用户名: 密码: 验证码:
Alzheimer病和MCI病人扣带束DTI及相关脑区静息态fMRI研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:研究AD(Alzheimer's disease, AD)、MCI(mild cognitive impairment,MCI)病人Papez环路中海马-扣带束-扣带回通路的DTI与静息态功能连接异常改变,并分析其与临床认知功能之间的关系,为早期诊断MCI、AD提供参考指标;探讨DTI多参数组合在脑白质微观结构研究中的价值及功能连接水平与其连接通路微观结构改变的内在联系,为DTI参数选择及联合DTI和fMRI研究相关疾病提供参考。
     方法:采用3.0T磁共振扫描仪对15例AD、11例MCI病人及15例NC(normal cognition,NC)进行横断位T1WI、T2WI、FLAIR、T1-MPRAGE、DTI和BOLD-EPI序列扫描。在syngo B17后处理工作站上结合DTI张量图和高分辨率解剖像同步测量双侧扣带束海马旁回部(PH-C)、后部(PC-C)和前部(AC-C)的FA、DA和DR值,对双侧同部位各项参数值在组内进行独立样本t检验和组间LSD和Dunnett's T3法检验。应用Matlab 7.1、SPM5、DPARSF_V2.0和rest_V1.4软件包进行数据预处理(层间时间点校正、头动校正、空间标准化、平滑)、线性校正及带通滤波(带宽:0.01~0.08HZ)得到全脑低频信号图;提取后扣带回种子点平均时间序列(0,-53,26,r=4mm)并去除协变量(全脑平均信号、脑白质、脑积液、6个头动参数),与全脑其余体素进行Pearson相关分析得到全脑功能连接图,经Fisher Z转换为Z图;将各组Z图进行组内单样本t检验和组间独立样本t检验,得到各组大脑静息态默认网络图及组间功能连接差异图;在AAL模板中提取双侧海马mask,导入组间功能连接差异图,经过AlphaSim校正后得到双侧海马与后扣带回功能连接差异图;提取双侧海马功能连接差异部位平均时间序列,与MMSE评分进行相关分析,与相关部位扣带束DTI各参数值进行线性回归分析。
     结果:1.组内比较:各组双侧同部位DTI各项参数值差异均无统计学意义;NC组默认网络主要包括双侧腹内侧前额叶皮层、前扣带回、视觉皮层、海马、中下颞叶皮层、下顶叶、后扣带回及楔前叶,MCI、AD组主要默认网络脑区与NC组相似;2.组间比较:(1)MCI组与NC组:双侧PH-C部DA值减低,右侧PH-C部DR值减低,左侧PH C部FA减低;右侧海马前部与后扣带回功能连接减弱;(2)AD组与NC组:双侧PH-C部、双侧PC_C部DA值减小、DR值增加及FA值减低;双侧海马前部活动减弱,双侧海马尾部活动增强;(3)AD组与MCI组:双侧PH_C部、双侧PC_C部DA值减小、DR值增加及FA值减低;3.相关性分析:双侧扣带束PH-C部和PC_C部DA值与MMSE评分呈显著正相关(0.609/0.512;0.599/0.521);双侧扣带束PH_C部DR值与MMSE评分呈显著负相关(-0.453/-0.428);左侧扣带束PH-C部和双侧PC_C部FA值与MMSE呈显著正相关(0.627,0.64I/0.533)(p<0.01);双侧海马与后扣带回功能连接分数与MMSE评分呈显著相关(r=0.513,0.522)(p<0.01);5.线性回归分析:右侧扣带束PH-C部DA值、PC_C部DR值对右侧海马与后扣带回功能连接贡献有统计学意义,其回归方程为R_FC=0.047+0.556*R_PH_C_DA-1.160*R_PC_C_DR (R=0.671, R2=0.450);左侧扣带束PH_C部DA值与DR值对左侧海马与后扣带回功能连接贡献有统计学意义,其归回方程L_FC=0.379+1.098*L_PH_C_DA-1.105*L_PH_C_DR (R=0.562, R2=0.315)。
     结论:1. Papez环路中海马-扣带束-扣带回通路在MCI向AD进展发病机制中的DTI和fMRI研究中具有重要意义,为临床早期诊断MCI、AD提供参考指标;2.扣带束不是唯一连接海马与后扣带回的纤维束,还存在其它纤维束直接或间接连接海马与后扣带回;3. DA、DR参数组合较FA参数更好的反映脑白质微观结构改变;4.静息态默认网络节点间功能连接强度与DTI反映的其连接通路微观结构损害密切相关;5.DA、海马与后扣带回功能连接分数能为临床评估病人认知功能提供参考。
Purpose:To reseach the diffusion and functional connectivity abnormality of hippocampus-cingulum-cingulate cortex pathway in Papez circuit in MCI and AD patients, and study its relationship with clinical cognitive function for the early diagnosis of MCI and AD. To evaluate the value of DTI parameters pack in wihte matter micro-structure detection and study the inner connection between the functional connectivity strength and micro-stucture change of its connectionroute as the references in selecting DTI parameters and joint research of DTI and fMRI in related disease.
     Material and method:15 cases of AD,11 cases of MCI patients and 15 cases of normal cognition controls underwent routine T1WI, T2WI, FLAIR, T1_MPRAGE, DTI, EPI_BOLD scans using German Siemens Magnetom Trio Tim MR 3.0T MR scanner. Fractional Anisotropy(FA), Axial Diffusivity(DA) and Radical Diffusivity(DR) values of bilateral para_hippocampal regions of cingulum(PH_C), posterior dorsal curve of cinglum(PC_C) and anterior dorsal curve of cingulum(AC_C) were simultaneously measured in combination of tensor and T1_MPRAGE images on post processing workstation Syngo B17. Independent sample t-test, one_way analysis of variance(ANOVAs) with LSD and Dunnett's T3 were taken to compare the within_group and inter_group differences. The data was preprocessed through software Matlab 7.1, DPARSF_V2.0, SPM5, VBM and Rest_V1.4, which included slice timing, realign, normalize, smooth, detrend and bandpass filter(pass band0.01-0.08Hz). A mean time series for ROI was computed for reference time course, which was extracted out at a spherical region of interest (ROI)(radius=4mm) centered at a given coordinate(0,-53,26) within PCC. Cross correlation analysis was then carried out between the mean signal change in the PCC and the time series of every voxel of whole brain. Functional connectivity z_maps in rest were obtained after a Fisher's z transformamation, and at the same time the six head motion parameters, mean global signal, white matter and cerebrospinal fluid signals were removed as covariates. Next, the resting state default network maps within_group and functional connectivity abnormality maps inter_group were carried out though one_simple t_texts and two_sample t_texts. Then, functional connectivity maps between bilateral hippocampal and PCC were attained after input the bilateral hippocapal masks and AlphaSim correction. Finally, the correlation analysis and linear regression analysis were performed between the time series of abnormal regions and MMSE scores and correlated DTI parameter values of cingulum.
     Results:1.within_group analysis:no significant differences of bilateral cingulum in every patameter; MCI, AD groups and NC groups showed similar pattern of default networks, which included ventral MPFC, anterior cingulated cortex, visual cortex, hippocampus, cuneus/precuneus, PCC, middle and inferior temporal cortex 2.inter_group analysis:(1) MCI patients had significantly lower bilateral PH_C DA values, right PH_C DR value, and left PH_C FA value than controls; MCI patients showed decreased functional connectivity between right hippocapal and PCC compared with NC; (2) AD patients had significantly lower bilateral PH_C and PC_C DA values, bilateral PH_C and PC_C FA values, and higher bilateral PH_C and PC_C DR values than controls; AD patients showed decreased functional connectivity between bilateral hippocapal and PCC compared with NC;(3) AD patients had significantly lower bilateral PH_C and PC_C DA values, bilateral PH_C and PC_C FA values, and higher bilateral PH_C and PC_C DR values than MCI patients; 3.correlation analysis:(1)bilateral PH_C and PC_C DA values were positively correlated with MMSE scores(r=0.609/0.512,0.599/0.521, p<0.05); (2) bilateral PH_C DR values were negatively correlated with MMSE scores (r=-0.453/-0.428,p<0.05); (3) left PH_C and bilateral PC_C FA values were positively correlated with MMSE scores(r=0.627,0.641/0.533,p<0.05); functional connectivity between bilateral hippocapal and PCC was significantly correlated with MMSE scores(r=0.513,0.522,p<0.01).5.linear regression analysis:right PH_C DA values, PC_C DR values were contributed to functional connectivity of right hippocampus and PCC, and equation of linear regression was R_FC=0.047+0.556*R_PH_C_DA-1.160*R_PC_C_DR(R=0.671, R2=0.450); left PH_C DA values, PH_C DR values were contributed to functional connectivity of left hippocampus and PCC, and equation of linear regression was L FC=0.379+1.098*L PH C DA-1.105*L PH C DR (R=0.562, R2=0.315)
     Conclusion:1. the DTI and fMRI research of hippocampus-cingulum-cingulate cortex pathway in Papez circuit reflected the significance for MCI progressed to AD, and provided indexes in early diagnosis of MCI and AD.2.the cingulum is not the sole fiber connecting the hippocampus and PCC.3.DR and DA parameters pack is better than FA detecting the white matter microstructure alterations of MCI and AD patients.4.functinal connection strength within the DMN in resting state is significantly correlated with the micro-structure damage of its connectionroute.5. DA values of the damaged cingulum and functional connectivity which are significantly correlated with MMSE scores can be sensitive indicators evaluating the cognitive function of patients.
引文
[1]Prvulovic D, Hampel H. Amyloid β (Aβ) and phospho-tau (p-tau) as diagnostic biomarkers in Alzheimer's disease. Clin Chem Lab Med.2011 Mar;49(3):367-74.
    [2]Desikan RS, Sabuncu MR, Schmansky NJ, et al. Selective disruption of the cerebral neocortex in Alzheimer's disease. Cerebral Cortex,2010 Sep 23;5(9):e12853.
    [3]Yasuhiro Nakataa, Noriko Satob, Kiyotaka Nemotoc, et al. Diffusion abnormality in the posterior cingulum and hippocampal volume:correlation with disease progression in Alzheimer's disease. Magnetic Resonance Imaging 2009 (27) 347-354.
    [4]Lau CG, Zukin RS. NMD A receptor trafficking in synaptic plasticity and neuro-psychiatric disorders. Nat Rev Neurosci.2007 Jun;8(6):413-26.
    [5]Abeta, Tau and ApoE4 in Alzheimer's disease:the axonal connection. Trends Mol Med. Epub,2007 Apr; 13(4):135-42
    [6]Santos SF, Pierrot N, Octave JN. Network excitability dysfunction in Alzheimer's disease:insights from in vitro and in vivo models. Rev Neurosci.2010;21(3):153-71.
    [7]Bajo R, Maestu F, Nevado A, et al. functional connectivity in mild cognitive impairment during a memory task:implications for the disconnection hypothesis. J Alzheimer's Dis.2010;22(1);183-93.
    [8]Petersen RC. Mild cognitive impairment as a diagnostic entity[J]. Intern Med, 2004,256(3):240-246.
    [9]Yong Liu, Kun Wang, et al. Regional homogeneity, functional connectivity and imaging markers of Alzheimer's disease:A review of resting-state fMRI studies. Neuropsychologia 46 (2008) 1648-1656.
    [10]高树海.实用临床神经解剖学.北京:人民军医出版社,2006.7
    [11]Jean C. Augustinack, Karl Helmer, Kristen E. Huber, et al. Direct visualization of the perforant pathway in the human brain with ex vivo diffusion tensor imaging.frontiers in human neuroscience.2010:4,article 42.
    [12]Ji Heon Hong, Sung Ho Jang. Neural pathway from nucleus basalis of Meynert passing through the cingulum in the human brain. Brain research 2010,1346:190-19.
    [13]Yasuhiro Nakata, Noriko Sato, Osamu Abe, et al. Diffusion abnormality in posterior cingulate fi ber tracts in Alzheimer's disease:tract-specifi c analysis. Radiat Med,2008,26:466-473.
    [14]Kuniaki Kiuchia, Masayuki Morikawaa,b, Toshiaki Taokac, et al. Abnormalities of the uncinate fasciculus and posterior cingulate fasciculus in mild cognitive impairment and early Alzheimer's disease:A diffusion tensor tractography study. Brain research,2009 (1287)184-191.
    [15]Marzieh Nezamzadeha, Van J Wedeenc, Ruopeng Wangc, et al. In vivo investigation of the human cingulum bundle using the optimization of MR diffusion spectrum imaging. Eur J Radiol(2009), doi:org/10.1016/j.ejrad.2009.06.019
    [16]Yuan Qiang, Chen Qin, Zhou Dong. Imaging features of Alzheimer's disease using magnetic resonance imaging in linearity, area and volume. Journal of Clinical Rehabilitative Tissue Engineering Research,2009,June 25, Vol.13, No.26.
    [17]倪红艳,王明时,祁吉等.健康老年人和阿尔茨海默病病人脑白质改变的扩散张量研究.中国医学影像技术,2007年第27卷第7期.
    [18]Ulrike Lobel,Jan Sedlacik,Daniel Gullmar, et al.Diffusion tensor imaging:the normal evolution of ADC,RA,FA,and eigenvalues studied in multiple anatomical regions of the brain.Neuroradiology,2009,51:253-263.
    [19]Sun SW, Song SK, Harms MP, et al. Detection of age-dependent brain injury in a mouse model of brain amyloidosis associated with Alzheimer's disease using magnetic resonance diffusion tensor imaging. Exp Neurol.2005 Jan;191(1):77-85.
    [20]Song SK, Sun SW, Ramsbottom MJ, et al. Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water. Neuroimage.2002 Nov;17(3):1429-36.
    [21]Sheng-Kwei Song, Shu-Wei Sun, Won-Kyu Ju, et al. Diffusion tensor imaging detects and differentiates axon and myelin degeneration in mouse optic nerve after retinal ischemia. NeuroImage 20 (2003) 1714-1722.
    [22]Matthew D. Budde, Mingqiang Xie, Anne H. Cross, et al. Axial Diffusivity is the Primary Correlate of Axonal Injury in the EAE Spinal Cord:A Quantitative Pixelwise Analysis. J Neurosci.2009 March 4; 29(9):2805-2813.
    [23]Kelvin K. Leung, Josephine Barnes, Gerard R. Ridgway, et al. Automated cross-sectional and longitudinal hippocampal volume measurement in mild cognitive impairment and Alzheimer's disease. NeuroImage 51 (2010) 1345-1359.
    [24]Tom den Heijer, Fedde van der Lijn, Peter J. Koudstaal, et al. A 10-year follow-up of hippocampal volume on magnetic resonance imaging in early dementia and cognitive decline. Brain 2010:133; 1163-1172.
    [25]Rami L, Sole-Padulles C, Fortea J, et al. Applying the new research diagnostic criteria:MRI findings and neuropsychological correlations of prodromal AD. Int J Geriatr Psychiatry.2011 Mar 7.
    [26]He Y, Wang L, Zang Y, et al. regional coherence changes in the early stages of Alzheimer's:a combined structural and resting state functional MRI study. Neuroimage,35,488-500.
    [27]IL Han Choo, Dong Young Lee, Jungsu S, et al. posterior cingulated cortex atrophy and regional cingulum disruption in mild cognitive impairment and Alzheimer's disease. Neurobiology of aging,2010, (31)772-779.
    [28]Matthew D. Budde, Mingqiang Xie, Anne H. Cross, et al. Axial Diffusivity is the Primary Correlate of Axonal Injury in the EAE Spinal Cord:A Quantitative Pixelwise Analysis. J Neurosci.2009 March 4; 29(9):2805-2813.
    [29]Changsheng Wang, Glenn T. Stebbins, David A. Medina, et al. Atrophy and dysfunction of parahippocampal white matter in mild Alzheimer's disease. Neurobiology of Aging xx (2010) xxx.
    [30]Charles D. Smith。Neuroimaging Through the Course of Alzheimer's Disease. Journal of Alzheimer's Disease,2010 (19) 273-290.
    [31]Yong Liu, Kun Wang, Chunshui YU, et al. A review of resting-state fMRI studies Alzheimer's disease A review of resting-state fMRI studies. Neuropsychologia 2008 (46)1648-1656.
    [32]Chetelat G, Desgranges B, de la Sayette V, et al. Mild cognitive impairment:Can FDG-PET predict who is to rapidly convert to Alzheimer's disease?Neurology.2003 Apr 22;60(8):1374-7.
    [33]Hirao K, Ohnishi T, Hirata Y, et al. The prediction of rapid conversion to Alzheimer's disease in mild cognitive impairment using regional cerebral blood flow SPECT. Neuroimage.2005 Dec;28(4):1014-21.
    [34]Allen G, Barnard H, McColl R, et al. reduced hippocampal functional connectivity in Alzheimer disease. Archives Neurology,2007 (64):1482-1487.
    [35]Wang L, Zang Y, He Y, et al. Changes in hippocampal connectivity in the early stages of Alzheimer's disease:evidence from resting state fMRI. Neuroimage,2006 (31):496-504.
    [36]Greicius MD, Srivastava G, Reiss AL, et al. Default-mode network activity distinguishes Alzheimer's disease from healthy aging:evidence from functional MRI. Proc Natl Acad Sci USA.2004 Mar 30;101(13):4637-42.
    [37]Sorg C, Riedl V, Muhlau M, et al. Selective changes of resting-state networks in individuals at risk for Alzheimer's disease. Proc Natl Acad Sci U S A.2007 Nov 20;104(47):18760-5
    [38]Zhang ZX, Zahner GE, Roman GC, et al. Dementia subtypes in China:prevalence in Beijing, Xian, Shanghai, and Chengdu[J].Arch Neurol,2005,62:447-453.
    [39]Yuan Qiang, Chen Qin, Zhou Dong. Imaging features of Alzheimer's disease using magnetic resonance imaging in linearity, area and volume. Journal of Clinical Rehabilitative Tissue Engineering Research June 25,2009 Vol.13, No.26
    [40]Terence C. Chua, Wei Wen, Melissa J. Slavin, et al. Diffusion tensor imaging in mild cognitive impairment and Alzheimer's disease:a review. Current Opinion in Neurology 2008,21:83-92.
    [41]Demarin V, Zavoreo I, Kes VB, et al. Biomarkers in Alzheimer's disease. Clin Chem Lab Med.2011 Feb 9. [Epub ahead of print]
    [42]Beaulieu C. The basis of anisotropic water diffusion in the nervous system-a technical review. NMR Biomed 2002; 15:435-55.
    [43]Dubois J, Dehaene-Lambertz G, Perrin M, et al. Asynchrony of the early maturation of white matter bundles in healthy infants:quantitative landmarks revealed noninvasively by diffusion tensor imaging. Hum Brain Mapp 2008; 29: 14-27.
    [44]Sun SW, Song SK, Harms MP, et al. Detection of age-dependent brain injury in a mouse model of brain amyloidosis associated with Alzheimer's disease using magnetic resonance diffusion tensor imaging. Exp Neurol.2005 Jan;191(1):77-85.
    [45]Song SK, Sun SW, Ramsbottom MJ, et al. Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water. Neuroimage.2002 Nov;17(3):1429-36.
    [46]Sheng-Kwei Song, Shu-Wei Sun, Won-Kyu Ju, et al. Diffusion tensor imaging detects and differentiates axon and myelin degeneration in mouse optic nerve after retinal ischemia. Neurolmage 20 (2003) 1714-1722.
    [47]Matthew D. Budde, Mingqiang Xie, Anne H. Cross, et al. Axial Diffusivity is the Primary Correlate of Axonal Injury in the EAE Spinal Cord:A Quantitative Pixelwise Analysis. J Neurosci.2009 March 4; 29(9):2805-2813.
    [48]Charles D. Smith. Neuroimaging through the Course of Alzheimer's Disease. Journal of Alzheimer's Disease 2010,(19) 273-290.
    [49]Tom den Heijer, Fedde van der Lijn, Peter J, et al. a 10 year follow up of hippocampal volume on magnetic resonance imaging in early dementia and cognitive decline. Brain 2010 (133)1163-1172.
    [50]Kalaria, R. Similarities between Alzheimer's disease and vascular dementia. J. Neurol. Sci.2002,203-204,29-34.
    [51]Bartzokis, G., Lu, P.H., Geschwind, D.H., Edwards, N., et al. Apolipoprotein E genotype and age-related myelin breakdown in healthy individuals:implications for cognitive decline and dementia. Arch. Gen. Psychiatry 2006,63,63-72.
    [52]Yongxia Zhoua, John H. Dougherty, Jra, et al. Abnormal connectivity in the posterior cingulate and hippocampus in early Alzheimer's disease and mild cognitive impairment. Alzheimer's & Dementia 2008 (4):265-270.
    [53]Gold BT, Powell DK, Andersen AH, et al. Alterations in multiple measures of white matter integrity in normal women at high risk for Alzheimer's disease. Neuroimage.2010 Oct 1;52 (4):1487-94.
    [54]Freund P, Wheeler-Kingshott C, Jackson J, et al. Recovery after spinal cord relapse in multiple sclerosis is predicted by radial diffusivity. Mult Scler.2010 Oct;16(10):1193-202.[PMID:20685759]
    [55]Terence C. Chua, B, Wei Wen, et al. Diffusion Tensor Imaging of the Posterior Cingulate is a Useful Biomarker of Mild Cognitive Impairment. Am J Geriatr Psychiatry 2009 July 17:7.
    [56]Alleyne T, Mohan N, Joseph J, et al. Unraveling the role of metal ions and low catalytic activity of cytochrome C oxidase in Alzheimer's disease. J Mol Neurosci. 2011 Mar;43(3):284-9.
    [57]Raichle M E, Macleod A M, Snyder A Z, et al. a default mode of brain function. Pro Nathl Acad Sci,2001,98:676-682.
    [58]Y. Zhang, N. Schuff, G.-H. Jahng, et al. Diffusion tensor imaging of cingulum fibers in mild cognitive impairment and Alzheimer disease. Neurology.2007 January 2; 68(1):13-19.
    [59]Yasuhiro Nakataa, Noriko Satob, Kiyotaka Nemotoc, et al. Diffusion abnormality in the posterior cingulum and hippocampal volume:correlation with disease progression in Alzheimer's disease. Magnetic Resonance Imaging 2009 (27) 347-354.
    [60]Marine Fouquet, Beatrice Desgranges, Brigitte Landeau, et al. Longitudinal brain metabolic changes from amnestic mild cognitive impairment to Alzheimer's disease. Brain.2009 August; 132(Pt 8):2058-2067.
    [61]F. CLERICI, A. DEL SOLE, A. CHITI, et al. Differences in hippocampal metabolism between amnestic and non-amnestic MCI subjects:automated FDG-PET image analysis. Q J NUCL MED MOL IMAGING 2009;53:646-57.
    [62]Wakana, S., Jiang, H., Nagae-Poetscher, et al. Fiber tract-based atlas of human white matter anatomy. Radiology 2004,230 (1),77-87.
    [63]Catani, M., Howard, R.J., Pajevic, et al. Virtual in vivo interactive dissection of white matter fasciculi in the human brain. Neurolmage 2002.17 (1),77-94.
    [64]IL Han Choo, Dong Young Lee, Jungsu S. Oh, et al. Posterior cingulate cortex atrophy and regional cingulum disruption in mild cognitive impairment and Alzheimer's disease. Neurobiology of Aging 31 (2010) 772-779.
    [65]Chetelat G, Desgranges B, de la Sayette V, et al. Mild cognitive impairment:Can FDG-PET predict who is to rapidly convert to Alzheimer's disease?Neurology.2003 Apr 22;60(8):1374-7.
    [66]Hirao K, Ohnishi T, Hirata Y, et al. The prediction of rapid conversion to Alzheimer's disease in mild cognitive impairment using regional cerebral blood flow SPECT. Neuroimage.2005 Dec;28(4):1014-21
    [67]Andreas Fellgiebel, Matthias J. M"uller, Paulo Wille, et al. Color-coded diffusion tensor imaging of posterior cingulate fiber tracts in mild cognitive impairment. Neurobiology of Aging 2005 (26) 1193-1198.
    [68]E.J. Rogalskia, C.M. Murphy, L. deToledo-Morrell, et al. Changes in parahippocampal white matter integrity in amnestic mild cognitive impairment:A diffusion tensor imaging study. Behavioural Neurology 2009 (21) 51-61.
    [69]Peter Fransson, Guillaume Marrelec. The precuneus/posterior cingulate cortex plays a pivotal role in the default mode network:Evidence from a partial correlation network analysis. Neurolmage 42 (2008) 1178-1184
    [70]Hong Ying Zhang, Shi Jie Wang, Zhan Long Ma, et al. resting brain connectivity: changes during the progress of Alzheimer Disease. Radiology august 2010, volume 256:number2.
    [71]Trey Hedden, Koene R. A. Van Dijk, J. Alex Becker, et al. Disruption of Functional Connectivity in Clinically Normal Older Adults Harboring Amyloid Burden. J Neurosci.2009 October 7; 29(40):12686-12694. [PubMed:19812343]
    [72]Andrews-Hanna JR, Snyder AZ, Vincent JL, Lustig C, Head D, Raichle ME, Buckner RL. Disruption of large-scale brain systems in advanced aging. Neuron 2007;56(5):924-935. [PubMed:18054866]
    [73]Buckner RL, Andrews-Hanna JR, Schacter DL. The brain's default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci 2008:1124:1-38. [PubMed:18400922]
    [74]Ogawa S, Lee T M, et al. Magnetic resonance imaging of blood vessels at high fields:in vivo and in vitro measurements and image simulation. Magn Reson Med, 1990,14:68-78.
    [75]Keller CJ, Cash SS, Narayanan S, et al. Intracranial microprobe for evaluating neuro-hemodynamic coupling in unanesthetized human neocortex. J Neurosci Methods.2009 May 15;179(2):208-18.
    [76]Angenstein F, Kammerer E, Scheich H. The BOLD response in the rat hippocampus depends rather on local processing of signals than on the input or output activity. A combined functional MRI and electrophysiological study. J Neurosci.2009 Feb 25;29(8):2428-39.
    [77]Shulman G, Fiez J A, Corberra, et al. Common blood flow changes across visual tasks:Decreases in cerebral cortex.. J Cogn Neurosci,1997,9:648-663.
    [78]Biswal B, Yetkin F Z, Haughton V M, et al. functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med,1995, 34(4):537-547.
    [79]Greicius MD, Krasnow B, Reiss AL, et al. Functional connectivity in the resting brain:a network analysis of the default mode hypothesis [J]. Proc Natl Acad Sci USA,2003,100 (1):253-258.
    [80]Vincent JL, Patel GH, Fox MD, et al. Intrinsic functional architecture in the anaesthetized monkey brain [J].Nature,2007,447 (7 140):83286.
    [81]Greicius MD, Kiviniemi V, Tervonen O, et al. Persistent default mode network connectivity during light sedation [J]. Hum Brain Mapp,2008,29 (7):8392847.
    [82]Cordes D, Haughton VM, Arganakis K, et al. frequencies contributing to functional connectivity in the cerebral cortex in resting state data. Am J Neuroradiol 2001;22:1326-33.
    [83]De Chastelaine M, Wang TH, Minton B, et al. The Effects of Age, Memory Performance, and Callosal Integrity on the Neural Correlates of Successful Associative Encoding. Cereb Cortex.2011 Jan 31.
    [84]Bluhm RL, Clark CR, McFarlane AC, et al. Default network connectivity during a working memory task. Hum Brain Mapp.2010 Jul 20.
    [85]Gimbel SI, Brewer JB. Reaction time, memory strength, and fMRI activity during memory retrieval:Hippocampus and default network are differentially responsive during recollection and familiarity judgments. Cogn Neurosci.2011 Mar;2(1):19-23.
    [86]Hampson M, Driesen N.R., Skudlarski P, et al. Brain connectivity related to working memory performance. J. Neurosci,2006,26 (51):13338-13343.
    [87]Seeley, W.W., Menon, V., Schatzberg, A.F., et al. Dissociable intrinsic connectivity networks for salience processing and executive control. J. Neurosci. 2007 (27),2349-2356.
    [88]Esposito F, Bertolino A, Scarabino T, et al. Independent component model of the default-mode brain function:Assessing the impact of active thinking. Brain Res. Bull, 2006,70 (4-6):263-269.
    [89]Esposito F, ARAGRI,LATORRE, et al. Does the default-mode functional connectivity of the brain correlate with working-memory performances? Archives Italiennes de Biologie,2009,147:11-20.
    [90]Hong Ying Zhang, Shi Jie Wang, Jiong Xing, et al. detection of PCC functional connectivity characteristics in resting state fMRI in mild Alzheimer's disease. behavioural brain research 2009 (197)103-108.
    [91]Feng Bai, David R, Watson, et al. abnormal resting state functional connectivity of posterior cingulated cortex in amnestic type mild cognitive impairment. brain research,2009 (1302) 167-174.
    [92]Maldjian JA, Laurienti PJ, Burdette JB, et al. an automated method for neuro-anatomic and cyto-architectonic atlas based interrogation of fMRI data sets. Neuroimage 2003;19:1233-9.
    [93]Maldjian JA, Laurienti PJ, Burdette JH, et al. Precentral gyrus discrepancy in electronic versions of the Talairach atlas. Neuroimage 2004;21:450-5
    [94]Ystad M, Hodneland E, Adolfsdottir S, et al. Cortico-striatal connectivity and cognition in normal aging:a combined DTI and resting state fMRI study. Neuroimage. 2011 Mar 1;55(1):24-31.
    [95]Michael D. Greicius, Kaustubh Supekar, Vinod Menon, et al. Resting-State Functional Connectivity Reflects Structural Connectivity in the Default Mode Network. Cerebral Cortex January 2009; 19:72-78
    [96]Martijn van den Heuvel, Rene'Mandl, Judith Luigjes, et al. Microstructural Organization of the Cingulum Tract and the Level of Default Mode Functional Connectivity. The Journal of Neuroscience, October 22,2008·28(43):10844-10851.
    [97]Sorg C, Ried V,MuhlauM, Calhoun VD, et al. Selective changes of resting-state networks in individuals at risk for Alzheimer's disease. PNAS 2007; 104:18760-5 [PMID:18003904].
    [98]Wang L, Zang Y, He Y, Liang M, Zhang X, Tian L, et al. Changes in hippocampal connectivity in the early stages of Alzheimer's disease:evidence from resting state fMRI. NeuroImage 2006;31:496-550 [PMID:16473024].
    [99]Greicius MD, Srivastava G, Reiss AL, Menon V. Default-mode network activity distinguishes Alzheimer's disease fromhealthy aging:evidence fromfunctional MRI. PNAS 2004;101:4637-42 [PMID:15070770].
    [100]Whitwell, J. L., Shiung, M. M., Przybelski, S. A, et al. MRI patterns of atrophy associated with progression to AD in amnestic mild cognitive impairment. Neurology, 2008,70:512-520.
    [101]Igor Yakushev, Matthias J. Miiller, Markus Lorscheider, et al. Increased hippocampal head diffusivity predicts impaired episodic memory performance in early Alzheimer's disease. Neuropsychologia 2010,48:1447-1453.
    [102]Liang Wang, Peter LaViolette, Kelly O'Keef, et al. Intrinsic connectivity between the hippocampus and posteromedial cortex predicts memory performance in cognitively intact older individuals. NeuroImage 2010,51:910-917.
    [103]P. Hagmann, O. Sporns, N. Madan, et al. White matter maturation reshapes structural connectivity in the late developing human brain. PNAS|November 2,2010 |vol.107|no.44|19067-19072.
    [1]Zhang ZX, Zahner GE, Roman GC, et al. Ddmentia subtypes in China:prevalence in Beijing, Xian, Shanghai, and Chengdu. Arch Neural,2005,62:447-453.
    [2]Dong MJ, Peng B, Lin XT, et al. The prevalence of dementia in the People's Republic of China:a systemic analysis of 1980-2004 studies. Age and aging,2007, 36:619-624.
    [3]Hardy J. a hundred years of Alzheimer's disease research. Neuron,2006,52:3-13.
    [4]Pleckaityte M. Alzheimer's disease:a molecular mechanism, new hypotheses, and therapeutic strategies. Medicina (Kaunas).2010;46(1):70-6.
    [5]Glass CK, Saijo K, Winner B, et al. Mechanisms underlying inflammation in neurodegeneration. Cell.2010 Mar 19; 140(6):918-34.
    [6]Gouras GK, Tampellini D, Takahashi RH, et al. Intraneuronal beta-amyloid accumulation and synapse pathology in Alzheimer's disease. Acta Neuropathol.2010 May;119(5):523-41.Epub 2010 Mar 31.
    [7]Sugimoto H. Development of anti-Alzheimer's disease drug based on beta-amyloid hypothesis. Yakugaku Zasshi.2010 Apr;130(4):521-6.
    [8]Ryan NS, Rossor MN. Correlating familial Alzheimer's disease gene mutations with clinical phenotype. Biomark Med.2010 Feb; 4(1):99-112.
    [9]Gustaw-Rothenberg K, Lerner A, Bonda DJ, et al. Biomarkers in Alzheimer's disease:past, present and future. Biomark Med.2010 Feb; 4(1):15-26.
    [10]Wood JG, Mirra SS, Pollock NJ, et al. Neurofibrillary tangles of Alzheimer disease share antigenic determinants with the axonal microtubule associated protein
    tau (tau). Pro Natl Acad Sci USA,1986,83:4040-4043.
    [11]Charles D. Smith*. Neuro-imaging through the course of Alzheimer's disease. Journal of Alzheimer's Disease 19 (2010) 273-290.
    [12]Dubois B, Feldman HH, Jacova C, et al. Research criteria for the diagnosis of Alzheimer's disease:revising the NINCDS-ADRDA criteria [J].Lancet Neurol,2007, 6(8):734-746.
    [13]Petersen RC. Mild cognitive impairment as a diagnostic entity[J]. Intem Med, 2004,256(3):240-246.
    [14]Mariani E, Monastero R, Mecocip. Mild cognitive impairment:a systemic review. Alzheimer Dis.2007 Aug; 12(1):23-35.
    [15]Yong Liu, Kun Wang, et al. Regional homogeneity, functional connectivity and imaging markers of Alzheimer's disease:A review of resting-state fMRI studies. Neuropsychologia 46 (2008) 1648-1656.
    [16]Krolak-Salmon P, Seguin J, Perret-Liaudet A, et al. Near a biological diagnosis of Alzheimer's disease and related disorders. Rev Med Interne.2008 Oct; 29(10):785-93.
    [17]Brun A, Englund E. Brain changes in dementia of Alzheimer's type relevant to new imaging diagnostic methods. Prog Neuropsychopharmacol Biol Psychiatry.1986,10,297-308.
    [18]Jobst KA, Smith AD, Szatmari M, et al. Detection in life of confirmed Alzheimer's disease using a simple measurement of medial temporal lobe atrophy by computed tomography. Lancet 1992,340,1179-1183.
    [19]Nagy Z, Hindley NJ, Braak H, et al. Relationship between clinical and radiological diagnostic criteria for Alzheimer's disease and the extent of neuropathology as reflected by'stages':a prospective study. Dement Geriatr Cogn Disord.1999,10,109-114.
    [20]Brunett A, Postiglione A, Tedeschi E, et al. Measurement of global brain atrophy in Alzheimer's disease with unsupervised segmentation of spin-echo MRI studies[J]. J Magn Reson Imaging,2000,11:260-266,.
    [21]Foster NL, Heidebrink JL, Clark CM, et al. FDG-PET improves accuracy in distinguishing frontotemporal dementia and Alzheimer's disease.Brain.2007,130, 2616-2635.
    [22]Csernansky JG, Hamstra J, Wang L, et al. Correlations between antemortem hippocampal volume and postmortem neuropathology in AD subjects. Alzheimer Dis Assoc Disord.2004,18,190-195.
    [23]Mortimer JA, Gosche KM, RileyKP, et al. Delayed recall, hippocampal volume and Alzheimer neuropathology:findings from the Nun Study. Neurology.2004.62, 428-432.
    [24]Alexander GE, Furey ML, Grady CL, et al. Association of premorbid intellectual function with cerebral metabolism in Alzheimer's disease:implications for the cognitive reserve hypothesis. Am J Psychiatry.1997,154,165-172.
    [25]Stern Y, Alexander GE, Prohovnik I, et al. Relationship between lifetime occupation and parietal flow:implications for a reserve against Alzheimer's disease pathology. Neurology.1995,45,55-60.
    [26]Scarmeas N, Zarahn E, Anderson KE, et al. Association of life activities with cerebral blood flow in Alzheimer disease:implications for the cognitive reserve hypothesis. Arch Neurol.2003,60,359-365.
    [27]Smith AD. Imaging the progression of Alzheimer pathology through the brain. Proc Natl Acad Sci U S A.2002,99,4135-4137.
    [28]Erten-Lyons D, Woltjer RL, Dodge H, et al. Factors associated with resistance to dementia despite high Alzheimer disease pathology. Neurology.2009,72,354-360.
    [29]Pietrini P, Furey ML, Alexander GE, et al. Association between brain functional failure and dementia severity in Alzheimer's disease:resting versus stimulation PET study. Am J Psychiatry.1999,156,470-473.
    [30]Pietrini P, Alexander GE, Furey ML, et al. Cerebral metabolic response to passive audiovisual stimulation in patients with Alzheimer's disease and healthy volunteers assessed by PET. J Nucl Med.2000,41,575-583.
    [31]Thulborn KR, Martin C, Voyvodic JT.Functional MR imaging using a visually guided saccade paradigm for comparing activation patterns in patients with probable Alzheimer's disease and in cognitively able elderly volunteers. AJNR Am J Neuroradiol.2000,21,524-531.
    [32]Hua X, Leow AD, Parikshak N, et al. Tensor-based morphometry as a neuroimaging biomarker for Alzheimer's disease:An MRI study of 676 AD, MCI, and normal subjects. Neuroimage.2008,43,458-469.
    [33]Apostolova LG, Steiner CA, Akopyan GG, et al. Three-dimensional gray matter atrophy mapping in mild cognitive impairment and mild Alzheimer disease. Arch Neurol.2007,64,1489-1495.
    [34]Hirata Y, Matsuda H, Nemoto K, et al. Voxelbased morphometry to discriminate early Alzheimer's disease from controls. Neurosci Lett.2005,382,269-274.
    [35]Thompson PM, Hayashi KM, de Zubicaray G, et al. Dynamics of gray matter loss in Alzheimer's disease. J Neurosci.2003,23,994-1005
    [36]Csernansky JG, Wang L, Swank J, et al. Preclinical detection of Alzheimer's disease:hippocampal shape and volume predict dementia onset in the elderly. Neuroimage.2005,25,783-792.
    [37]Scher AI, Xu Y, Korf ES, et al. Hippocampal shape analysis in Alzheimer's disease:a population-based study. Neuroimage.2007,36,8-18.
    [38]D.Y.Lee, MD, PhD E, et al. Regional pattern of white matter micro-structural changes in normal aging, MCI and AD. Neurology 2009; 73:1722-1728.
    [39]Naggara O, Oppenheim C, Rieu D, et al. Diffusion tensor imaging in early Alzheimer's disease. Psychiatry Res.2006,146,243-249.
    [40]Terencee, Chua, Wei wen, et al. Diffusion Tensor Imaging in mild cognitive impirment and Alzheimer's disease:a review. Current opinion in Neurology 2008, 21;83-92.
    [41]Sydykova D, Stahl R, Dietrich O, et al.iber connections between the cerebral cortex and the corpus allosum in Alzheimer's disease:a diffusion tensor imaging and voxel-based morphometry study. Cereb Cortex 2007; 17,2276-2282.
    [42]Igor Yakushev, Matthias J. Muller, et al. Increased hippocampal head diffusivity predicts impaired episodic memory performance in early Alzheimer's disease. Neuropsychologia 48(5):1447-1453
    [43]Rose SE, Janke AL, Chalk JB.Gray and white matter changes in Alzheimer's disease:a diffusion tensor imaging study. J Magn Reson Imaging.2008,20-26
    [44]Conturo TE, Williams DL, Smith CD,et al.Neuronal fiber pathway abnormalitiesin autism:an initial MRI diffusion tensor tracking study of hippocampo-fusiform and amygdalo-fusiform pathways. J Int Neuropsychol Soc 2008; 14,933-946.
    [45]Rapoport SI. In vivo PET imaging and postmortem studies suggest potentially reversible and irreversible stages of brain metabolic failure in Alzheimer's disease. Eur Arch Psychiatry Clin Neurosci 1999; 249,46-55.
    [46]Schroder J, Buchsbaum MS, Shihabuddin L, et al. patterns of cortical activity and memory performance in Alzheimer's disease. Biol Psychiatry 2001; 49,426-436.
    [47]Grady CL, Furey ML, Pietrini P, et al. Altered brain functional connectivity and impaired short-term memory in Alzheimer's disease. Brain 2001 124,739-756.
    [48]Sperling RA, Bates JF, Chua EF.MRI studies of associative encoding in young and elderly controls and mild Alzheimer's disease. J Neurol Neurosurg Psychiatry 2003.4,44-50.
    [49]Diamond EL, Miller S, Dickerson BC.Relationship of fMRI activation to clinical trial memory measures in Alzheimer disease. Neurology 2007; 69,1331-1341.
    [50]Kato T, Knopman D, Liu H.Dissociation of regional activation in mild AD during visual encoding:a functional MRI study. Neurology 2001; 57,812-816.
    [51]Small SA, Nava AS, Perera GM. Evaluating the function of hippocampal subregions with high-resolution MRI in Alzheimer's disease and aging. Microsc Res Tech 2000.1,101-108.
    [52]Rombouts SA, Barkhof F,Veltman DJ. FunctionalMRimaging in Alzheimer's disease during memory encoding. AJNR Am J NeuroradioI2000; 21,1869-1875.
    [53]Celone KA, Calhoun VD, Dickerson BC.Alterations in memory networks in mild cognitive impairment and Alzheimer's disease:an independent component analysis. J Neurosci 2006:26,10222-10231.
    [54]Fair DA, Cohen AL, Dosenbach NU. The maturing architecture of the brain's default network. Proc Natl Acad Sci U S A 2008; 105,4028-4032.
    [55]Raichle ME, Snyder AZ.A default mode of brain function:a brief history of an evolving idea. Neuroimage 2007; 37,1083-1090; discussion 1097-1089.
    [56]van den Heuvel M, Mandl R, Luigjes J. Microstructural organization of the cingulum tract and the level of default mode functional connectivity. J Neurosci 2008 28,10844-10851.
    [57]Briswal B, Yetkin F Z, Haughton V M, et al. functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med,1995, 34(4):537-547.
    [58]Li, S., Li, Z., Wu, G, et al. Alzheimer Disease:Evaluation of a functional MR imaging index as amarker. Radiology,2002; 225,253-259.
    [59]He, Y., Wang, L., Zang, Y., et al. Regional coherence changes in the early stages of Alzheimer's disease:A combined structural and resting-state functional MRI study. Neuroimage,2007; 35,488-500.
    [60]Raichle, M. E.,& Mintun, M. A. Brain work and brain imaging. Annual Review of Neuroscience,2006; 29,449-476.
    [61]He, Y., Zang, Y., Jiang, T.et al. Detection of functional networks in the resting brain. In:Biomedical Imaging:Nano to Macro,2004. IEEE International Symposium on (ISBI'04), vol.981, pp.980-983. Arlington, USA.
    [62]Allen, G., Barnard, H., McColl, R. et al. Reduced hippocampal functional connectivity in Alzheimer disease. Archives Neurology,2007;64,1482-1487.
    [63]Wang, L., Zang, Y., He, Y, et al. (2006). Changes in hippocampal connectivity in the early stages of Alzheimer's disease:Evidence from resting state fMRI. Neuroimage,31,496-504.
    [64]Greicius, M. D., Srivastava, G., Reiss, A. L., et al. Default mode network activity distinguishes Alzheimer's disease from healthy aging:Evidence from functional MRI. Proceedings of the National Academy of Sciences of the United States of America,101,4637-4642.
    [65]Grady, C. L., McIntosh, A. R., Beig, S, et al. Evidence from functional neuroimaging of a compensatory prefrontal network in Alzheimer's disease. The Journal of Neuroscience,2003; 23,986-993.
    [66]Rombouts SA, Barkhof F, Goekoop R.Altered resting state networks in mild cognitive impairment and mild Alzheimer's disease:an fMRI study.Hum Brain Mapp 2005; 26,231-239.
    [67]Rombouts SA, Damoiseaux JS, Goekoop RModel-free group analysis shows altered BOLD FMRI networks in dementia.Hum Brain Mapp 2009;30,256-266.
    [68]Wermke M, Sorg C, Wohlschlager AM. A new integrative model of cerebral activation, deactivation and default mode function in Alzheimer's disease. Eur J Nucl Med Mol Imaging 2008; 35 Suppl 1,S12-24.
    [69]Buckner RL, Snyder AZ, Shannon BJ.Molecular, structural, and functional characterization of Alzheimer's disease:evidence for a relationship between default activity, amyloid, and memory. J Neurosci2005 25,7709-7717.
    [70]Winblad B, Palmer K, Kivipelto M.et al. Mild cognitive impairment-beyond controversies, towards a consensus:report of the International Working Group on Mild Cognitive Impairment.J Intern Med 2004; 256,240-246.
    [71]Morris JC. Mild cognitive impairment and preclinical Alzheimer's disease. Geriatrics Suppl,2005; 9-14.
    [72]Gauthier S, Reisberg B, Zaudig M.et al. Mild cognitive impairment. Lancet; 2006367,1262-1270.
    [73]Morris JC Mild cognitive impairment is early-stage Alzheimer disease:time to revise diagnostic criteria. Arch Neurol 2006; 63,15-16.
    [74]Pantel J, Kratz B, Essig M Parahippocampal volume deficits in subjects with aging-associated cognitive decline. Am J Psychiatry 2003; 160,379-382.
    [75]Dickerson BC, Salat DH, Bates JF.edial temporal lobe function and structure in mild cognitive impairment. Ann Neurol 2004; 56,27-35.
    [76]Pennanen C, Testa C, Laakso MP.et al. A voxel based morphometry study on mild cognitive impairment. J Neurol Neurosurg Psychiatry 2005; 76,11-14.
    [77]Becker JT, Davis SW, Hayashi KM. Three-dimensional patterns of hippocampal atrophy in mild cognitive impairment. Arch Neurol 2006; 3,97-101.
    [78]Duarte A, Hayasaka S, Du A. Volumetric correlates of memory and executive function in normal elderly, mild cognitive impairment and Alzheimer's disease. Neurosci Lett 2006,406,60-65.
    [79]Saykin AJ, Wishart HA, Rabin LA.Older adults with cognitive complaints show brain atrophy similar to that of amnestic MCI. Neurology 2006,67,834-842.
    [80]Saka E, Dogan EA, Topcuoglu MA, et al. Linear measures of temporal lobe atrophy on brain magnetic resonance imaging (MRI) but not visual rating of white matter changes can help discrimination of mild cognitive impairment (MCI) and Alzheimer's disease (AD). Arch Gerontol Geriatr.2007;44(2):141-151.
    [81]Chetelat G, Desgranges B, Landeau B, et al. Direct voxel-based comparison between grey matter hypo-metabolism and atrophy in Alzheimer's disease. Brain. 2008; 131 (Pt 1):60-71.
    [82]Killiany RJ, Hyman BT, Gomez-Isla T, et al. MRI measures of entorhinal cortex vs hippocampus in preclinical AD. Neurology.2002;58(8):1188-1196.
    [83]Zhang Y, Schuff N, Jahng GH.Diffusion tensor imaging of cingulum fibers in mild cognitive impairment and Alzheimer disease. Neurology 2007;68,13-19.
    [84]Fellgiebel A, Muller MJ, Wille PColor-coded diffusion-tensorimaging of posterior cingulate fiber tracts in mild cognitive impairment. Neurobiol Aging2005;26,1193-1198.
    [85]Stahl R, Dietrich O,Teipel SJ.White matter damage in Alzheimer disease and mild cognitive impairment:assessment with diffusiontensor MR imaging and parallel imaging techniques.Radiology,2007 243,483-492.
    [86]Medina D, DeToledo-Morrell L, Urresta F.White matter changes in mild cognitive impairment and AD:A diffusion tensor imaging study. Neurobiol Aging,2006,27,663-672.
    [87]Huang J, Friedland RP, Auchus AP Diffusion tensor imaging of normal-appearing white matter in mild cognitive impairment and early Alzheimer disease:preliminary evidence of axonal degeneration in the temporal lobe. AJNR Am J Neuroradiol 200728,1943-1948.
    [88]Kantarci K, Jack CR, Jr., Xu YC. Mild cognitive impairment and Alzheimer disease:regional diffusivity of water. Radiology 2001219,101-107.
    [89]Rose SE, McMahon KL, Janke AL.Diffusion indices on magnetic resonance imaging and neuropsychological performance in amnestic mild cognitive impairment. J Neurol Neurosurg Psychiatry 2006;77,1122-1128.
    [90]Dickerson BC, Salat DH, Greve DN, et al. Increased hippocampal activation in mild cognitive impairment compared to normal aging and AD. Neurology 2005;65, 404-411.
    [91]Hamalainen A, Pihlajamaki M, Tanila H,et al. Increased fMRI responses during encoding in mild cognitive impairment. Neurobiol Aging 2007;28,1889-1903.
    [92]Kircher TT,Weis S, Freymann K, et al. Hippocampal activation in patients with mild cognitive impairment is necessary for successful memory encoding. Neurol Neurosurg Psychiatry 2007;78,812-818.
    [93]Sperling R. Functional MRI studies of associative encoding in normal aging, mild cognitive impairment, and Alzheimer's disease. Ann N Y Acad Sci 2007; 1097, 146-155.
    [94]Bokde AL, Lopez-Bayo P, Meindl T, et al. Functional connectivity of the fusiform gyrus during a face-matching task in subjects with mild cognitive impairment. Brain 2006; 129,1113-1124.
    [95]Zhou Y, Dougherty JH, Jr., Hubner KF, et al. Abnormal connectivity in the posterior cingulate and hippocampus in early Alzheimer's disease and mild cognitive impairment. Alzheimers Dement 2008; 4,265-270.
    [96]Petrella JR, Wang L, Krishnan S, et al. Cortical deactivation in mild cognitive impairment:high-field-strength functional MR imaging. Radiology 2007;245, 224-235.
    [97]Bai F, Zhang Z, Yu H, et al. Default-mode network activity distinguishes amnestic type mild cognitive impairment from healthy aging:a combined structural and resting-state functional MRI study. Neurosci Lett 2008;438,111-115.
    [98]Petersen RC. Conversion. Neurology 2007; 67, S12-13.
    [99]Duara R, Loewenstein DA, Potter E, et al. Medial temporal lobe atrophy on MRI scans and the diagnosis of Alzheimer disease. Neurology 2008; 71,1986-1992.
    [100]Tapiola T, Pennanen C, Tapiola M, et al. MRI of hippocampus and entorhinal cortex in mild cognitive impairment:a follow-up study. Neurobiol Aging (2008); 29, 31-38.
    [101]Devanand DP, Pradhaban G, Liu X, et al. Hippocampal and entorhinal atrophy in mild cognitive impairment:prediction of Alzheimer disease. Neurology (2007); 68, 828-836.
    [102]Eckerstrom C, Olsson E, Borga M, et al. Small baseline volume of left hippocampus is associated with subsequent conversion of MCI into dementia:the GoteborgMCI study. J Neurol Sci (2008);272,48-59.
    [103]Karas G, Sluimer J, Goekoop R, et al. Amnestic mild cognitive impairment: structural MR imaging findings predictive of conversion to Alzheimer disease. AJNR Am J Neuroradiol (2008);29,944-949.
    [104]Alex D.Leow, Igor Yanovsky, Neelroop Parikshak, et al. Alzheimer's Disease Neuroimaging Initiative:A one-year follow up study using tensor-based morphometry correlating degenerative rates, biomarkers and cognition.Neuroimage. 2009 April 15; 45(3):645-655.
    [105]Fellgiebel A, Dellani PR, Greverus D, et al. Predicting conversion to dementia in mild cognitive impairment by volumetric and diffusivity measurements of the hippocampus. Psychiatry Res (2006);146,283-287.
    [106]Hua X, Leow AD, Parikshak N, et al. Tensor-based morphometry as a neuroimaging biomarker for Alzheimer's disease:An MRI study of 676 AD, MCI, and normal subjects. Neuroimage (2008),43,458-469.
    [107]Misra C, Fan Y, Davatzikos C. Baseline and longitudinal patterns of brain atrophy in MCI patients, and their use in prediction of short-term conversion to AD: results from ADNI. Neuroimage (2009) 44,1415-1422.
    [108]Duchesne S, Bocti C, De Sousa K, et al. Amnestic MCI future clinical status prediction using baseline MRI features. Neurobiol Aging, inpress(2008).
    [109 Chetelat G, Landeau B, Eustache F, et al. Using voxel-based morphometry to map the structural changes associated with rapid conversion in MCI:a longitudinal MRI study. Neuroimage (2005);27,934-946.
    [110]Chetelat G, Fouquet M, Kalpouzos G, et al. Three-dimensional surface mapping of hippocampal atrophy progression from MCI to AD and over normal aging as assessed using voxel-based morphometry. Neuropsychologia (2008);46, 1721-1731.
    [111]Jack CR, Jr., Shiung MM, Weigand SD, et al. Brain atrophy rates predict subsequent clinical conversion in normal elderly and amnestic MCI. Neurology (2005);65,1227-1231.
    [112]Spulber G, Niskanen E, Macdonald S, et al. Whole brain atrophy rate predicts progression from MCI to Alzheimer's disease. Neurobiol Aging, in press(2008)..
    [113]Borroni B, Anchisi D, Paghera B, et al. Combined 99mTc-ECD SPECT and neuropsychological studies in MCI for the assessment of conversion to AD. Neurobiol Aging (2006) 27,24-31.
    [114]Caroli A, Testa C, Geroldi C, et al. Cerebral perfusion correlates of conversion to Alzheimer's disease in amnestic mild cognitive impairment. J Neurol (2007)254, 1698-1707.
    [115]Yuan Y, Gu ZX, Wei WS.luorodeoxyglucosepositron-emission tomography, single-photon emission tomography, and structural MR imaging for prediction of rapid conversion to Alzheimer disease in patients with mild cognitive impairment:a meta-analysis. AJNR Am J Neuroradiol 2009;30,404-410.
    [116]Miller SL, Fenstermacher E, Bates J.Hippocampal activation in adults with mild cognitive impairment predicts subsequent cognitive decline. J Neurol Neurosurg Psychiatry 2008;79,630-635.
    [117]Petrella JR, Prince SE, Wang L. Prognostic value of posteromedial cortex deactivation in mild cognitive impairment. PLoS ONE 2007; 2, e1104.
    [118]Smith CD, Chebrolu H, Wekstein DR et al. Age and gender effects on human brain anatomy:a voxel-based morphometric study in healthy elderly. Neurobiol Aging.2007; 28,1075-1087.
    [119]Jack CR Jr., Shiung MM, Weigand SD et al. Brain atrophy rates predict subsequent clinical conversion innormal elderly and amnestic MCI. Neurology. 2005; 65,1227-1231.
    [120]Adak S, Illouz K, Gorman W et al. Predicting the rate of cognitive decline in aging and early Alzheimer disease. Neurology.2004; 63,108-114.
    [121]Apostolova LG, Mosconi L, Thompson PM et al. Subregional hippocampal atrophy predicts Alzheimer's dementia in the cognitively normal. Neurobiol Aging, in press 2008
    [122]Wishart HA, Saykin AJ, McAllister TW et al. Regional brain atrophy in cognitively intact adults with a single APOE epsilon4 allele. Neurology.2006; 67, 1221-1224.
    [123]Jagust W, Gitcho A, Sun F, Kuczynski B et al. Brain imaging evidence of preclinical Alzheimer's disease in normal aging. Ann Neurol.2006; 59,673-681.
    [124]Smith CD, Chebrolu H, Wekstein DR, Schmitt FA, Jicha GA, Cooper G, Markesbery WR (2007) Brain structural alterations before mild cognitive impairment. Neurology 68,1268-1273.
    [125]Smith CD, Chebrolu H, Markesbery WR et al. Improved predictive model for pre-symptomatic mild cognitive impairment and Alzheimer's disease. Neurol Res. 2008;30,1091-1096.
    [126]Smith CD, Chebrolu H, Andersen AH et al. White matter diffusion alterations in normal women at risk of Alzheimer's disease.Neurobiol Aging, in press.2008
    [127]Nierenberg J, Pomara N, Hoptman MJ et al. Abnormal white matter integrity in healthy apolipoprotein E epsilon4 carriers Neuroreport.2005; 16,1369-1372.
    [128]Mosconi L, De Santi S, Li J et al. Hippocampal hypometabolism-predicts cognitive decline from normal aging. Neurobiol Aging.2008:29,676-692.
    [129Johnson KA, Lopera F, Jones K et al. Presenilin-1-associated abnormalities in regional cerebral perfusion. Neurology.2001:56,1545-1551.
    [130]Small GW, Ercoli LM, Silverman DH et al. Cerebral metabolic and cognitive declinein persons at genetic risk for Alzheimer's disease. Proc Natl Acad Sci U S A. 2000:97,,6037-6042.
    [131]Trivedi MA, Schmitz TW, Ries ML et al. Reduced hippocampal activation during episodic encoding in middle aged individuals at genetic risk of Alzheimer's disease:a cross-sectional study. BMC Med.2006:4,112-114.
    [132]Smith CD, Andersen AH, Kryscio RJ, et al. Women at risk for AD show increased parietal activation during a fluency task. Neurology.2002;58,1197-1202.
    [133]Wishart HA, Saykin AJ, Rabin LA et al. Increased brain activation during working memory in cognitively intact adults with the APOE epsilon4 allele. Am J Psychiatry.2006,163,1603-1610.
    [134]Bondi MW, Houston WS, Eyler LT et al. fMRI evidence of compensatory mechanisms in older adults at genetic risk for Alzheimer disease. Neurology,2005; 64, 501-508.
    [135]Fleisher AS, Houston WS, Eyler LT, et al. Identification of Alzheimer disease risk by functional magnetic resonance imaging. Arch Neurol,2005:62,1881-1888.
    [136]Mintun MA, Larossa GN, Sheline YI, et al. [11C]PIB in a nondemented population:Potential antecedent marker of Alzheimer disease. Neurology,2006,67: 446-452.
    [137]Price J, Morris J. Tangles and plaques in nondemented aging and "preclinical" Alzheimer's disease. Ann Neurol,1999,45:358-368.
    [138]Yvette I. Sheline, Marcus E. Raichle, Abraham Z. Snyder, et al. Amyloid Plaques Disrupt Resting State Default Mode Network Connectivity in Cognitively Normal Elderly. BIOL PSYCHIATRY 2010;67:584-587

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700