用户名: 密码: 验证码:
香蒲耐铬毒生理机理及其螯合剂诱导植物萃取污染土壤中重金属的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤重金属污染正严重威胁着农产品的安全和人类健康。筛选鉴定抗/耐重金属的植物种/品种,探讨抗/耐性的生理生化机制,进而分离鉴定机关的特异基因.对于土壤重金属污染的植物修复具有重要的理论与实践指导意义。经野外调查,我们在浙江东南部地区三家开办了20余年的电镀厂周边受电镀废水、废弃物严重污染已无法种植农作物荒废多年的土壤上(土壤有效态Cr(VI)含量高达20mg/kg)发现了一种无铬中毒症状、生长旺盛、生物量大的多年生香蒲科香蒲属(Typhaceae)植物—狭叶香蒲(Typha angustifolia L.)。本研究采用盆栽试验,旨在探讨该狭叶香蒲对铬胁迫的耐性与相关的生理反应及其螯合剂诱导植物萃取污染土壤中重金属的可能性。主要研究结果如下:
     盆栽试验研究了狭叶香蒲对铬毒害的耐性,并分析测定了相应的生理反应指标。与无铬对照相比,50μM Cr(VI)处理略提高了狭叶香蒲的株高和生物学产量,100μM Cr(VI)处理对株高和生物学产量并无显著影响;铬浓度增至200-800μM,植株的株高和生物学产量显著下降,但即便是在最高铬浓度800μM Cr(VI)胁迫下,植株叶片仍未见明显的铬中毒症状(叶片上未见坏死斑点)。因此,我们可以得出结论,该植物能在800μM Cr(VI)处理下正常生长,且无明显的铬毒害症状:说明这种香蒲科植物是一种对铬毒害具有很强耐性的植物。铬超积累植物是指植株铬含量超过1000mg kg~-1 DW,迁移系数达到0.02-0.10的植物种/品种。而香蒲植株的铬含量相对较低,因此该植物可能主要通过严格控制铬的‘土壤-植物'、‘根系-叶片'的迁移,从而限制了植株各部分铬含量。生理分析结果显示,铬胁迫显著提高了SOD和POD活性:叶片和根系中Cr和Mn含量呈显著正相关.Cr和另外3种微量元素(Fe、Zn、Cu)也呈正相关,但未达到显著水平。因此,根据本试验结果,香蒲对铬的耐性与铬胁迫下SOD和POD酶活性增强、必需微量元素吸收转移效率提高有关。
     外源添加金属螫合剂促进植物吸收积累重金属是利用高生物量植物种进行植物修复的可行手段之一。盆栽试验以狭叶香蒲为材料,研究了外源添加EDTACA(柠檬酸)刘,植物萃取污染土壤中Cd、Cu、Pb和Cr的作用。结果表明,香蒲对重金属毒害具有很强的抗性,各种重金属胁迫下香蒲植株地上部并未表现出中毒症状(欠绿或坏死)。与对照相比,施加EDTA显著降低了植株的株高、生物量,并严重影响植株正常生长发育:2.5 mM和5 mM CA处理显著提高了根系的(?)重。外源添加EDTA和CA均使地上部Cd、Pb和Cr含量显著上升,其中以EDTA效果更为明显。处理25 d收获时,5 mM EDTA处理地上部Cd、Cr和Pb含量最高,而2.5 mM CA处理根系Pb含景最高。10 mM CA处理地上部Cd累积量比2.5 mMEDTA处理高出了36.9%,与10 mM EDTA处理基本持平:但10 mM CA处理地上部Pb累积量较EDTA处理低。同时,CA处理下根系Cd、Cu和Pb累积量及5 mM或10 mM CA处理下地上部Cr累积量显著高于对照和EDTA处理。外源添加EDTA和CA对地上部Cu的累积量均无显著影响。实验结果也发现,外源加入EDTA显著增强了Cu、Cr、Pb和Cd在土壤中的溶解性;相比之下,CA对土壤水溶性Cu、Cr和Cd的影响较小,对Pb没有影响。综上所述,与EDTA相比,CA是一种环境友好的外源重金属螯合剂以诱导提高香蒲植物葶取污染土壤中的重金属。
Heavy metal pollution in soils poses a major environmental hazard to terrestrial plants.It is crucially important to identify appropriate plant species/genotypes which may resist/tolerate heavy metals or other contaminants to identify/study the related genes in order to remediate the contaminated environment.While,understanding physiological and biochemical mechanisms of heavy metal tolerance/resistance is fundamental for discovering or creating new metal resisting plant species.We found a kind of gramineous plant species,Typha angustifolia,with high resistance to Cr stress growing on a Cr-contaminated area.The present research was conducted for two successive growth seasons to evaluate its ability to tolerant Cr stress and the relevant physiological responses and the possible role in chelate-assisted phytoextraction of metal polluted soils. The results were as follows:
     Pot experiments were conducted to study the potential of T.angustifolia plants for Cr toxicity tolerance and subsequent physiological response involved in this phenomenon. Plants exposed to 50μM Cr(Ⅵ)showed a slight increase in plant height and biomass, compared with control,and there was no difference in these growth parameters between the plants exposed to 100μM Cr(Ⅵ)and control(0μM),while increasing Cr levels to 200-800μM induced a significant decrease in plant height and biomass,but without significant injured leaf symptoms of Cr toxicity(necrotic patches on leaf blade)even in 800μM treatment.Thus,it can be concluded that the plant can survive well in 800μM Cr stress.However,T.angustifolia plants demonstrated a relatively low Cr concentration in comparison with the plants classified as hyper-accumulators which require a concentration of at least 1000 mg Cr kg~-1 DW.with a translocation factor(TF)of 0.02 to 0.10 among different Cr treatments of this plant.Therefore,it can be concluded that the plant tends to restrict soil-plant and root-leaf transfer,and consequently has a lower Cr concentration in its tissues.Since the extraction of metal from Cr-amended medium depends on plant species,this plant,like many other plants,may have evolved Cr exclusion strate(?). Chromium induced significant increase in SOD and POD activities.Meanwhile. significantly positive correlation was detected between Cr and Mn or Cu in leaves,and roots,respectively,and slender positive correlation also occurred between Cr and the other three microelements in leaves and roots.The Cr tolerance of the plants appeared to be associated with the enhancement of SOD and POD activities and the improvement of the essential microelements uptake and translocation.
     Improvement of the capacity of plants to accumulate metals by the application of chelating agents provides a new possibility for phytoremediation using high biomass species.Pot experiment was conducted to study the performance of EDTA and citric acid (CA)addition in enhancing phytoextraction of Cd,Cu,Pb and Cr from artificially contaminated soil by T.angustifolia.The results demonstrated the remarkable resistance to heavy metal toxicity of T.angustifolia with no visual toxic symptoms such as chlorosis and necrosis on shoots of the plants exposed to metal stress.EDTA-addition significantly reduced plant height,biomass production and stunted plant growth compared with the control,while 2.5 and 5 mM CA addition induced significant increases in root dry weight. Both of EDTA and CA significantly increased shoot Cd.Pb and Cr concentrations compared with the control,with EDTA being more effective than CA.At final harvest,the highest shoot Cd,Cr,and Pb concentrations were recorded in 5 mM EDTA,while maximal root Pb concentration found in 2.5 mM CA treatment.However,shoot Cd accumulation of 10 mM CA treatment was 36.9%higher than that of 2.5 mM EDTA,and similar with 10 mM EDTA,but lower in shoot Pb accumulation relative to EDTA treatments.Meanwhile, root Cd,Cu and Pb accumulation of CA treatments and shoot Cr accumulation in 5 or 10 mM CA treatments was markedly higher than that of control and EDTA treatments.Both of EDTA and CA have no significant effects on shoot Cu accumulation.The results also showed that EDTA dramatically increased the dissolution of Cu,Cr.Pb and Cd in soil. while CA addition has much less effect on water-soluble Cu,Cr,and Cd,and no effect on Pb level.It may be suggested that CA can be regarded as a good chelate candidate for T. angustifolia as environmentally safe phytoextraction of Cd and Cr in soils.
引文
Adriano, D.C., Weber, J.T., 2001. Influence of fly ash on soil physical properties and turfgrass establishment. J. Environ. Qual. 30, 596-601.
    Agrochemistry Commission and Soil Science Society of China (ACSSSC), 1983. Routine Methods for Soil and Agrochemical Analysis, Science Press, Beijing China
    Akhter, M.S., Madaney, I.M., 1993. Heavy metals in street and house dust in Bahrain. Water Air Soil Pollut. 66, 111-119.
    Ali, M.B., Vajpayee, P., Tripathi, R.D., Rai.U.N., Singh, S.N., Singh, S.P., 2003. Phytoremediation of lead, nickel and copper by Salix acmophylla Boiss: Role of antioxidant enzymes and antioxidant substances. Bull. Environ. Contam. Toxicol. 70, 462-469.
    Alkorta, I., Hernandez-Allica, J., Becerril, J.M., Amezaga, I., Albizu, I., Garbisu, C, 2004a. Recent findings on the phytoremediation of soils contaminated with environmentally toxic heavy metals and metalloids such as zinc, cadmium, lead, and arsenic. Rev. Environ. Sci. Biotechnol. 3, 71-90.
    Alkorta. I., Hernandez-Allica, J., Becerril, J.M., Amezaga. I., Albizu. I.. Onaindia. M., Garbisu. C, 2004b. Chelate-enhanced phytoremediation of soils polluted with heavy metals. Rev. Environ. Sci. Biotechnol. 3, 55-70.
    
    Alloway, B.J., 1995. Heavy Metals in Soils, 2nd Edition. Blackie, London.
    Angelone. M.. Bini, C, 1992. Trace elements concentrations in soils and plants of Western Europe. In: Adrian. D.C., Biogeochemistry of trace metals. Lewis Publishers. Boca Raton. London. 19-60.
    Bachir, D.M., Wu, F.B., Zhang, G.P., Wu, H.X., 2004. Genotypic difference in effect of cadmium on development and mineral concentrations of cotton. Commun. Soil Sci. Plant Anal. 35, 285-299.
    Baker. A.J.M., S.P. McGrath, R.D. Reeves, and J.A.C. Smith. 2000. Metal hyperaccumulator plants: A review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils, p. 85-107. In N. Terry and G. Bafiuelos (ed.) Phytoremediation of contaminated soil and water. Lewis Publishers, Boca Raton, FL.
    Baldantoni, D., Alfani, A., Di Tommasi, P., Bartoli G., Virzo De Santo, A., 2004. Assessment of macro and microelement accumulation capability of two aquatic plants. Environ. Pollut. 130, 149-156.
    Barnhart, J.. 1997. Occurrences, uses, and properties of chromium. Regul. Toxicol. Pharm. 26. S3-S7.
    Berndes, G.. Fredrikson, F.. Borjesson, P., 2004. Cadmium accumulation and Salix-based phytoextraction on arable land in Sweden. Agric. Ecosyst. Environ. 103. 207-223.
    Bini. C. Maleci. L.. Romanin. A.. 2008. The chromium issue in soils of the leather tannery district in Italy. J. Geochem.l Explor. 96, 194-202.
    Blaylock, M.J. 2000. Field demonstration of phytoremediation of lead contaminated soils. 1-12. In N. Terry and G. Banuelos (ed.) Phytoremediation of contaminated soil and water. Lewis PubL Boca Raton, FL.
    Blaylock, M.J., Salt, D.E., Dushenkov, S.. Zakharova, O., Gussman, C, Kapulnik, Y., Ensley, B.D.. Raskin, I.. 1997. Enhanced accumulation of Pb in indian mustard by soil-applied chelating agents. Environ. Sci. Technol. 31, 860-865.
    Bremner, J.M., Mulvaney, C.S., 1982. Total nitrogen. In: Page, T., Miller, R.H., Keeney, D.R., Editors, Methods of Soil Analysis, Soil Science Society of America, Madison, WI, pp. 595-662
    Brown, S.L., R.L. Chaney, J.S. Angle, and A.J.M. Baker. 1994. Phytoremediation potential of Thlaspi caerulescens and bladder campion for zinc- and cadmium-contaminated soil. J. Environ. Qual. 23. 1151-1157.
    Brown, S.L., Chaney, R.L., Angle. J.S.. Baker, A.J.M.. 1995. Zinc and cadmium uptake by hyperaccumulator Thlaspi caerulescens grown in nutrient solution. Soil Sci. Soc. Am. J. 59. 125-133.
    Burzynski, M., Klobus, G., 2004. Changes of photosynthetic parameters in cucumber leaves under Cu. Cd, and Pb stress. Photosynthetica 42, 505-510.
    Cary, E.E., Allaway. W.H., Olson, O.E., 1997. Control of chromium concentrations in food plants. II. Chemistry of chromium in soils and its availability to plants. J. Agric. Food Chem. 25, 305-309.
    Caspi, V.. Droppa, M., Horvath, G., Malkin, S., Marder, J.B., Raskin, V.I., 1999. The effect of copper on chlorophyll organization during greening of barley leaves. Photosynth. Res. 62, 165-174.
    Cervantes, C, Garcia, J.C., Devars. S., Corona, F.G., Tavera, H.L., Carlos, Torres-Guzman, J., Sanchez. R.M.. 2001. Interactions of chromium with micro-organisms and plants. Ferns Microbiol. Rev. 25. 335-347.
    Chandra, P.. Sinha. S., Rai. U.N.. 1997. Bioremediation of chromium from water and soil by vascular aquatic plants. Phytorem. Soil Water Contamin. 664, 274-282.
    Chaney. R.L.. Malik, M.. Li. Y.M.. Brown, S.L., Brewer, E.P., Angle, J.S., Baker, A.J., 1997. Phytoremediation of soil metals. Curr. Opin. Biotechnol. 8. 279-284.
    Chatterjee, J., Chatterjee. C, 2000. Phytotoxicity of cobalt, chromium and copper in cauliflower. Environ. Pollut. 109.69-74.
    Chen, F., Wu, F.B., Dong, J., Vincze, E., Zhang, G., Wang, F., Huang, Y., Wei, K., 2007. Cadmium translocation and accumulation in developing barley grains. Planta 227. 223-232.
    Chen. H., Cutright, T., 2001. EDTA and HEDTA effects on Cd. Cr. and Ni uptake by Heliunthus animus. Chemosphere 45, 21-28.
    Chen, Y.H., Li, X.D., Shen, Z.G., 2004. Leaching and uptake of heavy metals by ten different species of plants during an EDTA-assisted phytoextraction process. Chemosphere 57, 187-196.
    Cheng, S.P.. 2003. Heavy metal pollution in China: Origin, pattern and control. Environ. Sci. Pollut. R. 10. 192-198.
    Cheng. W.D., Zhang, GP., Yao, H.G., Dominy, P., Wu, W., Wang. R.Y., 2004. Possibility of predicting heavy-metal contents in rice grains based on DTPA-extracted levels in soil. Commun. Soil Sci. Plant Anal. 35. 2731-2745.
    Choudhury. S., Panda. S.K.. 2005. Toxic effects, oxidative stress and ultrastructural changes in moss Taxithelium nepalense (Schwaegr.) Broth, under chromium and lead phytotoxicity. Water Air Soil Pollut. 167,73-90.
    Clemens, S., 2006. Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88, 1707-1719.
    Clijsters. H., Cuypers, A., Vangronsveld, J., 1999. Physiological responses to heavy metals in plants; Defence against oxidative stress. Z.Naturforsch.(C) 54. 730-734.
    Cooper, E.M., J.T. Sims, S.D. Cunningham, J.W. Huang, and W.R. Berti. 1999. Chelate-assisted phytoextraction of lead from contaminated soils. J. Environ. Qual. 28, 1709-1719.
    Cristofaro, A.D.. Zhou, .D.H.. He. J.Z., Violante A.. 1998. Comparison between oxalate and humate on copper adsorption on goethite. Fresenius. Environ. Bull. 7, 570-576.
    Cronk, J.K., Fennessy, M.S., Wetlands Plants. 2001. Biology and Ecology, Lewis Publisher, Boca Raton, Florida.
    Cunningham. S.D., Berti, W.R., Huang, J.W., 1995. Phytoremediation of contaminated soils. Trends Biotechnol. 13,393-397.
    Cunningham, S.D., Ow, D.W., 1996. Promises and prospects of phytoremediation. Plant Physiol. 110. 715-719.
    Das. P.. Samantaray. S.. Rout. G.R.. 1997. Studies on cadmium toxicity in plants: A review, bnviron. Pollut. 98, 29-36.
    Davies. F.T., Puryear. J.D., Newton, R.J., Egilla. J.N.. Grossi, J.A.S., 2001. Mycorrhizal fungi enhance accumulation and tolerance of chromium in sunflower (Helianthus annuus). J. Plant Physiol. 158. 777-786.
    Davies. F.T., Puryear. J.D.. Newton. R.J.. Egilla. J.N.. Grossi. J.A.S.. 2002. Mycorrhizal fungi increase chromium uptake by sunflower plants: Influence on tissue mineral concentration, growth, and gas exchange. J. Plant Nutr. 25, 2389-2407.
    Demirezen, D., Aksoy, A., 2004. Accumulation of heavy metals in Typha angustifolia (L.) and Potamogeton pectinatus (L.) living in Sultan Marsh (Kayseri, Turkey). Chemosphere 56, 685-696.
    Deng, H., Ye, Z.H.. Wong, M.H., 2004. Accumulation of lead, zinc, copper and cadmium by twelve wetland plant species thriving in metal contaminated sites in China. Environ. Pollut. 132, 29-40.
    Dickerman, J.A., Wetzel, R.G., 1985. Dynamics and demography of the ramets. J. Ecol. 73. 535-552.
    Diels, L, van der Lelie. N., Bastiaens, L, 2002. New development in treatment of heavy metal contaminated soils. Rev. Environ. Sci. Biotechnol. 1, 75-82.
    Ding, Y. Z., Li, Z. A.. Zou, B., 2005. Low-molecular weight organic acids and their ecological roles in soil. Soils (in Chinese). 37, 243-250.
    Dixit, V., Pandey, V., Shyam, R., 2002. Chromium ions inactivate electron transport and enhance superoxide generation in vivo in pea (Pisum sativum L. cv: Azad) root mitochondria. Plant Cell Environ. 25. 687-693.
    do Nascimento. C.W., Amarasiriwardena, D., Xing, B., 2006. Comparison of natural organic acids and synthetic chelates at enhancing phytoextraction of metals from a multi-metal contaminated soil. Environ. Pollut. 140, 114-123.
    Dong. J., Wu. F.B.. Huang, R.G.. Zang, GP.. 2007. A chromium-tolerant plant growing in Cr-contaminated land. Int. J. Phytoremediat. 9, 167-179.
    Dube. B.K., Tewari, K., Chatterjee, J., Chatterjee, C. 2003. Excess chromium alters uptake and translocation of certain nutrients in citrullus. Chemosphere 53, 1147-1153.
    Ernst, W.H.O., 2005. Phytoextraction of mine wastes - Options and impossibilities. Chem Erde-Geochem. 65. 29-42.
    Escarre. J.. Lefebre. C. Gruber. W., LeBlanc, M.. Lepart. J.. Riviere. Y. Delay. B.. 2000. Zinc and cadmium hyperaccumulation by Thlaspi caerulescens from metalliferous and nonmetalliferous sites in Mediteranean area: Implications for phytoremediation. New Phytol. 145, 429-437.
    Evangelou. M.W.H., Ebel, M., Schaeffer, A., 2006. Evaluation of the effect of small organic acids on phytoextraction of Cu and Pb from soil with tobacco Nicotiana tabacum. Chemosphere 63. 996-1004.
    Fang, R.. 1991. Application of Atomic Absorption Spectroscopy in Sanitary Test. Beijing University Press, Beijing. 148-158.
    Fargasova. A.. 1994. Effect of Pb, Cd. Hg. As and Cr on germination and root growth of Sinapis alba seeds. Bull. Environ. Contam. Toxicol. 52. 452-456.
    Flores-Tavizon. E.. Alarcon-Herrera. M.T.. Gonzalez-Elizondo. S.. Olgum, E.J.. 2003. Arsenic tolerating plants from mine sites and hot springs in the semi-arid region of Chihuahua. Mexico. Acta Biotechnol. 123, 113-119.
    Gabara, B.. Wojtyla-Kuchta, B.. Tarczynska, M., 1992. The effect of calcium on DNA synthesis in pea (Pisus sativus L.) roots after treatment with heavy metals. Folia Histochem. Cytobiol. 30,69-73.
    Garbisu, C. Alkorta, I., 2001. Phytoextraction: a cost-effective plant-based technology for the removal of metals from the environment. Bioresource Technol. 77, 229-236.
    Garbisu, C, Hernandez-Allica, J., Barrutia, O., Alkorta, I., Becerril, J.M., 2002. Phytoremediation: a technology using green plants to remove contaminants from polluted areas. Rev. Environ. Health 17. 173-188.
    Garbisu, C. Hernandez-AIIica, J., Barrutia, O., Alkorta, I., Becerril, J.M., 2002. Phytoremediation: a technology using green plants to remove contaminants from polluted areas. Rev. Environ. Health 17, 173-188.
    Gardea-Torresdey, J.. Peralta-Videa, J., Montes. M., de la Rosa G., Corral-Diaz, B., 2004. Bioaccumulation of cadmium, chromium and copper by Convolvulus arvensis L: impact on plant growth and uptake of nutritional elements. Bioresour. Technol. 92, 229-235.
    Gerard, E.. Echevarria, G.. Sterckeman. T., Morel, J.L.. 2000. Cadmium availability to three plant species varying in cadmium accumulation pattern. J. Environ. Qual. 29. 1117-1123.
    Goldsmith, C.D., Scanion, P.F., Pirie, W.R., 1976. Bull. Environ. Cont. Txicol. 16, 66-70.
    Golovatyj, S.E., Bogatyreva E.N., Golovatyi, S.E., 1999. Effect of levels of chromium content in a soil on its distribution in organs of corn plants. Soil Res. Fert. 197-204.
    Gramss. G.. Voigt. K.D.. Bergmann. H.. 2004. Plant availability and leaching of (heavy) metals from ammonium-, calcium-, carbohydrate-, and citric acid-treated uranium-mine-dump soil. J. Plant Nutrit. Soil Sci. 167,417-427.
    Hara, T., Sonoda, Y., 1979. Comparison of the toxicity of heavy metals to cabbage growth. Plant Soil 51. 127-133.
    Harvey. P.J., Campella, B.F.. Castro. P.M.L.. Harms, H.. Litchtfouse. E.. Schaffner. A.R., Smrcek. S.D.. Werck, R., 2002. Phytoremediation of polyaromatic hydrocarbons, anilines and phenols. Environ. Sci. Pollut. Res. 9, 29-47.
    Hauschild, M.Z.. 1993. Putrescine (1, 4-diaminobutane) as an indicator of pollution-induced stress inhigher plants: Barley and rape stressed with Cr(111) or Cr(VI). Ecotox. F.nviron. Safe. 26. 228-247.
    He. Z.L., Xu. H.P.. Zhu, Y.M., Yang, X.E., Chen, GC, 2005. Adsorption-desorption characteristics of cadmium in variable charge soils. J. Environ. Sci. Health Part A-Toxic/Hazard. Subst. Environ. Eng. 40, 805-822.
    Huang, J.W., and S.D. Cunningham. 1996. Lead phytocxtraction: Species variation in lead uptake and translocation. New Phytol. 134. 75-84.
    Huang, J.W., J. Chen, W.B. Berti, and S.D. Cunningham. 1997. Phytoremediation of lead-contaminated soils: Role of synthetic chelates in lead phytoextraction. Environ. Sci. Technol. 31. 800-805.
    Huang, J.W., Blaylock, M.J., Kapulnik, Y., Ensley, B., 1998. Phytoremediation of uranium-contaminated soils: Role of organic acids in triggering uranium hyperaccumulation in plants. Environ. Sci. Technol. 32, 2004-2008.
    Jean, L, Bordas, F., Bollinger, J.C., 2007. Chromium and nickel mobilization from a contaminated soil using chelants. Environ. Pollut. 147, 729-736.
    Jiang, L.Y., Yang, X.E., He, Z.L., 2004. Growth response and phytoextraction of copper at different levels in soils by Elsholtzia splendens. Chemosphere 55, 1179-1187.
    Johnson. F.M.. 1998. The genetic effects of environmental lead. Mutat. Res.-Rev. Mutat. Res. 410. 123-140.
    Johnson, W.R., Proctor, J.A., 1977. Comparative study of metal levels in plants from two contrasting lead mine sites. Plant Soil 46, 251-257.
    Jonak. C. Nakagami. H.. Hirt. H.. 2004. Heavy metal stress. Activation of distinct mitogen-activated protein kinase pathways by copper and cadmium. Plant Physiol. 136, 3276-3283.
    Kabata-Pendias, A., Pendias. H., 1992. Trace Elements in Soils and Plants (2nd ed.). 227-233. London, CRC.
    Keller, C. Hammer, D.. Kayser. A.. Richner, W., Brodheck. M., Sennhauser. M, 2003. Root development and heavy metal phytoextraction efficiency: comparison of different plant species in the field. Plant Soil 249, 67-81.
    Khan, A.G., 2001. Relationships between chromium biomagnification ratio, accumulation factor, and mycorrhizae in plants growing on tannery effluent-polluted soil. Environ. Int. 26, 417-423.
    Khan. A.G., Kuek, C, Chaudhry, T.M.. Khoo, C.S., Hayes, W.J.. 2000. Role of plants, mycorrhizae and phytocheiators in heavy metal contaminated land remediation. Chemosphere 41. 197-207.
    Kleiman. I.D.. Cogliatti. D.H.. 1998. Chromium removal from aqueous solutions by different plant species. Environ. Technol. 19. 1127-1132.
    Knight. R.L., 1997. Wildlife habitat and public use benefits of treatment wetlands. Water Sci. Technol. 35, 35-43.
    Komarek M. TlustoS P, Szakova J, Chrastny V. Ettler V. The use of maize and poplar in chelant-enhanced phytoextraction of lead from contaminated agricultural soils. Chemosphere, 2007, 67,640-651.
    Kos, B., Lestan, D., 2004. Chelator induced phytoextraction and in situ soil washing of Cu. Environ. Pollut. 132,333-339.
    Krishnamurti, G.S.R., Cieslinski, G, Huang, P.M., van Pees, K.C.J., 1997. Kinetics of cadmium release from soils as influenced by organic acids: implication in cadmium availability. J. Environ. Qual. 26, 271-277
    Kumar, V.D., Motto, H., Raskin, I., 1995. Phytoextraction: the use of plants to remove heavy metals from soils. Environ. Sci. Technol. 29, 1232-1238.
    Lan, C.Y., Chen, G.Z., Li, L.C..1992. Use of cattails in treating wastewater from a Pb/Zn mine. Environ. Manage. 16, 75-80. (in Chinese)
    Lasat, M.M.. Pence, N.S.. Garvin, D.F., Ebbs, S.D., Kochian, L.V., 2000. Molecular physiology of zinc transport in the Zn hyperaccumulator Thlaspi caerulescens. J. Exp. Bot. 51.71 -79.
    Lasat, M.M., 2002. Phytoextraction of toxic metals: a review of biological mechanisms. J. Environ. Qual. 31, 109-120.
    Lestan, D., Luo, C.L., Li, X.D., 2008. The use of chelating agents in the remediation of metal-contaminated soils: A review. Environ. Pollut. 153: 3-13.
    Leyval, C, Turnau, K., Haselwandter, K., 1997. Effect of heavy metal pollution on mycorrhizal colonization and function: physiological, ecological and applied aspects. Mycorrhiza 7, 139-153.
    
    Li, M.S., 2006. Ecological restoration of mineland with particular reference to the metalliferous mine wasteland in China: A review of research and practice. Environ. Pollut. 347, 38-53.
    Liao. M.. Xie. X.M.. 2004. Cadmium release in contaminated soils due to organic acids. Pedosphere 14, 223-228.
    Lim, T.T., Chui, PC, Goh, K.H., 2005. Process evaluation for optimization of EDTA use and recovery for heavy metal removal from a contaminated soil. Chemosphere 58, 1031-1040.
    Lin. C.C. Kao. C.H.. 2000. Effect of NaCl stress on H_2O_2 metabolism in rice leaves. Plant Growth Regul.30. 151-155.
    Liphadzi, M.S., Kirkham, M.B., Mankin, K.R., Paulsen, G.M., 2003. EDTA-assisted heavy-metal uptake by poplar and sunflower grown at a long-term sewage-sludge farm. Plant Soil 257, 171-182.
    Liu. D.. Jiang. W.. Wang. W.. Zhao. F.. Lu. C, 1994. Effects of lead on root growth, cell division, and nucleolus of Allium cepa. Environ. Pollut. 86, 1-4.
    Lombardi. L. Sebastiani, L., 2005. Copper toxicity in Prunus cerasifera: growth and antioxidant enzymes responses of in vitro grown plants. Plant Sci. 168, 797-802.
    Lombi, E., F.J. Zhao, S.J. Dunham, and S.P. McGrath. 2000. Cadmium accumulation in populations of Thlaspi caerulescens and Thlaspi goesingense. New Phytol. 145, 11 -20.
    Lombi, E., Zhao, F.J.. Dunham. S.J., McGrath, S.P, 2001. Phytoremediation of heavy metal-contaminated soils: natural hyperaccumulation versus chemically enhanced phytoextraction. J. Environ. Qual. 30, 1919-1926.
    Lovett-Doust, L., 1981. Population dynamics and local specialization in a clonal perennial (Ranunculus repens). J. Ecol. 69, 757-768.
    Lugon-Moulin, N., Zhang, M.. Gadani, F., Rossi, L, Koller, D., Krauss, M., Wagner, G.J., Donald, L.S., 2004. Critical review of the science and options for reducing cadmium in tobacco (Nicotiana Tabacum L.) and other plants. Adv. Agron. 83, 111-180.
    Luo, C, Shen, Z., Li, X., 2005. Enhanced phytoextraction of Cu, Pb, Zn and Cd with EDTA and EDDS. Chemosphere 59. 1-11.
    Ma. L.Q., Komar. K.M.. Tu. C. Zhang, W.H., Cai, Y.. Kennelley. E.D.. 2001. A fern that hyperaccumulates arsenic - A hardy, versatile, fast-growing plant helps to remove arsenic from contaminated soils. Nature 409, 579-579.
    Macek. T., Mackova, M.. Kas. J.. 2000. Exploitation of plants for the removal of organics in environmental remediation. Biotechnol. Advan. 18,23-34.
    McGrath, S.P, C.M.D. Sidoli, A.J.M. Baker, and R.D. Reeves. 1993. The potential for the use of metal-accumulating plants for the in situ decontamination of metal-polluted soils, p. 673-676. In H.J.P. Eijsackrs and T. Hamers (ed.) Integrated soil and sediment research: A basis for proper protection. Kluwer Academic Publ.. Dordrecht, the Netherlands.
    McGrath. S.P.. Zhao, F.J.. Lombi. E.. 2001. Plant and rhizosphere processes involved in phytoremediation of metal-contaminated soils. Plant Soil 232, 207-214.
    McNaughton. S.J.. 1968. Autotoxic feedback in relation to germination and seedling growth in Typha lalifolia. Ecology 49. 367-369.
    Meda, A.R., Scheuermann, E.B., Prechsl, U.E., Erenoglu, B., Schaaf, G, Haven. H.. Weber, G. von Wiren, N., 2007. Iron acquisition by phytosiderophores contributes to cadmium tolerance. Plant Physiol. 143, 1761-1773.
    Meers, E.. Ruttens. A.. Hopgood. M.J.. Samson. D.. Tack. F.M.. 2005. Comparison of FDTA and FDDS as potential soil amendments for enhanced phytoextraction of heavy metals. Chemosphere 58, 1011-1022.
    Metwally, A., Finkerneier, I., Georgi, M, Dietz, K.J., 2003. Salicylic acid alleviates the cadmium toxicity in barley seedlings. Plant Physiol. 132, 272-281.
    Monnet, F., Bordas, F., Deluchat, V., Baudu, M., 2006. Toxicity of copper excess on the lichen Dermatocarpon luridum: antioxidant enzyme activities. Chemosphere 65, 1806-1813.
    Monni. S.. Salemaa. M., White. C, Tuittila. E.. Huopalanien, M., 2000. Copper resistance of Calluna vulgaris originating from the pollution gradient of a Cu-Ni smelter, in Southwest Finland. Environ. Pollut. 109,211-219.
    Morikawa, H., Erkin, O.C., 2003. Basic processes in phytoremediation and some applications to air pollution control. Chemosphere 52. 1553-1558.
    Nayari, H.F., Szalai, T., Kadar, l., Castho, P., 1997. Germination characteristics of pea seeds originating from afield trial treated with different level of harmful elements. Acta Agron. Hung. 45,147-154.
    Nilratnisakorn, S., Thiravetyan, P., Nakbanpote, W., 2007. Synthetic reactive dye wastewater treatment by narrow-leaved cattails (Typha angustifolia Linn.): Effects of dye, salinity and metals. Sci. Total Environ. 384, 67-76.
    Panda, S.K., 2003. Heavy-metal phytotoxicity induces oxidative stress in a moss, Taxithellium sp. Curr. Sci. 84,631-633.
    
    Panda. S.K., Choudhury. S.. 2005. Chromium stress in plants. Braz. J. Plant Physiol. 17. 95-102.
    Panda, S.K.. Khan, M.H., 2003. Antioxidant efficiency in rice (Oryza saliva L.) leaves under heavy metal toxicity. J. Plant Biol. 30, 23-29.
    Panda, S.K., Parta. H.K., 1997. Physiology of chromium toxicity in plants - A Review. Plant Physiol. Biochem. 24, 10-17.
    Pandey, M, Sharma, C.P., 2003. Chromium interference in iron nutrition and water relations of cabbage. Environ. Exp. Bot. 49, 195-200.
    Panich-Pat, T., Pokethitiyook, P., Kruatrachue, M., Upatham, E.S., Srinives, P., Lanza, G.R., 2004. Removal of lead from contaminated soils by Typha angustifolia. Water Air Soil Pollut. 155. 159-171.
    
    Pilon-Smits. E.. 2005. Phytoremediation. Annu. Rev. Plant Biol. 56. 15-39.
    Poschenrieder. C. Vazquez. M.D.. Bonet, A., Barcel'o. J.. 1991. Chromium Ill-ion interaction in iron sufficient and iron deficient bean plants. II. Ultrastructural aspects. J. Plant Nutr. 14.415-428.
    Poskuta. J.W.. Parys, E.. Romanowska. E., Gajdzis-Gujdan, H.. Wroblewska. B.. 1988. The effects of lead on photosynthesis, 14C distribution among photoassimilates and transpiration of maize seedlings. Acta Soc. Bot. Pol. 57, 149-155.
    Poskuta. J.W., Waclawczyk-Lach, E., 1995. In vivo responses of primary photochemistry of Photosystem II and CO_2 exchange in light and in darkness of tall fescue genotypes to lead toxicity. Acta Physiol. Plant. 17,233-240.
    Pulford, I.D., Watson, C. 2003. Phytoremediation of heavy metal contaminated land by trees - a review. Environ. Int. 29, 529-540.
    Puls, R. W., Powell, R. M., Clark, D., Eldred, C, J. 1991. Effects of pH, solid/solution ratio, ionic strength, and organic acids on Pb and Cd sorption on kaolinite. Water Air Soil Pollut. 57-58, 423-430.
    Rai, U.N., Tripathi, R.D., Vajpayee, P.. Jha, V.. Ali. M.B., 2002. Bioaccumulation of toxic metals (Cr. Cd, Pb and Cu) by seeds of Euryale ferox Salisb. (Makhana) W. Chemosphere 46. 267-272.
    Rajkumar. M., Freitas, H., 2008. Influence of metal resistant-plant growth-promoting bacteria on the growth of Ricinus communis in soil contaminated with heavy metals. Chemosphere 71, 834-842.
    Reeves. R.D., 2003. Tropical hyperaccumulators of metals and their potential for phytoextraction. Plant Soil 249, 57-65.
    Rolfe. G.L., Bazzaz, F.A., 1975. Effect of lead contamination on transpiration and photosynthesis of loblolly pine and autumn olive. For. Sci. 21, 33-35.
    Romkens, P., Bouwman, L., Japenga, J., Draaisma. C, 2002. Potentials and drawbacks of chelate-enhanced phytoremediation of soils. Environ. Pollut. 116, 109-121.
    Salt. D.E., Smith, R.D., Raskin, I.. 1998. Phytoremediation. Ann. Rev. Plant Physiol. Mol. Biol. 49. 643-668.
    Sauve, S., Norvell, W.A., McBride. M, Hendershot, W., 2000. Speciation and complexation of cadmium in extracted soil solutions. Environ. Sci. Technol. 34, 291-296.
    Schnoor, J.R., 1997. Phytoremediation. Technical evaluation report for Ground-Water Remediation Technologies Analysis Center. .
    Schutzendubel, A., Polle, A.. 2002. Plant responses to abiotic stresses: heavy metal-induced oxidativc stress and protection by mycorrhization. J. Exp. Bot. 53. 1351-1365.
    Schutzendubel. A., Schwanz, P., Teichmann, T., Gross, K., Langenfeld-Heyser, R.. Godbold, D.L.. Polle. A.. 2001. Cadmium-induced changes in antioxidative systems, hydrogen peroxide content, and differentiation in Scots pine roots. Plant Physiol. 127. 887-898.
    Sebastini. L. Scebba. F., Tognetti. R., 2004. Heavy metal accumulation and growth responses in poplar clones Eridano (Populus deltoides x maximowiczii) and 1-214 (P. x euramericana) exposed to industrial waste. Environ. Exp. Bot. 52, 79-88.
    Shanker, A.K., Cervantes, C, Loza-Tavera, H., Avudainayagam, S., 2005. Chromium toxicity in plants. Environ. Int. 31,739-753.
    Shanker, A.K., Djanaguiraman, M.. Sudhagar, R., Chandrashekar, C.N., Pathmanabhan, G, 2004. Differential antioxidative response of ascorbate glutathione pathway enzymes and metabolites to chromium speciation stress in green gram (Vigna radiata (L.) R.Wilczek. cv CO 4) roots. Plant Sci. 166,1035-1043.
    
    Sharma, P., Dubey, R.S., 2005. Lead toxicity in plants. Braz. J. Plant Physiol. 17, 35-52.
    Sharma, Y.C., Upadhyay, S.N., Weng, C.H., 2008. Studies on an economically viable remediation of chromium rich waters and wastewaters by PTPS fly ash. Colloid Surf. A-Physicochem. Eng. Asp. 317,222-228.
    Shen, Z.G., Li. X.D., Wang, C.C., Chen, H.M., Chua, H., 2002. Lead phytoextraction from contaminated soil with high-biomass plant species. J. Environ. Qual. 31, 1893-1900.
    Singh. R.P.. Tripathi, R.D.. Sinha, S.K., Maheshwari, R., Srivastava, H.S., 1997. Response of higher plants to lead contaminated environment. Chemosphere 34, 2467-2493.
    Sriyaraj, K., Shutes, R.B., 2001. An assessment of the impact of motorway runoff on a pond, wetland and stream. Environ. Int 26. 433-439.
    Stoltz, E., Greger, M., 2002. Accumulation properties of As, Cd, Cu, Pb and Zn by four wetland plant species growing on submerged mine tailings, Environ. Exp. Bot. 47, 271-280.
    Strobel, B.W., 2001. Influence of vegetation on low-molecular weight carboxylic acids in soil solution-a review. Geoderma 99. 169-198.
    Sueker. J.K.. Ph. D.R.D.M., Brian. L.M.. 2005. Chromium, Environmental Forensics. Academic Press. Burlington, pp. 81-95.
    Van Assche, F., Cliisters, H.. 1990. Effects of metals on enzyme activity in plants. Plant Cell Environ. 13.195-206.
    Vassil. A.D.. Kapulnik. Y.. Raskin. l.l.. Salt. D.E.. 1998. The role of EDTA in lead transport and accumulation by indian mustard. Plant Physiol. 117, 447-453.
    Wallace, A.. Muller, R.T., Cha, J.W., Alexander, G.V., 1974. Soil pH, excess lime and chelating agent on micronutrient in soybean and bushbeans. Agron. J. 66, 698-700.
    Wang. S.H.. Yang. Z.M., Yang. H.. Lu. B.. Li, S.Q.. Lu. Y.P.. 2004. Copper induced stress and antioxidative responses in roots of Brassica juncea L. Bot. Bull. Acad. Sin. 45. 203-212.
    Wei. S.H.. da Silva, J.A.T., Zhou. Q.X.. 2008. Agro-improving method of phytoextracting heavy metal contaminated soil. J. Hazard. Mater. 150, 662-668.
    Weis, J.S., Glover, T., Weis, P., 2004. Interactions of metals affect their distribution in tissues of Phragmites aitstralis, Environ. Pollut. 131,409-415.
    Weis, J.S., Weis, P., 2004. Metal uptake, transport and release by wetland plants: implications for phytoremediation and restoration. Environ. Int. 30, 685-700.
    Wen, Z.L., Wen, Y.M., Wu, X.F., 1999b. The application of cattail plant in sewage disposal. Environment and Development (in Chinese) 14, 28-30.
    Wen, Z.L., Xiu, H.N., Mao Y.F., 1999a. The utilization and exploitation of cattail plant in environmental protection. Environmental Protection (in Chinese) 10, 39-40, 42.
    West, L.J.A., Li, K., Greenberg, B.M., Mierle, G., Smith, R.E.H., 2003. Combined effects of copper and ultraviolet radiation on a microscopic green alga in natural soft lake waters of varying dissolved organic carbon content. Aquat. Toxicol. 64, 39-52.
    Wierzbicka, M., 1994. Resumption of mitotic activity in Allium cepa root tips during treatment with lead salts. Environ. Exp. Bot. 34, 173-180.
    Wierzbicka, M., Obidzinska, J., 1998. The effect of lead on seed imbibition and germination in different plant species. Plant Sci. 137, 155-171.
    Wisniewski. L., Dickinson. N.M.. 2003. Toxicity of copper to Quercus robur (English Oak) seedlings from a copper-rich soil. Environ. Exp. Bot. 50, 99-107.
    Wu, F.B., Chen. F., Wei, K., Zhang, G.P., 2004b. Effect of cadmium on free amino acid, glutathione and ascorbic acid concentrations in two barley genotypes (Hordeum vulgare L) differing in cadmium tolerance. Chemosphere 57, 447-454.
    Wu. F.B., Dong. J.. Cai. Y.. Chen. F.. Zhang, G.P., 2007. Differences in Mn uptake and subcellular distribution in different barley genotypes as a response to Cd toxicity. Sci. Total Environ. 385. 228-234.
    Wu, F.B.. Dong. J., Qian, Q.Q.. Zhang, G.P., 2005. Subcellular distribution and chemical form of Cd and Cd-Zn interaction in different barley genotypes. Chemosphere 60, 1437-1446.
    Wu, F.B.. Wu. H.X.. Zhang. G.P.. Bachir, D.M.L.. 2004a. Difference in growth and yield in response to cadmium toxicity in cotton genotypes. Journal of Plant Nutrition and Soil Science-Zeitschrift Fur Pflanzenernahrung Und Bodenkunde 167, 85-90.
    Wu. F.B.. Zhang, G.P.. 2002a. Alleviation of cadmium-toxicity by application of zinc and ascorbic acid in barley. J. Plant Nutr. 25. 2745-2761.
    Wu, F.B., Zhang, G.P., 2002b. Genotypic variation in kernel heavy metal concentrations in barley and as affected by soil factors. J. Plant Nutr. 25, 1163-1173.
    Wu. F.B.. Zhang, G.P., Dominy. P.. 2003. Four barley genotypes respond differently to cadmium: Lipid peroxidation and activities of antioxidant capacity. Environ. Exp. Bot. 50, 67-78.
    Wu, F.B., Zhang, G.P., Yu, J.S., 2003. Genotypic differences in effect of Cd on photosynthesis and chlorophyll fluorescence of barley (Hordeum vulgare L). Bull. Environ. Contam. Toxicol. 71. 1272-1281.
    Wu. L.H., Luo, Y.M., Xing, X.R., Christie, P., 2004. EDTA-enhanced phytoremediation of heavy metal contaminated soil with Indian mustard and associated potential leaching risk. Agric. Ecosyst. Environ. 102,307-318.
    Xiong, Z.T., Wang, H., 2005. Copper toxicity and bioaccumulation in Chinese cabbage (Brassica pekinensis Rupr.). Environ. Toxicol. 20, 188-194.
    Yanai, J., Zhao, F.J., McGrath, S.P., Kosaki, T., 2006. Effect of soil characteristics on Cd uptake by the hyperaccumulator Thlaspi caerulescens. Environ. Pollut. 139, 167-175.
    Zayed, A., Lytle, CM., Qian, J.H.. Terry, N., 1998. Chromium accumulation, translocation and chemical speciation in vegetable crops. Planta 206, 293-299.
    Zayed, A.M.. Terry, N., 2003. Chromium in the environment: factors affecting biological remediation.Plant Soil 249, 139-156.
    Zeid, I.M., 2001. Responses of Phaseolus vulgaris to chromium and cobalt treatments. Biol. Plant. 44, 111-115.
    Zeng. F.R., Chen, S., Miao, Y, Wu, F.B., Zhang, GP.. 2008. Changes of organic acid exudation and rhizosphere pH in rice plants under chromium stress. Environ. Pollut. Online.
    Zheng, Y., Wang, L., Dixon, M., 2004. Response to copper toxicity for three ornamental crops in solution culture. Hortscience 39. 1116-1120.
    Zhou, D. M., Wang. S. Q., Chen, H. M. 2001. Interaction of Cd and citric acid. EDTA in red soil. J. Environ. Sci.13. 153-156.
    Zimdahl, R.L., Koeppe, D.E, 1977. Uptake by plants. In: Lead in the Environment (eds. Boggers, W.R.. Wixon. B.B.). National Science Foundation, Washington. DC. USA. 99-104.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700