用户名: 密码: 验证码:
高密度植物纤维功能材料制备、性能和机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人们对石油、煤炭、矿石等不可再生资源的大力开采和消耗,以及石油基塑料的大量使用引起日益加剧的环境污染问题,植物资源的高质化利用成为全球研究的热点。具有环保、可降解、隔热保温等优良性能的天然植物纤维复合材料成为复合材料领域中增长最快的材料之一。目前,高密度的植物纤维复合材料必须大量使用石油基塑料或树脂组份,才能得优质的复合材料。但是,其环保性、可降解性受到很大影响,纤维材料疏松多孔的三维结构也难以保留。本论文以蔗渣纤维为原材料辅以少量化学助剂,采用湿热压成型技术与装备制备了可完全降解的高密度植物纤维功能材料(密度为800~950kg/m~3)。同时研究了其物理化学特征的变化,并对相关机理进行了探讨。
     利用X衍射和CP/MAS ~(13)C NMR对蔗渣浆纤维微观结构组成进行了分析;通过高效阴离子交换色谱分析得到蔗渣浆纤维单糖组成为葡萄糖、木糖以及少量的阿拉伯糖;利用凝胶渗透色谱分析得到蔗渣纤维素的数均分子量Mn为3.28×10~5、重均分子量Mw为2.02×10~6、质均分子量Mw为5.03×10~6;利用热重分析研究了纤维原料的热解性能及其热解动力学模型。纤维原料的分析为新型植物纤维复合材料的开发奠定了理论基础。
     研究了干燥压力、干燥时间、干燥温度对材料拉伸性能、挺度性能和防水性能的影响,同时优化得到最佳的制备工艺为干燥温度160℃、干燥时间4min、干燥压力为0.4MPa。此时得到的试样的弹性极限应力和弹性极限应变分别为9.24MP,0.43%;弹性模量为2.14GPa;形变极限和强度极限应力分别为3.26%和35.35MPa;材料的抗张吸收能为30.88J/m~2;材料应变εIV为0.12%;密度约为910kg/m~3;材料挺度为119.5mN.m,接触角增至110.54°,具有较好的性能。
     利用显微镜、扫描电镜(SEM)研究了不同制备工艺条件下得到的高密度植物纤维功能材料结构;利用AFM对制备过程中纤维表面的微观变化进行了探讨;利用显微镜,研究了热压过程中的纤维搭接形变的特征并进行了量化。
     通过电导滴定法测定不同工艺条件下得到的纤维试样的羧酸含量并计算得到内酯含量。结果表明内酯含量随着干燥温度、时间和压力的提高而增大,解释了纤维角质化的机理。利用X-衍射、ATR-FTIR和CP/MAS ~(13)C NMR等分析方法研究了不同制备工艺条件下纤维化学特征的变化。
     依据毒性评价、吸湿性、抑制烟雾产生、发烟效果和成本比较等阻燃剂的选择原则,优选阻燃剂A、阻燃剂B、阻燃剂C作为高密度植物纤维功能复合材料用无机阻燃剂。通过正交试验分析得到最优的复合无机阻燃剂体系,其中各组分的配比为:阻燃剂B:阻燃剂A:阻燃剂C=2:3:1。为了在获得良好的阻燃性并尽量保留其物理强度,选用阻燃剂在添加量为60%,得到的试样燃烧过程中几乎没有烟生成,最后的灰烬颜色为黑色,此时材料的最大拉伸应力和应变值分别为21.15MPa、1.68%。
     利用SEM分析了阻燃试样的结构和阻燃剂在试样中的分布,探讨了其留着机理;添加了1.5%的阳离子淀粉对阻燃的植物纤维功能材料进行了有效的强度补偿。按照GB/T 2406-92测得阻燃剂添加量为60%的试样的氧指数为31.2%,属于难燃材料;根据ASTM E86-08测定阻燃型高密度植物纤维功能材料的火焰蔓延指数为13.6,烟雾指数为108,达到室内墙体和天花板装饰的A级标准。
     研究了单一阻燃剂、复配阻燃剂和阻燃型高密度植物纤维功能材料的热解性能并分析其阻燃机理。傅里叶衰减全反射红外(ATR-FTIR)分析了热解剩余物的红外谱图特征。当热解温度低于300℃,阻燃和非阻燃试样热解缓慢,没有出现新吸收峰。热解温度350℃时,非阻燃试样在1611cm-1处出现芳香环骨架振动吸收峰和1705cm-1为共轭羰基振动吸收峰,而阻燃试样未出现新的吸收峰。热解温度为400℃处理30S时,阻燃试样的热解剩余物的纤维素和半纤维素的特征吸收峰没有消失;非阻燃的试样,纤维素和半纤维素的特征吸收峰基本消失,几乎热解完全。处理时间延长至2min,阻燃和非阻燃试样的纤维组分都会被充分热解,呈现出类似的ATR-FTIR谱图特征。
     利用显微镜和扫描电镜对不同热解温度条件下非阻燃和阻燃植物纤维功能材料热解剩余物的形态结构进行观察,可以直观的看到添加阻燃剂后热解剩余物的纤维网状结构得到很好的保持。通过SEM照片可以清晰的看到阻燃剂热解剩余物对纤维的包覆现象,进一步完善了阻燃机理。
With the exploitation and consumption of oil, coal, ore and other non-renewable resource,serious environmental pollution caused by strong and extensive use of petroleum-based plastics increasing. The high quality use of plant resources is becoming a global hot spot. The natural fiber composite materials with the properties of environmentally friendly, biodegradable and excellent thermal insulation have been one of the fastest growing composite materials. Currently, high-density plant fiber composite material must be extensive use of petroleum-based plastic or resin components, in order to get high-quality composite material. However, its eco-friendly and biodegradable characteristics have been greatly affected. The three-dimensional structure and rich porous of fiber materials is difficult to retain. In this paper, one kind of high density(800~950kg/m~3) completely-degraded plant fiber functional materials is prepared from the bagasse fiber and a small amount of chemical aids by wet-hot press technology and equipment. It also studied the changes of physical-chemical characteristics and the relevant mechanism.
     The micro-structure of the bagasse pulp fiber was analyzed by the X-ray diffraction and CP/MAS ~(13)C NMR. The bagasse pulp fiber is composed of monosaccharides glucose, xylose and small amounts of arabinose by the analysis of ion chromatography. The molecular weight of bagasse cellulose is detected by gel permeation chromatography(GPC) get high-performance which obtain the number average molecular weight(Mn) of 3.28×10~5,weight average molecular weight (Mw) of 2.02×10~6, mass-average molecular weigh(tMw)of 5.03×10~6.
     The pyrolysis performance and thermal decomposition kinetics model of fiber material were studied by TGA pyrolysis. We obtain the theoretical foundation for development a new plant fiber composite material by raw material analysis.
     In this study, the effect of drying pressure, drying time and drying temperature on the tensile properties, stiffness properties and waterproof performance were researched and obtained the optimizing the preparation condition which were drying temperature of 160℃, drying time of 4min and drying pressure of 0.4MPa. The stress and elastic limit elastic limit strain were 9.24MP and 0.43%.The Elastic modulus was 2.14Gpa. Deformation limit and ultimate strength were 3.26% and stress 35.35MPa. Material tensile energy absorption was 30.88J/m~2. The strainεIV was 0.12%. Density was about 910kg/m~3. The stiffness was 119.5mN.m. Contact angle was increased to 110.54°.
     The macro and micro structure of high density plant fiber functional material prepared under different conditions was studied using light reflection microscopy scanning electron microscopy (SEM) and atomic force microscope (AFM). The surface change of fiber was detected by AFM. Also, the deformation of fiber interweave was discussed by light reflection microscopy.
     The acid content and inner ester of the fiber samples which were made different process conditions was analyzed by the method of conductivity titration. The amount of inner ester was increasing with the increasing of drying temperature, time and pressure which could be one of explanation for fiber cornification. The chemical characteristics of fiber treated under different technical condition were analyzed by XRD、ATR-FTIR and CP/MAS ~(13)C NMR.
     Aluminum hydroxide, magnesium hydroxide and zinc borate were chosen as flame retardants for the high density plant fiber composite material Evaluation based on the principle of toxicity, moisture, suppress smoke generation, smoke effects and cost comparisons. The optimal formula of inorganic flame retardants is the ratio of each component, magnesium: aluminum hydroxide: zinc borate = 2:3:1 which was obtained by orthogonal test analysis. In order to get a good flame resistance while trying to retain their physical strength, flame retardants used in the material content of 30%. The combustion process generates virtually no smoke and the ashe of the last color is black. At these conditions, the maximum tensile stress and strain values were 21.15MPa, 1.68%.
     The distribution of flame retardants in the samples was observed by SEM and discussed the mechanism of its retention. Adding 1.5% of cationic starch into plant fiber function of flame-retardant materials were the effect of effective intensity compensation. The oxygen functional index of 60%flame retardant addition sample was 31.2% according to the GB/T 2406-92.According to the ASTM E86-08, the flame spread index was 13.6, the smoke index was 108. It reached the A-level standard which was suitable for interior walls and ceiling.
     The pyrolysis performance and mechanism of single flame retardants, flame-retardant compound and high-density flame-retardant plant fiber material functional was analyzed. The pyrolysis residue was studied by ATR-FTIR. When the pyrolysis temperature is below 300℃, fire-retardant and non flame retardant sample show seldom pyrolysis and no new absorption peak. Two new absorption peak non-flame retardant sample occurred at 1611cm-1 and 1705cm-1,while the flame-retardant samples was no new peak at 350℃. At temperature of 400℃for 30S, the prime characteristic absorption peak of flame retardant product did not disappear while non flame-retardant samples were almost disappeared. Extending time to 2min at 350℃, flame retardant and non flame retardant samples were all fully pyrolysis.
     The morphological structure of pyrolysis residue was researched by the light reflection microscopy and scanning electron microscopy (SEM) which showed clearly the function of flame retardant in the respect of maintain sample structure. Meanwhile, it was found that the fiber was capsuled by pyrolysis product of fire retardant agents which further improve the mechanism of flame retardant.
引文
[1]袁同琦等.生物质资源研究的新视野-木质纤维素全溶体系[J].化学进展, 2010, 22(2,3): 472-481
    [2] HuberG W, Iborra S, Corma A. Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering, Chemical Reviews[J],2006, 106: 4044-4098
    [3] ValenzuelaM B, JonesCW, AgrawalPK. Batch aqueous- phase reforming of woody biomass[J]. Energy Fuels, 2006, 20: 1744-1752
    [4]吴伟,陈小波.新型墙体材料的发展与推广[J].陕西建筑, 2007,(8):24-25
    [5]魏立新,李万喜.浅谈绿色墙体材料的发展[J].技术与市场, 2008, (5):54-55
    [6]杨呜波,李忠明,冯建民,张雁.秸秆/聚氯乙烯复合材料的初步研究[J].材料科学与工程, 2000, 18(4):27-29
    [7]何玉梅,许陆文.植物纤维/水泥复合材料力学性能研究[J].玻璃钢/复合材料2000,(4): 16-17
    [8]高杰,汤烈贵.纤维素科学[M].北京:化学工业出版社, 2005
    [9]叶代勇,黄洪,傅和青等.纤维素化学研究进展[J].化工学报, 2006, 57( 8): 1782-1791
    [10]徐咏兰.中高密度纤维制造与应用[M].吉林:吉林科学技术出版社, 2002, 9: 1-3
    [11]杨淑惠等.植物纤维化学[M].中国轻工业出版社,2005:6
    [12]范雅君.天然植物纤维绿色复合材料的开发及性能改良[J].国外染整科技, 2010(5):50-53
    [13]张景强等.纤维素结构与解结晶的研究进展[J].林产化学与工业, 2010, 28(6): 109-114
    [14]张景强等.纤维素结构研究进展[J].纤维素科学与技术, 1993, 1(4): 1-10
    [15]余紫苹等.植物半纤维素结构研究进展[J].纤维素科学与技术, 2011, 6:48-54
    [16]张慧茹,李冬霜,张维丽等.半纤维素对Lyocell纤维结构与性能的影响[J].高分子材料科学与工程, 2008, 24( 11) : 99. 102
    [17] Pejic B M, Kostic M M , Skundric P D. The effects of hemi-celluloses and lignin removal on water uptake behavior of hemp fibers[J]. Bioresource Technology, 2008, 99(15) : 7152-7159
    [18]金永灿,吴梦然等.兴安落叶松木质素化学结构特性的研究[J].纤维素科学与技术, 1995, 3( 4 ): 28-37
    [19 ]李康,梁文芷,伍红等.桉木光诱导氧化降解研究[J].纤维素科学与技术.1996,4 (3): 22-29
    [20] Sarkanen KV ,Chang HM,Ericsson B. Species variation in lignins[J]. Tappi,1967,50(11):572~575
    [21] JC delRo, A Gutirrez, J Romero, et al. Identification of residual lignin markers in eucalyptus kraft pulps by Py-GC/MS [J] .Journal of Analytical and Applied Pyrolysis, 2001, 58-59: 425 -439
    [22]陈方,陈嘉翔.桉木木素的付立叶变换红外光谱研究.纤维素科学与技术,1994, 2(2) : 14~19
    [23] R C Sun, X F Sun, P Fowler, et al. Structural and physicochemical characterization of lignins solubilized during alkaline peroxide treatment of barley straw[J]. European Polymer Journal, 2002, 38: 1399-1407
    [24]白绘宇.植物纤维聚丙烯复合材料结构与性能的研究[M].北京化工大学, 2002,1-2
    [25]牛永亮等.剑麻纤维的表面接枝改性与结构表征[J].材料科学与工程学报. 2007, 25(4)
    [26]史加强.亚麻纤维理化性能对染色机理的影响[J].纺织学报, 1999, 20(1): 16-18
    [27]宋康玲.麻纤维增强复合材料及发展[J].成都纺织高等专科学校学报,2008, 25(4):23-25
    [28]陈军.国际环境材料发展概况[J].能源环境保护, 2009,23(1):7-10
    [29]于文吉.生物质环境材料在建筑上的应用及前景展望[J].绿色建材, 2009, (4): 23-24
    [30] Hristov,V.N.,Lach,R.,Grellmann,W. Impact fracture behaviour of modified polypropylene/wood fiber composites[J]. Polymer Testing.2004,23:581-589
    [31]雷乐颜.纤维素纤维的改性方法[J].科技向导, 28011, (6):28
    [32] Lee,S.Y.,Yang,H.S.,Kim,H.J.,Jeong,C.S.,Lim,B.S.,Lee,J.N.Creep behavior and manufacturing parameters of wood flour filled polypropylene composites. Composite Structures, 2004, 65:459-469
    [33]刘苇,侯庆喜,刘泽华.采用二氧化硅纳米粒子对纤维素纤维进行改性[J].天津造纸, 2008(4): 40-44
    [34]蔺艳琴,揣成智.热塑性塑料/天然植物纤维复合材料的研究[J].塑料科技. 1999, 4: 8-10
    [35]邬义明.植物纤维化学[M]. 1990.北京:轻工业出版社
    [36]秦志国.玻璃纤维/木粉/聚丙烯三相复合材料结构与性能研究[D].苏州:苏州大学,2005
    [37]向慧.九正建材网. http://supply.jc001.cn/detail/930390.html, 2008
    [38]板式家具中密度板和刨花板的区别及特性. http://home.focus.cn/msgview/952/144909762.html, 2008
    [39]方辉.木塑行业难享3000亿盛宴[N].中国经营报,2010.12.18
    [40]徐方荣.我国中密度纤维板生产现状、发展趋势及应用前景[J].临产工业, 2010,37(10): 3-5
    [41]伍波.木塑复合材料的研究进展及发展趋势[J].材料导报, 2009,23(7): 62-64
    [42]赵永生.木塑复合材料的研究进展[J].塑料制造, 2006(6): 67-71
    [43]刘柳,夏英,马春等.木塑复合材料的研究进展[J].塑料科技, 2006, ( 6) : 90
    [44]董雪波,李琼,童国林.木质素/ PVC复合材料的研究与发展[J] .林产工业, 2008, 35( 1) : 13
    [45]朱晓群,周亨近.木粉/HDPE复合材料的力学性能与流动性能[J].北京化工大学学报, 2001,28(1):56-58
    [46]谭寿再,孔萍,吴健文等.再生聚丙烯/木粉复合材料性能研究[J].木材工业, 2006, (6) : 14
    [47]王正,鲍甫成.木塑复合材料界面特性及其影响因子的研究[D].中国国家图书馆, 2001
    [48]刘文鹏,李炳海.不同相容剂对PP/木粉复合材料力学性能的影响[J].塑料, 2005, 34( 5) : 21
    [49]薛平,张明珠,何亚东等.木塑复合材料及挤出成型特性的研究[J].中国塑料, 2001, 15(8): 53-59
    [50] Mehdi Tajvidi, Shayesteh Haghdan. Physical propert ies of novel lay ered compo sites of wood flour and PVC [J]. J Reinf Plast Compos, 2007, 27(16): 1759
    [51] L.M. Matuana, C.B. Park, J.J.Balatineez. Cell morphology and property relationships of microcellular foamed PVC/Wood-fiber composition[J].Polumer engineering and science, 1998,38(11)1862-1872
    [52] L.M. Matuana, R. T.Woodhams, J.J.Balatineez et al. Influence of Interfacial on the Properties of PVC/Cellulosic Fiber Composites[J].Polymer composites,1998, 19(4):446-45
    [53] Magnus Bengtsson, kristiina oksman. Slilane crosslinked wood plastic composites: processing and properties[J]. Composites science and Technology, 2006,(66):2177-2186
    [54] G. Canche-Escamilla, J. Rodriguez-Laviada. Flexural , impact and compressive properties of a rigid-thermalplastic matrix/cellulose fiber reinforced composites[J]. Composites: part A, 2002, 33:539-549
    [55] Norma E, Marcovich et al. Thermal and mechanical characterization o f linear low density polyethylene/ wood flour composites [J]. J Appl Polym Sci, 2003, 90(10) : 2775
    [56] Mengeloglu F, et al. Mechanical properties of extrusion foamed rigid PVC/wood-flour compo sites [J]. J Vinyl Addit Techn, 2003, 9(1): 26
    [57] Ghaus Rizvi,L.M. Matuana, et al. Foaming of PS/wood fiber composites using moisture as a blowing agent[J].Polymer engineering and science, 2000, 40(10):2124-2132
    [58]徐咏兰.中高密度纤维板制造与应用[ M].长春:吉林科学技术出版社, 2002.
    [59]郭美钦.我国中高密度纤维板现状和发展趋势分析[J].福建林业科技, 2003,30(4): 100-104
    [60]肖小兵,胡广斌.我国中密度纤维板生产现状[J].人造板通讯, 2003(12):3-4
    [61]肖小兵.2005年度我国纤维板生产发展状况[J].木材工业,2006,20(2):33-34
    [62]陆仁书.纤维板制造学[M].中国林业出版社, 1993
    [63]陆仁书.刨花板制造学[M].中国林业出版社, 1994
    [64]吴玉章等.锥形量热仪法研究超细Al(OH)3处理中密度纤维板的燃烧性能[J].东北林业大学学报, 2010, 38(2): 47-49
    [65]刘迎涛,李坚,王清文. FRW阻燃中密度纤维板的性能及其制板工艺[J].东北林业大学学报, 2003,(02):4-5
    [66]张晓欢,陈桂华,韩健.低游离甲醛脲醛树脂胶粘剂的合成研究[J].木材加工机械, 2010,(02): 20-23
    [67]罗晔,祝鹏飞等.低游离甲醛含量脲醛树脂胶粘剂的研究[J].中国胶粘剂, 2006,(07) :8-12
    [68]颜海燕,寇开昌,张囡.低游离甲醛含量脲醛树脂胶粘剂的合成工艺研究[J].中国胶粘剂, 2008,(08) :5-8
    [69]沈哲红等.无机物与竹醋液复配制剂对中密度纤维板防霉和燃烧性的影响[J].东北林业大学学报, 2010,38(8):87-90
    [70] Wescott,J.M.,Frihart,C.R.,.Competitivesoybeanflour/phenol–formaldehydeadhesive for oriented strandboard[R]. Proceedings of the 38th International Wood CompositesSymposium, Pullman, WA, Washington State University, 2004, 199–206
    [71] Kalapathy, U., Hettiarachchy, N.S., Myers, D., Hanna, M.A.. Modification of soy proteins and their adhesive properties on woods[J]. J. Am. Oil Chem. Soc. 1995 72 (5):507–510
    [72] Kumar, R., Choudhary, V., Mishra, S., Varma, I.K., Mattiason, B.,. Adhesives and plastics based on soy protein products[J]. Ind. Crop Prod. 2002, 16 (3):155–172
    [73] Kuo, M., Adams, D., Myers, D., Curry, D., Heemstra, H., Smith, J., Bian, Y..Properties of wood agricultural fiberboard bonded with soybean-based adhesives[J]. Forest Prod. J. 1998, 48 (2):71–75
    [74] Lodha, P., Netravali, A.N. Characterization of phytagel modified soy protein isolate resin and unidirectional flax yarn reinforced‘‘Green”composites [J]. Polym.Composite. 2005,26 (5), 647–659
    [75] Xin Li ,Yonghui Li et al. Mechanical and water soaking properties of medium density fiberboard with wood fiber and soybean protein adhesive[J]. Bioresource Technology, 2009100(14):3556-3562
    [76] S. Boran, M. Usta, E. Gümü?kaya. Decreasing formaldehyde emission from medium density fiberboard panels produced by adding different amine compounds to urea formaldehyde resin[j]. International Journal of Adhesion and Adhesives, 2011, (7):674-678
    [77] Kim and H.J. Kim, Comparison of standard methods and gas chromotography method in determination of formaldehyde emission from MDF bonded with formaldehyde-based resins[J]. Bioresource Technology, 2005,96(13):1457-1464
    [78] Derya Ustaomer et al. Effect of boron treatment on surface characteristics of medium density fiberboard (MDF)[J]. 2008, 199(1-3):440-444
    [79] Nadir Ayrilmis. Effect of fire retardants on internal bond strength and bond durability of structural fiberboard[J].Building and Environment, 2007, 42(3), 1200-1206
    [80] N. Ayrilmis, S.N. Kartal, T. Laufenberg, J.E. Winandy and R.H. White, Physical and mechanical properties and fire, decay, and termite resistance of treated oriented strandboard. Forest Products Journal, 2005, 55 (5): 74–81
    [81]李巧玲,王亚昆.无卤阻燃剂的研究进展[J].化工新型材料, 1999, 27(5):14-15
    [82]梁诚.阻燃剂生产现状与发展趋势[J].中国石油和化工. 2003, (9): 22-26
    [83]欧育湘.新世纪前10年全球阻燃剂发展预测[J].化工进展, 1999, (6):29-32
    [84]刘仁庆等.纸张指南[M].北京:科学出版社, 1997
    [85]罗文圣.刨花板的阻燃处理[J].建筑人造板, 1990(1):10-17
    [86]郭成.木质材料阻燃机理研究综述[J].东北林业大学学报, 1998, 26(6):71-74
    [87]那斌,周定国.国内外阻燃刨花板的研究现状[J].南京林业大学学报, 1997,21(3):76-81
    [88]李超等.镁铝水滑石制备阻燃纸的研究[J].中华纸业, 2011,32(9): 39-42
    [89]王宝金等.一种阻燃中密度纤维板的纤维阻燃处理方法[P].中国: 200810236245, 2008
    [90]徐咏兰主编.张贵麟主审.中密度纤维板制造[M].中国林业出版社, 1995
    [91]华毓坤主编.人造板工艺学[M].中国林业出版社, 2002
    [92]吕群等.一种阻燃木塑复合材料及其制备方法[P].中国: 201010153153,2010
    [93]谢拥群等.一种难燃型植物纤维建筑保温墙体材料[P].中国: 201010509241, 2010
    [94]李光沛等.环保阻燃胶的开发.林产工业[J], 2002, 29(3):24-31
    [95] William H. Jones. Cellulose-based fire retardant composition [P].USA. 6524653 B1,2003
    [96] Xinggao Fang, Nathan B Emery, James Travis Greer.Flame resistant textile[P].USA. 7786031B2, 2010
    [97] Ann Denholm. Fire retardant paper[P]. USA. 0082194 A1, 2007
    [98] Graig Cropper. Fire barrier for wall sheathing material [P]. USA. 0058699 A1, 2010
    [99] Garry E. Balthes, Darrell R. Eggers et al. Methods of manufacturing a fire retardant structural board[P]. USA. 7906176 B2, 2007
    [100] Zhengzhou Wang, Yuan Hu et al. Halogen-free flame retardation and silane crosslinking of Polyethylenes[J]. Polymer Testing,2003,22 (5):533~538
    [101] Mohmeyer N , Behrendt N , Zhang X Q , et al. Additives to improve the elect ret properties of isotactic polypropylene [J]. Polymer, 2007, 48 (6):1612
    [102] Zhang Sheng , et al. A review of flame retardant polypropylene fibers [J]. Prog Polym Sci, 2003 ,28 :1517
    [103] Henrist C , Mathieu J P , Vogels C ,et al . Morphological study of magnesium hydroxide nanoparticles precipitated in dilute aqueous solution [J]. J Cryst Growth, 2003, 249-321
    [104] Yu JC, Xu A, Zhang L, Song R, Wu L. Synthesis and characterization of porous magnesium hydroxide and oxide nanoplates[J]. J Phys Chem B 2004,108(1):64-70
    [105] Lucena MDC, de Alencar et al.. The effect of additives on the thermal degradation of cellulose acetate[J]. Polym Degrad Stab 2003, 80:149-155
    [106] Karakassides MA, Petridis D, Mousdis G, Trapalis C, Kordas G. Preparation andinfrared study of magnesium borate gels with a wide compositional range[J]. J Non-Cryst Solids 1996, 202:198-202
    [107] Carpentier F, Bourbigot S, Le Bras M, Delobel R, Foulon M. Charring of fire retarded ethyleneevinyl acetate copolymer e magnesium hydroxide/ zinc borate formulations[J]. Polym Degrad Stab, 2000, 69(1):83-92
    [108]李新芳.纸浆模塑材料性能的研究现状和开发应用[J].包装工程, 2009. 30(1): 124-126
    [109] Li Xinfang. Research progress and application of pulp molded material[J]. Packaging Engineering, 2009.30(1):124-126
    [110] Hoffmann John. Compression and Characteristics of Molded Pulp Packaging[J]. Packaging Technology and Science, 2000, (13):211-220
    [111] L Yesw, L Eesg, Chewb H. Virtual Design and Testing of Protective Packing Buffers[J]. Computers in Industry, 2004, 54:209-221
    [112] Eagleton D G, Marcondes J A. Cushioning Characteristics of Molded Pulp[J]. Packaging Technology and Science, 1994, (7):65-72
    [113] Satyanarayana K G, Guilmaraes J L, Wypych F. Studies on lignocellulosic fibers of Brazil. Part I: Source, production, morphology, properties and applications [J].Compos Part A-Appl S, 2007, 38(7):1694-1709
    [114] Mulinari DR, Voorwald HJC, Cioffi, MOH, et al. Preparation and properties of HDPE/sugarcane bagasse cellulose composites obtained for thermo kinetic mixer[J]. Carbohyd. Polym, 2009, 75(2):317-321
    [115] Huang Guo-Lin, Shi J X, Langrish. Environmentally friendly bagasse pulping with NH4OH-KOH-AQ[J]. J Clea Prod, 2008 (8):1287-1293
    [116] Khristova P, Kordsachia O, Patt R, et al., Environmentally friendly pulping and bleaching of bagasse[J]. Ind Crop Prod, 2006, 23(2):131-139
    [117] Hernandez-Salas J M, Villa-Ramirez M S, Veloz-Rendon J S, et al. Comparative hydrolysis and fermentation of sugarcane and agave bagasse[J]. Bioresour Technol, 2009, 100(3):1238-1245
    [118] Bhattacharya D, Germinario LT, Winter W T, Isolation, preparation and characterization of cellulose microfibers obtained from bagasse[J].Carbohydr Polym, 2008, 73(3):371-377
    [119] Liu C F, Ren J L, Xu F, et al. Isolation and characterization of cellulose obtained from ultrasonic irradiated sugarcane bagasse[J]. J Agr Food Chem. 2006 54(16), 5742-5748
    [120] Newman R H. Crystalline forms of cellulose in softwoods and hardwoods[J]. WoodChem Technol, 1994(14): 451- 466
    [121] Larsson P T, Wickholm K, Iverson T. A CP/MAS 13 C NMR investigation of molecular ordering in cellulose[J]. Carbonhydr Res, 1997(302): 19- 25
    [122]刘叶,王志杰,罗清.打浆对草浆纤维形态的影响[J].陕西科技大学学, 2008, 2(1):42-45
    [123] Ragauskas, A.J., Hydrothermal pretreatment of switchgrass[J]. Ind. Eng. Chem. Res. 2011, 50, 4225–4230
    [124] Hubbell, C.A., Ragauskas, A.J., 2010. Effect of acid-chloride delignification on cellulose of polymerization[J]. Bioresour. Technol. 101, 7410–7415
    [125] Zhang, L. N., Xi, Q., Mo, Z. S. & Jin, X. G.. Current researching methods on polymer physics[J]. Wuhan College Press. 2003, 194–195
    [126] Foston, M., Hubbell, C.A., Davis, M., Ragauskas, A.J., Variations in cellulosic ultrastructure of poplar[J]. Bioenerg. Res. 2009(2):193–198
    [127] Samuel, R., Pu, Y., Foston, M., Ragauskas, A.J., Solid-state NMRcharacterization of switchgrass cellulose after dilute acid pretreatment[J]. Biofuels 2010,(1):85–90
    [128]余雁,王戈,覃道春,张波. X射线衍射法研究毛竹微纤丝角的变异规律[J].东北林业大学学报(自然科学版), 2007, 35(8): 28-30
    [129]黄艳辉,赵荣军,费本华.杉木木材微纤丝角变规律的研究[J].西北林学院学报, 2007, 22(1): 119-122
    [130] Newman R H, Hemmingson J A. Determination of the degree of cellulose crystallinity in wood by C-13Nuclear-Magnetic-Resonance spectroscopy[J] . Holzforschung, 1990, 44 (5) : 351- 355
    [131] Maunu S, Liitia T, Kauliomaki S, et al. C-13 CPMAS NMR investigations of cellulose polymorphs in different pulps [J] . Cellulose, 2000, 7(2): 147- 159
    [132] Hallac, B.B., Sannigrahi, P., Pu, Y., Ray, M., Murphy, R.J., Ragauskas, A.J., Effect of ethanol organosolv pretreatment on enzymatic hydrolysis of Buddleja davidii stem biomass[J]. Ind. Eng. Chem. Res. 2010.49:1467–1472
    [133] Hult E L, Larsson P T, Iversen T. A comparative CP/MAS C-13-NMR study of cellulose structure in sprucewood and kraft pulp [J] .Cellulose, 2000, 7 (1) : 35- 55
    [134] Atalla R H, VanderHart D L. Studies of microstructure of native celluloses using solid state ~(13)C NMR [J]. Macromolecules, 1984, 17(8): 1465- 1472
    [135] Newman R H. Estimation of the lateral dimensions of cellulose crystallites using ~(13)C NMR signal strengths [J]. Solid State Nuclear Magnetic Resonance, 1999, 15(1): 21- 29
    [136] Newman R H. Carbon-13 NMR evidence for crystallization of cellulose as a mechanism for hornification of bleached kraft pulp [J].Cellulose, 2004(11): 45- 52
    [137] Kumar, R., Mago, G., Balan, V., Wyman, C.E.,. Physical and chemical characterizations of corn stover and poplar solids resulting from leading pretreatment technologies[J]. Bioresour. Technol. 2009,100, 3948–3962
    [138] Tommi V, Maunu S, Tamminen T, et al. Changes in fiber ultrastructure during various kraft pulping conditions evaluated by 13C CP-MAS NMR spectroscopy[ J] . Carbonhydrate Ploymers, 2008, 73(1): 156-163
    [139] Wickholm K, Larsson P T, Iversen T. Assignment of non-crystalline forms in cellulose I by CP-MAS 13 C NMR spectroscopy[J] .Carbohyd Res, 1998,( 312): 123- 129
    [140] Heux L, Dinand E, Vignon M R. Structural aspects of ultrathin cellulose microfibrils followed by 13C CP/MAS NMR[J]. Carbohyd Polym, 1999,( 40):115- 124
    [141] Duchesne I, Hult E L, Moli U, et al. The influence of hemicellulose on fibril aggregation of kraft pulp fibers as revealed by FE-SEM and CP/MAS 13CNMR [J]. Cellulose, 2001, 8(2):103-111
    [142] Larsson P T, Wickholm K, Iversen T. A CP-MAS 13 C NMR investigation of molecular ordering in celluloses [J]. Carbohyd Res, 1997,302:19-25
    [143] Yamamoto H, Horii F. CP-MAS 13 C NMR analysis of the transformation induced for Vilonia cellulose by annealing at high temperatures [J]. Macromolecules, 1993,26: 1313- 1317
    [144]肖青等. CP/MAS 13CNMR技术对木浆纤维微观结构的研究[J].化学学报, 2009,67(22):2629-2634
    [145] C.P. Chu, D.J. Lee, C.Y. Chang. Thermal pyrolysis characteristics of polymer flocculated waste activated sludge [J]. Water Research, 2001, 35(1): 49-50
    [146] Yokoyama S, Suzuki A , Murakami M et al. Liquid Fuel Production from Sewage Sludge by Catalytic Conversion Using Sodium Carbonate Fuel, 1987, 66: 1150-1155
    [147] Tomczak, F., Satyanarayana, K. G., and Sydenstricker, T. H. D. Studies on lignocellulosic fibers of Brazil: Part III– morphology and properties of Brazilian curaua fibers[J]. Compos. Part A-Appl. S. 2007, 38(7), 1710-1721
    [148]吴创之,戴先文,吴创之等.固体生物质的热解液化[J].新能源, 1998, 20(8): 1-4
    [149]陈景泓,李传儒.热分析及其应用[M].北京:科学出版社, 1985
    [150]胡开堂.纸张的结构与性能[M].中国轻工业出版社, 2006
    [151] T.T. Chau, W.J. Bruckard, P.T.L. Koh, A.V. Nguyen. A review of factors that affectcontact angle and implications for flotation practice[J]. Advances in Colloid and Interface Science, 2009, 150(2): 106-115
    [152] D.Y. Kwok, C.N.C. Lam, A. Li, A. Leung, R. Wu, E. Mok, A.W. Neumann. Measuring and interpreting contact angles: a complex issue[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998, 142(2-3):219-235
    [153]杨奇峰.桉木CTMP纤维的白腐菌改性及其表面化学和形貌表征的研究[D].博士学位论文,广州:华南理工大学, 2007, 5: 1-140
    [154]雷晓春.桉木木聚糖预处理化学热磨机械制浆纤维分离机制及其表面化学研究[D].广州:华南理工大学, 2007
    [155] Hao Liu, Shiyu Fu, J.Y. Zhu, Hui Li, Huaiyu Zhan. Visualization of enzymatic hydrolysis of cellulose using AFM phase imaging[J]. Enzyme and Microbial Technology, 2009, 45(4):274-281
    [156] Kumiko Yamazaki, Masato Matsuda et al. Internal and surface structure characterization of cellulose triacetate hollow-fiber dialysis membranes[J].Journal of Membrane Science, 2011,368(1-2):34-40
    [157] Robert M Lowe. The deformation behavior of wet lignocellulose fibers [D]. USA, Georgia Institute of Technology, 2007
    [158] Ruffini G.. Improvement in bonding of wood pulps by the presence of acidic groups[J]. Svensk Papperstidning, 1966, 69: 72-76
    [159]唐恢同.有机化合物的光谱鉴定[M].北京:北京大学出版社, 1992
    [160] Horikawa, Y., and Sugiyama, J. Accessibility and size of Valonia cellulose microfibril studied by combined deuteration/rehydrogenation and FTIR technique[J]. Cellulose 2008, 15(3), 419-424
    [161] Meireles, C. D. S., Filho, G. R.et al.. Blend compatibility of waste materials-cellulose acetate (from sugarcane bagasse) with polystyrene (from plastic cups): Diffusion of water, FTIR, DSC, TGA, and SEM study[J]. J. Appl. Polym. Sci. 2007, 104(2), 909-914
    [162]李巧玲,欧育湘,王亚昆.无卤阻燃剂的进展[J].化工进展, 1998,5,24-2
    [163]邹盛欧.阻燃剂的现状与未来[J].科技动态. 1997, 12, 5-10
    [164]欧育湘,陈宇.无机阻燃剂的最新进展[J].现代化工. 1996, 1, 15-18
    [165]欧育湘.新世纪前10年全球阻燃剂发展预测[J].化工进展, 1999,6,29-32
    [166]周炳记,杨延钊.阻燃剂B阻燃剂的研究现状及发展趋势[J].山东教育学院学报, 2006(4):101
    [167]徐程程等.纸张阻燃剂的应用与发展.陕西科技大学学报. 2005,(2)
    [168] Sorathia U. Materials fire and threat [J]. Fire Technology, 1997, 33(3):260-272
    [169] Pierre Georlette.阻燃剂选择的原则[J].阻燃材料与技术,2000(2):14-25
    [170] Kim S J,Park Ys. Synergists for Flame Retardant Phosphateester[J]. Annu Tech Conf-Soc Plast Eng, 1995, (3):3549-3554
    [171] Van-der-Ven L T,van-de-Kuil T et al. Endocrine Effects of Hexabromocyclododecane(HBCD)in a One-generation Reproduction Study in Wistarrats[J]. Toxicology Letters,2009, 185(1):51–62
    [172] Erdem N,Cireli A,Erdogan U H. Flame Retardancy Behaviors and Structural Properties of Polypropylene/Nano-SiO2 Composite Textile Filaments [J]. Journal of Applied Polymer Science,2009,111(4):2085–2091
    [173] Guan J P,Yang C Q,Chen G Q. Formaldehyde-free Flame Retardant Finishing of Silk Using a Hydroxyl-functional Organophosphorus Ooligomer [J]. Polymer Degradation and Stability, 2009, 94(3):450– 455
    [174]姚宝书,谈氧化锑阻燃剂的性能和发展,阻燃材料与技术,1992(4):25-28
    [175] Nguyen ,Huu Trinh , et al . Study on the synthesis of aluminum hydroxide and g-Al2O3 [J]. Colloid and Polymer Science, 2002, 40 (1): 91-97
    [176] Kim Dae-Woong et al. Preparation of high-dispersion aluminum hydroxide [J]. Journal of Dispersion Science and Technology, 2001, 38 (3): 267-273
    [177] De Chirico A , et al . Flame retardants for polypro-pylene based on lignin [J]. Polymer Degradation and Stability, 2003, 79 (1):139-145
    [178] Mamchik A I. Ultrafine modified aluminum hydroxide and its preparation[C] PCI. 1999, 13 (2):862-865
    [179]邓煜东.氧化铝聚烯烃阻燃技术进展[J].塑料科技,1993 , (5) :53~57
    [180] Telyatnikov G V , et al . Method for manu2facture of aluminum hydroxide[P]. Russ. RU 2175641 C2 , 2001211210
    [181] Nies N P, Beach L, Halbert R W, etc. Zinc Borate of Low Hydration and Method for Preparing same,US Patent, 3549316[P]. 1970-12-22
    [182] G idice C A, Ben ltez J C. Zinc borates as flame-retardant pigments in chlorine contain ing coatings[J]. Progress in Organic Coatings, 2001, (42): 82–88
    [183] Schubert DM, Alam F, Visi MZ, Knobler CB. Structural characterization and chemistry of the industrially important zinc borate, Zn[B3O4(OH)3].Chem Mater2003,15(4):866-871
    [184]李更辰,张建民,王永强.阻燃剂C微粉的合成及应用[J].石家庄铁道学院学报, 2003 ( 2): 36- 37
    [185]李存生.阻燃剂ZB阻燃机理探讨[ J].河南化工, 1995( 9): 11- 12
    [186]厉家录.阻燃剂C阻燃剂的性能和应用[ J].无机盐工业,1983( 4): 121
    [187]洪家琏.低水合阻燃剂C阻燃剂的合成及应用[ J].化学与粘合, 1991( 4): 246- 248
    [188] Fabien Carpentier ,Serge Bourbigot et al. Charring of reretarded ethylene vinylacetate copolymer-magnesium hydroxide/zinc borate formulations[J]. Polymer Degradation and Stability. 2000,69 (1): 83-92
    [189] A.Riva, G.Caminao et al. Fire retardant mechanism in intumescent ethylene vinyl acetate compositions[J].Polymer Degradation and Stability, 2003,82(2):341-346
    [190] B. Marosfoi, Sz. Matko, P. Anna Gy. Marosi. Fire retarded polymer nanocomposites[J]. Current Applied Physics.2006,6(2):259-261
    [191] Kim S. Flame retardancy and smoke suppression of magnesium hydroxide filled polyethylene[J]. J Polym Sci Part B Polym Phys 2003, 41(9):936-944
    [192] Booster JL, Van Sandwijk A, Reuter MA. Conversion of magnesium fluoride to magnesium hydroxide[J]. Miner Eng 2003,16(3):273-281
    [193] Aramendia MA, Benitez JA, Borau V, Jimenez C, Marinas JM, Ruiz JR, et al. Characterization of various magnesium oxides by XRD and 1H MAS NMR spectroscopy[J]. J Solid State Chem 1999, 144(1):25e9
    [194] Qiu L, Xie R, Ding P, Qu B. Preparation and characterization of Mg(OH)2 nanoparticles and flame-retardant property of its nanocomposites with EVA[J]. Compos Struct 2003, 62:391-395
    [195] Ding Y, Zhang G, Wu H, Hai B, Wang L, Qian Y. Nanoscale magnesium hydroxide and magnesium oxide powders: control over size, shape, and structure via hydrothermal synthesis[J]. Chem Mater 2001, 13:435-440
    [196] Boubigot S, Carpentier F, Le Bras M. In: Nelson GL, Wilkie CA, editors. Fire and polymers, materials and solutions for hazard prevention: thermal degradation and combustion mechanism of EVAemagnesium hydroxideezinc borate[J]. Washington, DC: American Chemical Society, 2001, 173-185
    [197] Wesolowski M. Thermal decomposition of talc: a review[J]. Thermochim Acta 1984, 78(1-3):395-421

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700