keisuke I, Asami S, Nozomu H, et al. Analysis of the functional domains of Arcanobacterium pyogenes pyolysin using monoclonal antibodies[J]. Veterinary Microbiology, 2001, 81: 235–242.
    [9] Ramos C P, Foster G, Collins M D. Phylogenetic analysis of the genus Actinomyces based on 16S rRNA gene sequences: description of Arcanobacterium phocae sp. nov., Arcanobacterium bernardiae comb. nov., and Arcanobacterium pyogenes comb.nov.[J]. Int J Syst Bacteriol, 1997, 47: 46–53.
    [10] Schaal K P, Yassin A F, Stackebrandt E. The Family Actinomycetaceae: The Genera Actinomyces, Actinobaculum, Arcanobacterium,Varibaculum, and Mobiluncus[J]. Prokaryotes, 2006, 3: 430–537.
    [11] Carter G R, Chengappa M M. Essentials of Veterinary Bacteriology and Mycology[M]. Philadelphia: Lea and Febiger, 1991.
    [12] Natterman H, Horsch F. The Corynebacterium pyogenes infection in cattle. 1. Incidence of the pathogen[J]. Arch Exp. Veterinarmed, 1977, 31: 405–413.
    [13] Queen C, Ward A C S, Hunter D L. Bacteria isolated from nasal and tonsillar samples of clinically healthy Rocky Mountain bighorn and domestic sheep[J]. Wild. Dis, 1994, 30: 1–7.
    [14] Timoney J F, Gillespie J H, Scott F W, et al. Hagan and Bruner’s Microbiology and Infectious Diseases of Domestic Animals[C]. NY, Ithaca: Cornell University Press, 1988.
    [15] Narayanan S, Nagaraja T G, Wallace N, et al. Biochemical and ribotypic comparison of Actinomyces pyogenes and A. pyogenes-like organisms from liver abscesses, ruminal wall, and ruminal contents of cattle[J]. Am. J Vet. Res, 1998, 59: 271–276.
    [16] Jost B H, Post K W, Songer J G, et al. Isolation of Arcanobacterium pyogenes from the porcine gastric mucosa[J].Vet. Res. Comm, 2002, 26: 419–425.
    [17] Lewis G S. Uterine health and disorders[J]. J. Dairy Sci, 1997, 80: 984–994.
    [18] Louis Ide M D, Annemie Decostere D V M, Ann Stuer M D,et al. Arcanobacteriumpyogenes Spondylodiscitis in a Veterinary Surgeon: a Plea for Cooperation between Medical and Veterinary Microbiologists in Identification of Causal Agents of Zoonotic Infections[J]. Clinical Microbiology Newsletter, 2006, 28(21): 163-167.
    [19]赵敬翠,李杰,刘耀川,等.化脓隐秘杆菌的特性及化脓隐秘杆菌病的防治.兽医科技, 2009, 06(上): 92-93.
    [20] Jonsson P S E, Olsson A S, Olofson C. Bacteriological investigations of clinical mastitis in heifers in Sweden[J]. J. Dairy Res, 1991, 58: 179–185.
    [21] Al-Graibawi M A A, Sharma V K, Al-Shammari A J. Microbial pathogens from goat mastitis and phage-typing of Staphylococcus aureus isolates[J]. Comp. Immunol. Microbiol. Infect. Dis, 1986, 9: 23–28.
    [22] Lechtenberg K F, Nagaraja T G, Leipold H W, et al. Bacteriologic and histologic studies of hepatic abscesses in cattle[J]. Am. J. Vet. Res, 1988, 49: 58–62.
    [23] Nagaraja T G, Laudert S B, Parrott J C. Liver abscesses infeedlot cattle. Part I. Causes, pathogenesis, pathology, and diagnosis[J]. Comp.Cont. Educ. Pract. Vet, 1996, 18:S230–S241, S256
    [24] H?ie S, Falk K, Lium B M. An abattoir survey of pneumonia and pleuritis in slaughter weight swine from 9 selected herds. IV. Bacterio logical findings in chronic pneumonic lesions[J]. Acta Vet. Scand, 1991, 32: 395–402.
    [25] Foreyt W J, Jessup D A. Fatal pneumonia of bighorn sheep following association with domestic sheep[J]. J. Wildl. Dis, 1982, 18: 163–168.
    [26] Rhyan J C, Aune K, Ewalt D R, et al. Survey of free-ranging elk from Wyoming and Montana for selected pathogens[J]. J. Wildlife Dis, 1997, 33: 290–298.
    [27] Turnquist S E, Fales W H. Disseminated Actinomyces pyogenes infection in a free-ranging white-tailed deer[J]. J. Vet. Diagn. Investig, 1998, 10: 86–89.
    [28] Brinton M K, Schellberg L C, Johnson J B, et al. Description of osteomyelitis lesions associated with Actinomyces pyogenes infection in the proximal tibia of adult male turkeys[J]. Avian Dis, 1993, 37: 259–262.
    [29] Barnham M. Actinomyces pyogenes bacteraemia in a patient with carcinoma of the colon[J]. J. Infect, 1988, 27: 231–234.
    [30] Berry A M, Lock R A, Paton J C. Cloning and characterization of nanB, a second Streptococcus pneumoniae neuraminidase gene, and purification of the NanB enzyme from recombinant Escherichia coli[J]. J. Bacteriol, 1996, 178:4854–4860.
    [31] Gahrn-Hansen B, Frederiksen W. Human infections with Actinomyces pyogenes (Corynebacterium pyogenes)[J]. Diagn. Microbiol. Infect. Dis, 1992, 15:349–354.
    [32] Billington S J, Jost B H, Cuevas W A, et al. The Arcanobacterium (Actinomyces)pyogenes hemolysin, pyolysin, is a novel member of the thiolactivated cytolysin family[J]. J. Bacteriol, 1997, 179: 6100–6106.
    [33] Ding H, La¨mmler C. Purification and further char-acterization of a haemolysin of Actinomyces pyogenes[J]. J. Vet.Med. B, 1996, 43: 179–188.
    [34] Gilbert S T. Studies on the expression and secretion of pyolysin, the cholesterol-dependent cytolysin of Arcanobacterium pyogenes[D]. PhD dissertation, Tucson: University of Arizona, 2002.
    [35] Jost B H, Songer J G, Billington S J. An Arcanobacterium (Actinomyces) pyogenes mutant deficient in production of the pore-forming cytolysin pyolysin has reduced virulence[J]. Infect. Immun, 1999, 67: 1723–1728.
    [36] Billington S J, Jost B H, Songer J G. Thiol-activated cytolysins: structure, function and role in pathogenesis[J].FEMS Microbiol. Lett, 2000, 182: 197–205.
    [37] Giddings K S, Johnson A E, Tweten R K. Redefining cholesterol’s role in the mechanism of the cholesterol-dependent cytolysins[J]. Proc. Natl. Acad. Sci. USA, 2004, 100:11315–11320.
    [38] Billington S J, Songer J G, Jost B H. Widespreaddistribution of a Tet W determinant among tetracycline resistant isolates of the animal pathogen, Arcanobacterium pyogenes[J].Antimicrob. Agents Chemother, 2002, 46: 1281–1287.
    [39] Billington S J, Songer J G, Jost B H. The variant undecapeptide sequence of the Arcanobacterium pyogenes haemolysin, pyolysin, is required for full cytolytic activity[J]. Microbiology, 2002, 148: 3947–3954.
    [40] Rossjohn J, Feil S C, McKinstry W J, et al. Structure of a cholesterol-binding, thiol-activated cytolysin and a model of its membrane form[J]. Cell, 1997, 89: 685–692.
    [41] Shepard L A, Heuck A P, Hamman B D, Rossjohn J, et al. Identification of a membrane -spanning domain of the thiolactivated pore-forming toxin Clostridium perfringens perfringolysin O: an a-helical to a-sheet transition identified by ?uorescence spectroscopy[J]. Biochemistry, 1998, 37: 14563–14574.
    [42] Shatursky O, Heuck A P, Shepard L A, et al. The mechanism of membrane insertion for a cholesterol-dependent cytolysin: a novel paradigm for pore-forming toxins[J]. Cell, 1999, 99: 293–299.
    [43] Tweten R K, Harris R W, Sims P J. Isolation of a tryptic fragment from Clostridium perfringens h toxin that contains sites for membrane binding and self-aggregation[J]. J. Biol. Chem, 1991, 266: 12449–12454.
    [44] de los Toyos J R, Mendez F J, Aparicio J F, et al. Functional anal-ysis of pneumolysin by use of monoclonal antibodies[J]. Infect.Immun, 1996, 64: 480–484.
    [45] Rossjohn J, Feil S C, McKinstry W J, et al. Structure of a cholesterol-binding, thiol-activated cytolysin and a model of its membrane form[J]. Cell, 1997, 89: 685–692.
    [46] Michel E, Reich K A, Favier R, et al. Attenuated mutants of the intracellular bacterium Listeria monocytogenes obtained by single amino acid substitution in listeriolysin O[J]. Mol. Microbiol, 1990, 4: 2167–2178.
    [47] Boulnois G J, Paton J C, Mitchell T J, et al. Structure and function of pneumolysin, the multifunctional, thiol-activated toxin of Streptococcus pneumoniae[J].Mol. Microbiol, 1991, 5: 2611–2616.
    [48] Sekino-Suzuki N, Nakamura M, Mitsui K I, et al. Contribution of individual tryptophan residues to the structure and activity of h-toxin (perfringolysin O), a cholesterol-binding cytolysin [J].Eur. J. Biochem, 1996, 241: 941–947.
    [49] Jacobs T, Cima-Cabal M D, Darji A, et al. The conserved undecapeptide shared by thiol-activated cytolysins is involved in membrane binding[J]. FEBS Lett, 1999, 459: 463–466.
    [50] Heuck A P, Hotze E M, Tweten R K, et al. Mechanism of membrane insertion of a multimeric barrelprotein: perfringolysin O creates a pore using ordered and coupled conformational changes[J]. Mol. Cell, 2000, 6: 1233–1242.
    [51] Nagamune H, Ohkura K, Sukeno A, et al. The human-specific action of intermedilysin, a homolog of streptolysin O, is dictated by domain 4 of the protein[J]. Microbiol. Immunol, 2004, 48: 677–692.
    [52] Ramachandran R, Heuck A P, Tweten R K, et al. Structural insights into the membrane- anchoring mechanisms of a cholesterol-dependent cytolysin[J]. Nat.Struct. Biol, 2002, 9: 823–827.
    [53] Nagamune H. Streptococcal cytolysins[J]. Seikagaku, 1997, 69:343–348.
    [54] Takeuchi S. Analysis of the functional domains of Arcanobacterium pyogenes pyolysin using monoclonal antibodies[J]. Vet. Microbiol, 2001, 81: 235–242.
    [55] Imaizumi K, Matsunaga K, Higuchi H, et al. E?ect of amino acid substitutions in the epitope regions of pyolysin of Arcanobacterium pyogenes[J].Vet. Microbiol, 2003, 91: 205–213.
    [56] Giebink G S. Otitis media: the chinchilla model[J]. Microb.Drug Resist, 1999, 5: 57–72.
    [57] Tong H H, McIver M A, Fisher L M, et al. E?ect of lacto-N-neotetraose, asialoganglioside-GM1and neuraminidase on adherence of otitis media-associatedserotypes of Streptococcus pneumoniae to chinchilla trachealepithelium[J]. Microb. Path, 1999, 26: 111–119.
    [58] Brennan M J, Cisar J O, Vatter A E, et al. Lectin-dependent attachment of Actinomyces naeslundii to receptors on epithelial cells[J]. Infect. Immun, 1984, 46:459–464.
    [59] Childs Jr W C, Gibbons R J. Selective modulation of bacterial attachment to oral epithelial cells by enzyme activities associated with poor oral hygiene[J]. J. Periodontal Res, 1990, 25: 172–178.
    [60] Gottschalk A. Correlation between composition, structure, shape, and function of a salivary mucoprotein[J]. Nature, 1960, 186: 949–951.
    [61] Frandsen E V G. Carbohydrate depletion of immunoglobulin A1 by oral species of gram-positive rods[J]. OralMicrobiol. Immunol, 1994, 9: 352–358.
    [62] Reinholdt J, Tomana M, Mortensen S B, et al. Molecular aspects of immunoglobulin A1 degradation by oral streptococci[J]. Infect. Immun, 1990, 58: 1186–1194.
    [63] Schaufuss P, La¨mmler C. Characterization of the extracellular neuraminidase produced by Actinomyces pyogenes[J]. Zentralbl. Bakteriol, 1989, 271: 28–35.
    [64] Jost B H, Songer J G, Billington S J. Cloning,expression and characterization of a neuraminidase genefrom Arcanobacterium pyogenes[J]. Infect. Immun, 2001, 69: 4430–4437.
    [65] Yeung M. Complete nucleotide sequencing of the Actinomyces viscosus T14V sialidase gene: presence of a conserved repeating sequence among strains of Actinomyces spp[J].Infect. Immun, 1993, 61: 109–116.
    [66] Sakurada K, Ohta T, Hasegawa M. Cloning,expression and characterization of the Micromonospora viridifaciens neuraminidase gene in Streptomyces lividans[J]. J. Bacteriol, 1992, 174: 6896–6903.
    [67] Akimoto S, Ono T, Tsutsui H, et al. Complete sequence of the Bacteroides fragilis YCH46 neuraminidase-encoding gene[J]. Biochem. Biophys. Res. Comm, 1994, 203: 914–921.
    [68] Kharat A S, Tomasz A. Inactivation of the srtA gene a?ects localization of surface proteins and decreases adhesion of Streptococcus pneumoniae to human pharyngeal cells inVitro[J]. Infect. Immun, 2003,71: 2758–2765.
    [69] Saunders J M, Miller C H. Neuraminidase-activated attachment of Actinomyces naeslundii ATCC 12104 to human buccal epithelial cells[J]. J. Dent. Res, 1983, 62: 1038–1040.
    [70] Patti J M, Allen B L, McGavin M J,et al. MSCRAMM-mediated adherence of microorganisms to host tissues[J]. Annu. Rev. Microbiol, 1994, 48: 585–617.
    [71] Patti J M, Jonsson H, Guss B,et al. Molecular characterization and expression of a gene encoding a Staphylococcus aureus collagen adhesin[J]. J. Biol. Chem, 1992, 267: 4766–4772.
    [72] Esmay P A, Billington S J, Link M A, et al. The Arcanobacterium pyogenes collagen binding protein, CbpA, promotes adhesion to host cells[J]. Infect. Im-mun, 2003, 71: 4368–4374.
    [73] Elasri M O, Thomas J R, Skinner R A,et al. Staphylococcus aureus collagen adhesin contributes to the pathogenesis of osteomyelitis[J]. Bone, 2002, 30: 275–280.
    [74] La¨mmler C. and Ding H. Characterization of fibrinogen-binding properties of Actinomyces pyogenes[J]. J. Vet. Med. B, 1994, 41: 588–596.
    [75] Cisar J O and Vatter A E. Surface fibrils (fimbriae) of Actinomyces viscosusT14V. Infect[J]. Immun, 1979, 24: 523–531.
    [76] Wu H. and Fives-Taylor P.M. Molecular strategies for fimbrial expression and assembly[J]. Crit. Rev. Oral Biol. Med, 2001, 12: 101–115.
    [77] Yanagawa R. and Honda E. Presence of pili in species of human and animal parasites and pathogens of the genus Corynebacterium[J]. Infect. Immun, 1976, 13: 1293–1295.
    [78] Ton-That H, Marra?ni L A and Schneewind O. Sortases and pilin elements involved in pilus assembly of Corynebacterium diphtheriae[J]. Mol. Microbiol, 2004, 53: 251–261.
    [79] Yeung M K, Donkersloot J A, Cisar J O,et al. Identification of a gene involved in assembly of Actinomyces naeslundii T14V type 2 fimbriae[J]. Infect. Immun, 1998, 66:1482–1491.
    [80] Ton-That H and Schneewind O. Assembly of pili on the surface of Corynebacterium diphtheriae[J]. Mol. Microbiol, 2003, 50:1429–1438.
    [81] Ho?ack L and Yeung MK. Actinomyces naeslundii fimbrial protein Orf977 shows similarity to a streptococcal adhesin[J]. Oral Microbiol. Immunol, 2001, 16: 319–320.
    [82] Dziewanowska K, Carson A R, Patti J M, et al. Staphylococcal fibronectin binding protein interacts with heat shock protein 60 and integrins: role in internalization by epithelial cells[J]. Infect.Immun, 2000, 68: 6321–6328.
    [83] Donlan R M and Costerton J W. Biofilms: survival mechanisms of clinically relevant microorganisms[J]. Clin.Microbiol. Rev, 2002, 15: 167–193.
    [84] Ehrlich G D, Veeh R, Wang X, et al. Mucosal biofilm formation on middle-ear mucosa in the chinchilla model of otitis media[J]. J. Am. Med. Assoc, 2002, 287:1710–1715.
    [85] Buxton T B, Horner J, Hinton A, et al. In vivo glycocalyx expression by Staphylococcus aureus phage type 52/52A/80 in S. aureus osteomyelitis[J]. J. Infect. Dis, 1987, 156:942–946.
    [86] Cucarella C, Tormo M A, Ubeda C, et al. Role of biofilm-associated protein Bap in the pathogenesis of bovine Staphylococcus aureus[J]. Infect. Immun, 2004, 72: 2177–2185.
    [87] Olson M E, Ceri H, Morck D W, et al. Biofilm bacteria: formation and comparative susceptibility to antibiotics[J]. Can. J. Vet. Res, 2002, 66: 86–92.
    [88] Hillerton J E and Bramley A J. Infection following challenge of the lactating and dry udder of dairy cows with Actinomyces pyogenes and Peptostreptococcus indolicus[J]. Br.Vet. J, 1989, 145: 148–159.
    [89] Waage S, Skei H R, Rise J,et al. Outcome of clinical mastitis in dairy heifers assessed by reexamination of cases one month after treatment[J]. J. Dairy Sci, 2000, 83: 70–76.
    [90] Gro¨hn Y T, Wilson D J, Gonzalez R N, et al. E?ect of pathogen-specific clinical mastitis on milk yield in dairy cows[J]. J. Dairy Sci, 2004, 87: 3358–3374.
    [91] Schaufuss P, Sting R and La¨mmler C. Isolation andcharacterization of an extracellular protease of Actinomyces pyogenes[J]. Zentralbl. Bakteriol, 1989, 271: 452–459.
    [92] Takeuchi S, Kaidoh T and Azuma R. Assay of proteasesfrom Actinomyces pyogenes isolated from pigs and cows by zymography[J]. J. Vet. Med. Sci, 1995, 57: 977–979.
    [93] Travis J, Potempa J and Maeda H. Are bacterial proteinases pathogenic factors? [J] Trends Microbiol, 1995, 3: 405–407.
    [94] Takeuchi S, Azuma R, Nakajima Y, et al. Diagnosis of Corynebacterium pyogenes in pigs by immunodi?usion test with protease antigen[J]. Natl. Inst. Anim. Health Q, 1979, 19: 77–82.
    [95] Sneath P H A, Mair N S, Sharpe M E,et al. Bergey’s Manual of Systematic Bacteriology. vol. 2, Section15: Irregular, nonsporing, Gram-positive rods. pp[M]. 1986, 1383–1418.
    [96] La¨mmler C. Untersuchungen zu mo¨glichen Pathogenita¨tsfaktoren von Actinomyces pyogenes U¨bersichtsreferat[J].Berl. Mu¨nch. Tiera¨rztl. Wschr, 1990, 103: 121–125.
    [97] Pascual Ramos C, Foster G and Collins M D. Phylogenetic analysis of the genus Actinomyces based on 16SrRNA gene sequences: description of Arcanobacterium phocae sp. nov., Arcanobacterium bernardiae comb. nov., and Arcanobacterium pyogenes comb. nov[J]. Int. J. Syst. Bacteriol, 1997, 47: 46–53.
    [98] Rudnick S T, Jost B H, Songer J G, et al. The gene encoding pyolysin, the pore-forming toxin of Arcanobacterium pyogenes, resides within a genomic islet ?anked by essential genes[J]. FEMS Microbiol. Lett, 2003, 225: 241–247.
    [99] Ding H and La¨mmler C. Purification and further characterization of a haemolysin of Actinomyces pyogenes[J]. J. Vet.Med. B, 1996, 43: 179–188.
    [100] Gilbert S T. Studies on the expression and secretion of pyolysin, the cholesterol-dependent cytolysin of Arcanobacterium pyogenes[D]. PhD dissertation, Tucson: University of Arizona, 2002.
    [101] Benton K A, Everson M P and Briles D E. A pneumolysin-negative mutant of Streptococcus pneumoniae causes chronic bacteremia rather than acute sepsis of mice[J]. Infect.Immun, 1995, 63: 448–455.
    [102] Canvin J R and Marvin A P. The role of pneumolysin and autolysin in the pathology of pneumonia and septicemia in mice infected with a type 2 pneumococcus[J]. J. Infect. Dis, 1995, 172: 119–123.
    [103] Cossart P, Vicente M F, Mengaud J, et al. Listeriolysin O is essential for virulence of Listeria monocytogenes: direct evidence obtained by gene complementation[J]. Infect. Immun, 1989, 57: 3629–3636.
    [104] Portnoy D A, Chakraborty T, GoebelW, et al. Molecular determinants of Listeria monocytogenes pathogenesis[J]. Infect. Immun, 1992, 60: 1263–1267.
    [105] Ruiz N, Wang B, Pentl,et al. Streptolysin O and adherence synergistically modulate proin?ammatory responses of keratinocytes to group A streptococci[J].Mol. Microbiol, 1998, 27: 337–346.
    [106] Berry A M, Yother J, Briles D E, et al. Reduced virulence of a defined pneumolysin-negative mutant of Streptococcus pneumoniae[J]. Infect. Immun, 1989, 57: 2037– 2042.
    [107] Awad M M, Bryant A E, Stevens D L, et al. Virulence studies on chromosomal alpha-toxin and thetatoxin mutants constructed by allelic exchange provide genetic evidence for the essential role of alphatoxin in Clostridium perfringens-mediated gas gangrene[J]. Mol. Microbiol, 1995, 15:191–202.
    [108] Jost B H, Field A C, Trinh H T, et al. Tylosi resistance in Arcanobacterium pyogenes is encoded by an Erm X determinant. Antimicrob[J]. Agents Chemother, 2003, 47: 3519–3524.
    [109] Hackett S P and Stevens DL. Streptococcal shock syndrome: synthesis of tumor necrosis factor and interleukin-1 by monocytes stimulated with pyrogenic exotoxin A and streptolysin O[J]. J. Infect. Dis, 1992, 165: 879–885.
    [110] Houldsworth S, Andrew P W and Mitchell T J. Pneumolysin stimulates production of tumor necrosis factor alpha and interleukin-1a by human mononuclear phagocytes[J].Infect. Immun, 1994, 62: 1501–1503.
    [111] Nishibori T, Xiong H, Kawamura I, et al. Induction of cytokine gene expression by listeriolysin O and roles of macrophages and NK cells[J]. Infect.Immun, 1996, 64: 3188–3195.
    [112] Kayal S, Lilienbaum A, Poyart C, et al. Listeriolysin O-dependent activation of endothelial cells during infection with Listeria monocytogenes: activation of NF-KB and upregulation of adhesion molecules and chemokines[J]. Mol. Microbiol, 1999, 31: 1709–1722.
    [113] Stevens D L and Bryant A E. Streptolysin O modulates cytokine synthesis in human peripheral blood mononuclear cells[J]. Adv. Exp. Med. Biol, 1997, 418: 925–927.
    [114] Mitchell T J and Andrew P W. Biological properties of pneumolysin[J]. Microb. Drug Resist, 1997, 3: 19–26.
    [115] Lewis G S. Uterine health and disorders[J]. J. Dairy Sci, 1997, 80:984–994.
    [116] Lechtenberg K F, Nagaraja T G, Leipold H W, et al. Bacteriologic and histologic studies of hepatic abscesses in cattle[J]. Am. J. Vet. Res, 1988, 49: 58–62.
    [117] Beef Cow-calf health and health management practices[C]. USDA:APHIS:VS, CEAH, National Animal Health Monitoring System, Fort Collins, CO. 1997. Beef’97. Part II
    [118] Trinh H T, Billington S J, Field A C, et al. Susceptibility of Arcanobacterium pyogenes to tetracyclines, macrolides and lincosamides[J]. Vet. Microbiol, 2002, 85: 353–359.
    [119] Jost B H , Trinh H T , Songer J G, et al..Identification of a second tylosin resistance determinant, ErmB, in Arcanobacterium pyogenes[J]. Antimicrob. Agents Che-mother, 2003, 48: 721–727.
    [120] Jost B H, Trinh H T, Songer J G, et al. Ribosomal mutations in Arcanobacterium pyogenes confer a unique spectrum of macrolide resistance[J]. Antimicrob. Agents Chemother, 2004, 48: 1021–1023.
    [121] Hunter P, van der Lugt J J and Gouws J J. Failure of an Actinomyces pyogenes vaccine to protect sheep against an intravenous challenge.Onderstepoort [J]. J Vet.Res, 1990, 57: 239–241.
    [122] Derbyshire J B and Matthews P R J. Immunological studies with Corynebacterium pyogenes inmice[J]. Res. Vet. Sci, 1963, 4: 537–542.
    [123] Cameron C M, Botha W F and Smit B H J. Antibody response to and immunity induced by Corynebacterium pyogenes vaccine. Onderstepoort[J] J. Vet. Res, 1976, 43: 97–104.
    [124] Jost B H , Trinh H T , Songer J G, et al. Immunization with genetic toxoids of the Arcanobacterium pyogenes cholesterol-dependent cytolysin, pyolysin, protectsmice against infection[J]. Infect. Immun, 2003, 71: 2966–2969.
    [125] Long J P, Tong H H and De Maria T F. Immunization with native or recombinant Streptococcus pneumoniae neuraminidase a?ords protection in the chinchilla otitis mediamodel[J]. Infect. Immun, 2004, 72: 4309–4313.
    [126] Mamo W, Boden M and Flock J I. Vaccination with Staphylococcus aureus fibrinogen binding proteins (FgBPs) reduces colonisation of S. aureus in a mouse mastitis model[J].FEMS Immunol. Med. Microbiol, 1994, 10: 47–54.
    [127] Smeltzer M S and Gillaspy A F. Molecular pathogenesis of staphylococcal osteomyelitis[J]. Poult. Sci, 2000, 79: 1042–1049.
    [128] Shkreta L, Talbot B G, Diarra M S, et al. Immune responses to a DNA/protein vaccination strategy against Staphylococcus aureus induced mastitis in dairy cows[J].Vaccine, 2004, 23: 114–126.
    [129] Lane D J. 16S/23S rRNA Sequencing. In:Stackebrandt E, Goodfellow. ed. Nucleic acid techniques in bacterial systematics[J]. Chichester:John Wiley&Sons, 1991, 10 (2) 115-147.
    [130]奥斯伯FM,金斯顿RE,赛德曼JG,等.主编;马学军,舒跃龙,等.校译.精编分子生物学实验指南.北京:科学出版社,2005.
    [131] R.E.布坎南,N.E.吉本斯等编.伯杰氏细菌学鉴定手册[M].第8版.北京:科学出版社,1984,854-855.
    [132] Lopez A. Respiratory system. In: McGavin MD and Zachary JF (eds) Pathologic Basis of Veterinary Disease, 4th edn[M]. St. Louis, MO: Mosby, 2007,pp. 463–558.
    [133]刘明春,刘耀川,赵敬翠等.奶牛子宫内膜炎化脓隐秘杆菌16S rRNA基因的鉴定与分析[J].中国兽医学报2009 3(29): 343-345.
    [134]刘新露,潘训海,谯康全.表面活性剂对红细胞膜的作用研究[J].四川理工学院学报, 2007(8), 20(4), 96-98.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700