用户名: 密码: 验证码:
五种榆科植物解剖结构与抗旱性相关研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用石蜡切片和木材三切面切片法及光学显微技术,对生长在干旱地区的五种榆科植物,即栓皮春榆Ulmus japonica (Rehd.) Sarg. var. suberosa (Turcz.) S. D. Zhao、蒙古黄榆U1mus macrocarpa var. mongolica Liou et Li、大果榆Ulmus macrocarpa Hance、刺榆Hemiptelea davidii (Hance)Planch.和家榆Ulmus pumila Linn.的枝材和叶进行了解剖结构比较及抗旱性的研究。结果表明,旱生环境下,榆科植物通常表现出很多抗旱性特征:角质层加厚、栅栏组织发达、气孔多分布于下表皮,表皮细胞膨大并且含有黏液物质等。这些旱生植物结构的演化为五种榆颉颃干旱逆境起到了重要作用。综上所述,本文选取与五种榆抗旱有关的演化结构作为参数,进行了方差分析和多重比较,旨在对五种榆抗旱性大小进行客观评价。
     在叶片组织结构参数与抗旱性关系分析中,选用叶片厚度、栅栏组织厚度、栅栏组织与海绵组织厚度之比、上下表皮细胞角质化壁层厚度、上下表皮细胞厚度及主脉导管径向直径等8个组织结构参数作为抗旱性指标进行测定;叶柄中选用表皮细胞角质化壁层厚度、表皮细胞厚度、木质部导管径向直径等3种结构参数进行测定;在枝材组织结构参数与抗旱性关系上,选用横切面木纤维壁叠加厚度、木纤维内径和早材管孔径向直径作为抗旱性指标进行测定;所测得的数据经方差分析后导出:除主脉导管径向直径无显著差异外,其他参数均有极显著差异,经进一步多重比较结果分析得出:这些组织结构作为抗旱性指标,其灵敏度具有高低之分。
     可作为抗旱性指标来对植物体进行抗旱性评价的高灵敏度指标为叶片厚度、栅栏组织厚度、叶柄表皮细胞角质化壁层厚度、叶柄表皮细胞厚度和木纤维壁叠加厚度;较高灵敏度指标为栅栏组织和海绵组织之比、叶上表皮和下表皮角质化壁层厚度、叶柄导管孔径、木纤维内径和早材导管孔径;辅助指标为叶上、下表皮细胞厚度。
     分析还得出,五种榆科植物抗旱性大小在叶片及叶柄和枝材组织结构参数上表现为:栓皮春榆最强,其次是蒙古黄榆,再次为大果榆,刺榆和家榆在叶组织结构参数中是刺榆大于家榆;在叶柄上是家榆组织参数大于刺榆;在枝材解剖结构中参数的大小表现的不明显。至此,可通过结构上的综合分析来比较,最终得出五种榆科植物的抗旱性大小为:栓皮春榆>蒙古黄榆>大果榆>刺榆>家榆。
Paraffin-section technique and xylotomy and optics microscopy were adopted to make scientific researches on anatomical structure comparison and drought-resistance for the branch-woods and leaves of five kinds of Ulmaceae plants developing on droughty area, the five species of Ulmaceae Plants were Ulmus japonica (Rehd.) Sarg. var. suberosa (Turcz.) S. D. Zhao, U1mus macrocarpa var. mongolica Liou et Li, Ulmus macrocarpa Hance, Hemiptelea davidii (Hance)Planch. and Ulmus pumila Linn.. The results show that Ulmaceae Plants usually take on a lot of characteristics of drought-resistance under droughty circumstances: the cuticle gets thick, palisade parenchymas turn developed, stomas are numerous and distribute on nether epidermis, some epidermis cells dilate and contain viscousness etc. Structural evolvement of these xerophils puts the importance on five kinds of Ulmaceae Plants equally matching with droughty adversity. Above all, the paper selects the structures which relate to drought- resistance of five kinds of Ulmaceae as parameter, and carries through variance analysis and multiple comparison in order to make impersonality estimate on magnitude of drought- resistance of five kinds of Ulmaceae plants.
     In analysis of the relationship between structural parameter of leaf blade and drought- resistance, it chose leaf blade thickness, palisade parenchyma thickness, the ratio of palisade parenchyma thickness to spongy parenchyma thickness, upper and nether cuticular layer thickness of epidermis cell , upper and nether epidermis cell thickness and radial diameter of costate vessel which amount to eight structural parameters as drought-resistance guide line to make measure; in leafstalks, cuticular layer thickness of epidermis cell and epidermis cell thickness and radial diameter of xylem vessel were chosen to be scaled; in branch-woods, it selected wood fiber wall thickness, wood fiber inner diameter, and vessel pore radial diameter of early wood on transverse section as drought-resistance guide line to survey; by variance analysis, the result reveals that all kinds of structural parameters have mighty discrepancy except costate vessel radial diameter that is not remarkable difference, then by multiple comparison, it can be known that structural parameters of tissue regarding as drought- resistance guide lines, their acuity have high-low difference.
     The highest acuity guide lines of drought-resistance are leaf blade thickness, palisade parenchyma thickness, cuticular layer thickness of leafstalk epidermis cell, leafstalk epidermis cell thickness, and wood fiber wall thickness; higher acuity guide lines are the ratio of palisade parenchyma thickness to spongy parenchyma thickness, cuticular layer thickness of upper and nether epidermis cell of leaf blade, leafstalk xylem vessel radial diameter, tress wood fiber inner diameter, and radial diameter of early wood vessel pore; accessorial guide line are upper and nether epidermis cell thickness of leaf blade.
     Structures compared and data analyzed at last show that drought- resistance magnitude of five Ulmaceae plants on leaves and branch-woods is U. japonica (Rehd.) Sarg. var. suberosa (Turcz.) S. D. Zhao> U. macrocarpa var. mongolica Liou et Li>U. macrocarpa Hance > H. davidii (Hance)Planch. >U. pumila Linn.
引文
[1]王涛,赵哈林,肖洪浪.中国沙漠化研究的进展[J].中国沙漠,1999,19(4):299-308.
    [2]邵麟惠,于应文,张德罡.灌木抗旱机理研究[J].草业科学,2007,24(3):22-26.
    [3]王贤,周心澄,丁国栋.对我国沙漠化防治现状的一些认识与建议[J].北京林业大学学报,1999,21(5):100-103.
    [4]刘穆.种子植物形态解剖学导论[M].北京:科学出版社,2004,6:237-260.
    [5]刘娟,和菊,张燕平,等.印楝叶解剖结构与抗旱性关系初步研究[J].林业科学研究,2001,14(4):435-440.
    [6]李军,卫发兴,陈风顺.从六个核桃无性系(种)叶的形态解剖比较其抗旱性[J].河南林业科技,1997,17(3):9-11.
    [7]陆文达.国外木业信息/木材学[J].International Wood Industry,2003,(7):34-35.
    [8]李广毅,高中雄,尹忠东.灰毛摈藜叶解剖结构与抗逆性研究[J].西北林学院学报,1995,10(1):48-51.
    [9]孟庆辉,潘青华,鲁韧强,等.4个品种扶芳藤茎叶解剖结构及其与抗旱性的关系[J].农业基础科学,2006,22(4):138-142.
    [10] Li C,Berninger F,Koskela J,et al.Drought responses of Eucalyptus microtheca provenances depend on seasonality of rainfall in their place of origin[J].Aust.J.Plant Physiol,2000,(27):231-381.
    [11]王均明,孟丽,孙金花,等.树木抗旱性与其根次生结构关系的研究[J].中国水土保持,1996,(6):20-22.
    [12]杜维广,张桂茹,满为群,等.大豆光合作用与产量关系的研究[J].大豆科学性.1999,18(2):154-159.
    [13]肖文发,徐德应,刘世荣,等.杉木人工林针叶光合与蒸腾作用的时空特征[J].林业科学,2002,38(5):38-46.
    [14]徐炳成,山仑,黄瑾.黄土丘陵区不同立地条件下沙棘光合生理日变化特征比较[J].西北植物学报.2003,23(6):949—953.
    [15]田大伦,罗勇,项文化,等.樟树幼树光合特性及其对CO2浓度和温度升高的响应[J].林业科学,2004,40(5):88-92.
    [16]喻方圆,徐锡增,Robert D.水分和热胁迫处理对4种针叶树苗木气体交换和水分利用效率的影响[J].林业科学,2004,40(2):38-44.
    [17]苏培玺,张立新,杜明武,等.胡杨不同叶形光合特性、水分利用效率及其对加富CO的响应[J].植物生态学报,2003,27(1):34-40.
    [18]蒋高明,何维明.一种在野外自然光照条件下快速测定光合作用-光响应曲线的新方法[J].植物学通报,1999,16(6):712-718.
    [19]孙伟,王德利,王立,等.模拟光条件下禾本科植物和黎科植物蒸腾特性与水分利用效率比较[J].生态学报,2003,23(4):814-819.
    [20]苏培玺,赵爱芬,张立新,等.荒漠植物梭梭和沙拐枣光合作用、蒸腾作用及水分利用效率特征[J].西北植物学报,2003,23(1):11-17.
    [21]孙跃强,贺康宁,张卫强,等.土壤水分光辐射对白榆生理因子影响的研究[J].水土保持应用技术,2007,(2):1-3.
    [22]李吉跃.太行山区主要造林树种耐旱特性的研究[D].北京:北京林业大学图书馆,1990.
    [23]韦小丽,朱守谦,徐锡增.4个榆科树种水分参数随季节和年龄的变化规律[J].山地农业生物学报,2005,24(1):17-21.
    [24]汤章城.植物干旱生理生态研究[J].生态学报,1983,3 (3):196-209.
    [25]徐东翔,张汝民,刘素梅.沙生植物抗旱生理问题[J].干旱区资源与环境,1990,1 (增刊):9,29,54.
    [26]王霞,侯平.水分胁迫对柽柳植物可溶性物质的影响[J].干旱区研究,1999,16 (2):7-11.
    [27]王霞,侯平.土壤水分胁迫对柽柳属植物组织相对含水量和细胞膜透性的影响[J].干旱区研究,1999,16(2):11-15.
    [28]于同泉,建田.逆境中植物体内甜菜碱的积累及其生物学意义[J].北京农学院学报,1994,9(2):161-167.
    [29] Papageogiou G C,Murata N.The Unusually Strong Stanilizing Effects of Glycine Betaine on the Structure and Function of the Oxygen-evolving Photosystem II Complex[J] . Photosynth Res,1995(44):243-252.
    [30]徐世健,安黎哲,冯虎元,等.两种沙生植物抗旱生理指标的比较研究[J].西北植物学报,2000,20(2):224-228.
    [31]郭新红,姜孝成,潘晓玲.旱生植物梭梭幼苗信使核糖核酸(mRNA)的分离与纯化[J].湖南师范大学学报(自然科学版),2001,24 (2):70-72.
    [32]王霞,侯平,尹林克.柽柳植物对干旱胁迫的生理响应和适应性的研究[J].干旱区研究,2000,10(3):13-17.
    [33]张华,子会.干旱胁迫下玉米木质部汁液pH和ABA含量变化及其与气孔的关系[J].河北农业科学,2004,8(2):35-39.
    [34] Aasamma K,S herA,HartungW,Niinemets ii.Rate of stomatal opening,shoot hydraulic conductance and photosynthetic characteristics in relation to leaf abscisic acid concentration in six temporate deciduous trees[J].Tree Phyiol,2002,22:267-276.
    [35] Robert E S,LeNoble M E.ABA,ethylene and the control of shoot and root growth underwater stress[J].J ExperBot,2002,53:33-37.
    [36]陈由强,朱锦懋,叶冰莹.水分胁迫对芒果(M angiferaindica L.)幼叶细胞活性氧伤害的影响[J ].生命科学研究,2000,4 (1):60-64.
    [37]胡景江,顾振瑜,文建雷,等.水分胁迫对元宝枫膜脂过氧化作用的影响[J ].西北林学院学报,1999,14(2):7-11.
    [38]夏新莉,郑彩霞,尹伟伦.土壤干旱胁迫对樟子松针叶膜脂过氧化、膜脂成分和乙烯释放的影响[J ].林业科学,2000,36 (3):8-12.
    [39]赵恢武,刘晗,于海源,等.科学通报,2000,15 (45):1648-1654.
    [40] Hayaashi H,Alia,Mustardy L,Murata N.Transformation of Arabidopsis thaliana with the coda gene for choline oxidase ;accu-mulation of glycine betaine and enhanced tolerance to salt and cold stress[J].The Plant Journal,1997,12:133-142.
    [41] Novorry M J.Purification and properties of D-manoitol-phos-phate dehydrogenase and D-dlucitol-6-phosphate dehydrogenase from Escherichia coli.[J].Journal of Bacteriology,1984,159:986-990.
    [42] Zentella R A.Selaginell lepidophylla trehalose-6-phosphate synthase complements growth and stress-tolerance defects in a yeast tps1 mutant[J].Plant Physiology,1999,119:1473-1482.
    [43] Londosborough J,Vuorrio O.Trehalose262phosphate synthase complex from the bakar’s yeast[J].Gen Microbiol,1991,137:323-330.
    [44] Joachim Muller,Thomas Boller,Andres Wiemken,Trelhalose and trehalase in plants :recent developments[J].Plant Science,1995,112:1-9.
    [45] Mckersie B D,tephen R B,Erni H,et al.Water deficit tolerance and field performance of transgenic Alfalfa overexpressing superoxide dismutase[J].Plant Physiol,1996,111:1177-1181.
    [46] Xud,Duan X,Wang B,et al.Expression of a Late Embryogenesis Abundant Protein Gene.HAVA1.fom Barley Confers Tolerance to Water Deficit and Salt Stress in Transgenic Rice[J].PlantPhysiol,1996,110:249-257.
    [47] Peter L,Steponkus,Matsuo U. Mode of Action of the COR15a Gene on the Freezing Tolerance of Arabidopsis Thaliana[J].Plant Bioligy,1998,9:14570-14575.
    [48] Zhu J.Genetic Analysis of Salt Tolrtance in Arabidopsis Thaliana:Evidence of a Critical Role for Potassium Nutriation[J].Plant Cell,1998,10:1180-1192.
    [49]曾华宗,罗利军.植物抗旱、耐盐基因概述[J].植物遗传资源学报,2003,4(3):270-273.
    [50] Liu Q,Kasuga M,Sakuma Y,et al.Two transcription factors,DREB1 and DREB2,with an ERFRP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought2and low2temparature2responsive gene expression,respectively in Arabitopsis thaliana. [J] Plant Cell,1998,10:1391-1406.
    [51] Kasuga M,Liu Q,Miura S,et al.Improving plant drought,salt,and freezing tolerance by gene transfer of a single stress inducible transcription factor. Nat Biotechnol,1999,17:287-291.
    [52] Kasuga M,Miura S,Shinozaki K,et al.A Combination of the Arabidop-sis DREB1A Gene and Stress - Inducible rd29A Promoter improved drought - and low - temperature stress tolerance in Tobacco by gene transfer[J ].Plant Cell Physiology,2004,45(3):346-350.
    [53]王勋陵,王静编著.植物形态结构与环境[M].兰州:兰州大学出版社,1989,55.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700