用户名: 密码: 验证码:
间充质干细胞(MSCs)用于肿瘤化疗辅助治疗及与肿瘤生长关系的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
间充质干细胞(mesenchymal stem cells,MSCs)是一类具有多项分化潜能的成体干细胞,在细胞治疗和再生医学领域具有巨大的应用潜力。但是,MSCs在肿瘤化疗领域的应用潜力至今尚不清楚,本文拟研究MSCs作为肿瘤化疗的辅助治疗手段,缓解化疗导致的组织损伤,并研究影响MSCs与肿瘤生长的因素。
     我们分别通过组织块种植法、胶原酶消化法、梯度密度离心法从脐带、脂肪、骨髓中分离出MSCs,流式检测显示三种MSCs均表达CD29,CD44,CD73,HLA-ABC;不表达CD14,CD31,CD34,CD45,HLA-DR。在合适的诱导培养基诱导下,三种MSCs均可以分化为成骨细胞和脂肪细胞。
     我们开发了一种以海藻糖为核心成分的MSCs4℃保护液。我们发现40mmol/L海藻糖组具有最佳的保护效果,MSCs在保存7天后,台盼蓝检测显示有92.7±1.5%存活,在保存3周后仍有70%的存活率。MSCs在保存3周后与保存前相比具有相同的免疫表型,增殖与分化能力。
     我们以小鼠Lewis肺癌和人结肠癌两种荷瘤动物模型为研究对象,采用连续三天给予化疗药阿霉素(Adriamycin,ADM)接着尾静脉注射MSCs的治疗方法,结果显示MSCs可以缓解ADM导致的骨髓抑制、心肌损伤,减轻ADM引发的小肠绒毛细胞凋亡,减少体重下降程度,提高致死剂量ADM下小鼠的生存率。同时,尾静脉注射MSCs不影响化疗药对Lewis肺癌和Lovo结肠癌肿瘤的杀伤效果,并且,显著抑制Lewis肺癌的肺转移。我们的结果显示,对于某些类型的肿瘤,MSCs治疗可以作为肿瘤化疗的辅助治疗方法。
     我们分析了影响MSCs与肿瘤生长的因素,发现脐带MSCs对肺癌细胞如A549,95D等的迁移具有抑制作用,对于乳腺癌细胞如MDA-MB-231,MCF-7等具有促进作用。脐带MSCs抑制低转移肝癌细胞HepG2的迁移,却促进高转移肝癌细胞LM-3和97H的迁移。不同来源的MSCs对于相同肿瘤细胞的作用基本相同。我们通过自然传代和H2O2诱导的方法分别获得了衰老MSCs。与正常MSCs相比,衰老MSCs的分泌型发生显著变化,如IL-6升高了40余倍。衰老MSCs显著促进肿瘤细胞的增殖与迁移且与IL-6的分泌升高密切相关。我们以乳腺癌细胞MDA-MB-231为研究对象做裸鼠成瘤实验,发现衰老MSCs与肿瘤细胞共移植后,可以显著促进肿瘤的生长,免疫组化分析显示衰老MSCs可以促进肿瘤组织新生血管的生成。
Mesenchymal stem cells (MSCs), a subset of multipotential adult stem cells,hold great therapeutic potential in cell therapy and regenerative medicine. However,their therapeutic potential against chemotherapy-induced side effects remains unclear.In the present study, we evaluated the prophylactic or therapeutic action ofhUC-MSCs on chemotherapy agent Doxorubicin-induced side effects in two differenttumor models and analyzed factors that impact MSCs and tumor growth.
     We isolated MSCs from umbilical cord, adipose tissue, bone marrow throughminced tissue planting, collagenase digestion and density gradient centrifugationrespectively. FACS examination showed that MSCs from different tissue originshowed similar immunophenotype, i.e. positive for CD29,CD44,CD73,HLA-ABCwhereas negative for CD14,CD31,CD34,CD45,HLA-DR. Given appropriatemedium, MSCs were able to differentiate into osteocytes and adipocytes.
     We developed a solution formula that could preserve MSCs at4℃for up to3weeks. In the solution, trehalose is a key ingredient for maintaining survival of MSCs.Among the concentrations investigated,40mM trehalose showed the best outcomewith the viability maintained more than92.7±1.5%for7days. Cells preserved in thesolution formula for3weeks still remained about70%viability, and produced resultssimilar to those of freshly harvested hMSCs in terms of growth kinetics, expressionprofile of cell surface antigens and differentiation potential.
     We treated murine Lewis lung carcinoma and xenograft human colon tumorswith Doxorubicin (DOX) for three consecutive days followed by one i.v. injection ofhUC-MSCs for several cycles. MSCs treatment could mitigate DOX-inducedcardiomyopathy, reduce the extent of DOX-induced apoptosis in intestinal crypts,suppress the body weight loss in mice treated with DOX and increase the survival rateof mice treated with lethal dose of DOX. The examination of hematologicalparameters indicated a moderate recovery in MSC injected mice. Systemicadministration of MSC did not increase the growth of murine Lewis lung carcinomacell (LLC) and human colon carcinoma in vivo while strongly inhibited the lungmetastases of LLC cell. Our observations suggest that MSCs can be used as auxiliarymeans in chemotherapy for certain tumor types.
     We analyzed factors that impact MSCs and tumor growth. Our results showedthat human umbilical cord MSCs could inhibit the migration of lung cancer cell linessuch as A549and95D while promote migration of breast cancer cell lines asMDA-MB-231and MCF-7. For hepatoma cell lines, MSCs could suppress the migration of low metastatic cell line HepG2while facilitate the movement of highmetastatic cell line LM-3and97H. MSCs from different tissue origin showed similarimpact on the same tumor cell line. We got senescent MSCs through replicationsenescence and H2O2induction which showed dramatically different cytokinessecretion profile like40times increased for IL-6secretion. Senescent MSCs couldpromote cancer cell proliferation and migration through IL-6dependent manner.
     The effect of senescent MSCs on tumor cell in vivo was analyzed byco-implantation with breast cancer cell MDA-MB-231subcutaneously into nude mice.Our results demonstrated that H2O2induced MSCs could significantly promote tumorgrowth. Immunohistochemical analyzation suggested senescent MSCs could improvetumor angiogenesis.
引文
[1]. Siegel R, Desantis C, Virgo K, et al. Cancer treatment and survivorshipstatistics,2012. CA Cancer J Clin.2012.
    [2].Carelle N, Piotto E, Bellanger A, et al. Changing patient perceptions of theside effects of cancer chemotherapy. Cancer.2002;95(1):155-163.
    [3].Schuell B, Gruenberger T, Kornek GV, et al. Side effects duringchemotherapy predict tumour response in advanced colorectal cancer. Br J Cancer.2005;93(7):744-748.
    [4].Bianco P, Robey PGandSimmons PJ. Mesenchymal stem cells: revisitinghistory, concepts, and assays. Cell Stem Cell.2008;2(4):313-319.
    [5].Pittenger M, Mackay A, Beck S, et al. Multilineage potential of adult humanmesenchymal stem cells. Science.1999;284(5411):143.
    [6].Xu W, Zhang X, Qian H, et al. Mesenchymal stem cells from adult humanbone marrow differentiate into a cardiomyocyte phenotype in vitro. Exp Biol Med(Maywood).2004;229(7):623-631.
    [7].Tondreau T, Lagneaux L, Dejeneffe M, et al. Bone marrow-derivedmesenchymal stem cells already express specific neural proteins before anydifferentiation. Differentiation.2004;72(7):319-326.
    [8].Campard D, Lysy PA, Najimi M, et al. Native umbilical cord matrix stemcells express hepatic markers and differentiate into hepatocyte-like cells.Gastroenterology.2008;134(3):833-848.
    [9].Wang HS, Shyu JF, Shen WS, et al. Transplantation of insulin-producingcells derived from umbilical cord stromal mesenchymal stem cells to treat NOD mice.Cell Transplant.2011;20(3):455-466.
    [10]. Trounson A, Thakar RG, Lomax G, et al. Clinical trials for stem celltherapies. BMC Med.2011;9:52.
    [11]. Dvorak HF. Tumors: wounds that do not heal. Similarities betweentumor stroma generation and wound healing. N Engl J Med.1986;315(26):1650-1659.
    [12]. Studeny M, Marini FC, Dembinski JL, et al. Mesenchymal stem cells:potential precursors for tumor stroma and targeted-delivery vehicles for anticanceragents. J Natl Cancer Inst.2004;96(21):1593-1603.
    [13]. Joyce JAandPollard JW. Microenvironmental regulation of metastasis.Nat Rev Cancer.2009;9(4):239-252.
    [14]. Karp JMandLeng Teo GS. Mesenchymal stem cell homing: the devil isin the details. Cell Stem Cell.2009;4(3):206-216.
    [15]. Takashima Y, Era T, Nakao K, et al. Neuroepithelial cells supply aninitial transient wave of MSC differentiation. Cell.2007;129(7):1377-1388.
    [16]. Caplan AI. All MSCs are pericytes? Cell Stem Cell.2008;3(3):229-230.
    [17]. Parekkadan BandMilwid JM. Mesenchymal stem cells as therapeutics.Annu Rev Biomed Eng.2010;12:87-117.
    [18]. Horwitz EM, Le Blanc K, Dominici M, et al. Clarification of thenomenclature for MSC: The International Society for Cellular Therapy positionstatement. Cytotherapy.2005;7(5):393-395.
    [19]. Haynesworth SE, Goshima J, Goldberg VM, et al. Characterization ofcells with osteogenic potential from human marrow. Bone.1992;13(1):81-88.
    [20]. Weiss M, Medicetty S, Bledsoe A, et al. Human umbilical cord matrixstem cells: preliminary characterization and effect of transplantation in a rodent modelof Parkinson's disease. Stem Cells.2006;24(3):781-792.
    [21]. Deng B, Wen J, Ding Y, et al. Different regulation role of myostatin indifferentiating pig ADSCs and MSCs into adipocytes. Cell Biochem Funct.2012;30(2):145-150.
    [22]. Baer PCandGeiger H. Adipose-derived mesenchymal stromal/stem cells:tissue localization, characterization, and heterogeneity. Stem Cells Int.2012;2012:812693.
    [23]. Wong RS. Mesenchymal stem cells: angels or demons? J BiomedBiotechnol.2011;2011:459510.
    [24]. Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for definingmultipotent mesenchymal stromal cells. The International Society for CellularTherapy position statement. Cytotherapy.2006;8(4):315-317.
    [25]. Lu LL, Liu YJ, Yang SG, et al. Isolation and characterization of humanumbilical cord mesenchymal stem cells with hematopoiesis-supportive function andother potentials. Haematologica.2006;91(8):1017-1026.
    [26]. Jiang Y, Jahagirdar BN, Reinhardt RL, et al. Pluripotency ofmesenchymal stem cells derived from adult marrow. Nature.2002;418(6893):41-49.
    [27]. Scuteri A, Ravasi M, Pasini S, et al. Mesenchymal stem cells supportdorsal root ganglion neurons survival by inhibiting the metalloproteinase pathway.Neuroscience.2011;172:12-19.
    [28]. Kim BJ, Jin HKandBae JS. Bone marrow-derived mesenchymal stemcells improve the functioning of neurotrophic factors in a mouse model of diabeticneuropathy. Lab Anim Res.2011;27(2):171-176.
    [29]. Banas A, Teratani T, Yamamoto Y, et al. Adipose tissue-derivedmesenchymal stem cells as a source of human hepatocytes. Hepatology.2007;46(1):219-228.
    [30]. Tsai PJ, Wang HS, Shyr YM, et al. Transplantation of insulin-producingcells from umbilical cord mesenchymal stem cells for the treatment ofstreptozotocin-induced diabetic rats. J Biomed Sci.2012;19(1):47.
    [31]. Yuan H, Liu H, Tian R, et al. Regulation of mesenchymal stem celldifferentiation and insulin secretion by differential expression of Pdx-1. Mol Biol Rep.2012;39(7):7777-7783.
    [32]. Crisan M, Yap S, Casteilla L, et al. A perivascular origin formesenchymal stem cells in multiple human organs. Cell Stem Cell.2008;3(3):301-313.
    [33]. Maharlooei MK, Bagheri M, Solhjou Z, et al. Adipose tissue derivedmesenchymal stem cell (AD-MSC) promotes skin wound healing in diabetic rats.Diabetes Res Clin Pract.2011;93(2):228-234.
    [34]. Pal R, Hanwate MandTotey SM. Effect of holding time, temperature anddifferent parenteral solutions on viability and functionality of adult bonemarrow-derived mesenchymal stem cells before transplantation. J Tissue Eng RegenMed.2008;2(7):436-444.
    [35]. Windrum PandMorris TC. Severe neurotoxicity because of dimethylsulphoxide following peripheral blood stem cell transplantation. Bone MarrowTransplant.2003;31(4):315.
    [36]. Freimark D, Sehl C, Weber C, et al. Systematic parameter optimizationof a Me(2)SO-and serum-free cryopreservation protocol for human mesenchymalstem cells. Cryobiology.2011;63(2):67-75.
    [37]. Whiteside TL, Griffin DL, Stanson J, et al. Shipping of therapeuticsomatic cell products. Cytotherapy.2011;13(2):201-213.
    [38]. Pu LL, Cui X, Fink BF, et al. Cryopreservation of adipose tissues: therole of trehalose. Aesthet Surg J.2005;25(2):126-131.
    [39]. Thirumala S, Goebel WSandWoods EJ. Clinical grade adult stem cellbanking. Organogenesis.2009;5(3):143-154.
    [40]. Matsuo A, Yamazaki Y, Takase C, et al. Osteogenic potential ofcryopreserved human bone marrow-derived mesenchymal stem cells cultured withautologous serum. J Craniofac Surg.2008;19(3):693-700.
    [41]. Adams GB, Chabner KT, Alley IR, et al. Stem cell engraftment at theendosteal niche is specified by the calcium-sensing receptor. Nature.2006;439(7076):599-603.
    [42]. Sugiyama T, Kohara H, Noda M, et al. Maintenance of thehematopoietic stem cell pool by CXCL12-CXCR4chemokine signaling in bonemarrow stromal cell niches. Immunity.2006;25(6):977-988.
    [43]. Calvi LM, Adams GB, Weibrecht KW, et al. Osteoblastic cells regulatethe haematopoietic stem cell niche. Nature.2003;425(6960):841-846.
    [44]. Zhang J, Niu C, Ye L, et al. Identification of the haematopoietic stemcell niche and control of the niche size. Nature.2003;425(6960):836-841.
    [45]. Novershtern N, Subramanian A, Lawton LN, et al. Denselyinterconnected transcriptional circuits control cell states in human hematopoiesis. Cell.2011;144(2):296-309.
    [46]. Mendez-Ferrer S, Michurina TV, Ferraro F, et al. Mesenchymal andhaematopoietic stem cells form a unique bone marrow niche. Nature.2010;466(7308):829-834.
    [47]. Muguruma Y, Yahata T, Miyatake H, et al. Reconstitution of thefunctional human hematopoietic microenvironment derived from humanmesenchymal stem cells in the murine bone marrow compartment. Blood.2006;107(5):1878-1887.
    [48]. Koc ON, Gerson SL, Cooper BW, et al. Rapid hematopoietic recoveryafter coinfusion of autologous-blood stem cells and culture-expanded marrowmesenchymal stem cells in advanced breast cancer patients receiving high-dosechemotherapy. J Clin Oncol.2000;18(2):307-316.
    [49]. Le Blanc K, Samuelsson H, Gustafsson B, et al. Transplantation ofmesenchymal stem cells to enhance engraftment of hematopoietic stem cells.Leukemia.2007;21(8):1733-1738.
    [50]. Shi C. Recent progress toward understanding the physiological functionof bone marrow mesenchymal stem cells. Immunology.2012;136(2):133-138.
    [51]. Krampera M, Glennie S, Dyson J, et al. Bone marrow mesenchymalstem cells inhibit the response of naive and memory antigen-specific T cells to theircognate peptide. Blood.2003;101(9):3722-3729.
    [52]. Glennie S, Soeiro I, Dyson PJ, et al. Bone marrow mesenchymal stemcells induce division arrest anergy of activated T cells. Blood.2005;105(7):2821-2827.
    [53]. Akiyama K, Chen C, Wang D, et al. Mesenchymal-stem-cell-inducedimmunoregulation involves FAS-ligand-/FAS-mediated T cell apoptosis. Cell StemCell.2012;10(5):544-555.
    [54]. Keating A. How do mesenchymal stromal cells suppress T cells? CellStem Cell.2008;2(2):106-108.
    [55]. Shi Y, Wei L, Wang Y, et al. Stem cells deployed for bone repairhijacked by T cells. Cell Stem Cell.2012;10(1):6-8.
    [56]. Shi M, Liu ZWandWang FS. Immunomodulatory properties andtherapeutic application of mesenchymal stem cells. Clin Exp Immunol.2011;164(1):1-8.
    [57]. Sato K, Ozaki K, Oh I, et al. Nitric oxide plays a critical role insuppression of T-cell proliferation by mesenchymal stem cells. Blood.2007;109(1):228-234.
    [58]. Zangi L, Margalit R, Reich-Zeliger S, et al. Direct imaging of immunerejection and memory induction by allogeneic mesenchymal stromal cells. Stem Cells.2009;27(11):2865-2874.
    [59]. Spaggiari GM, Capobianco A, Becchetti S, et al. Mesenchymal stemcell-natural killer cell interactions: evidence that activated NK cells are capable ofkilling MSCs, whereas MSCs can inhibit IL-2-induced NK-cell proliferation. Blood.2006;107(4):1484-1490.
    [60]. Rasmusson I, Ringden O, Sundberg B, et al. Mesenchymal stem cellsinhibit the formation of cytotoxic T lymphocytes, but not activated cytotoxic Tlymphocytes or natural killer cells. Transplantation.2003;76(8):1208-1213.
    [61]. Spaggiari GM, Capobianco A, Abdelrazik H, et al. Mesenchymal stemcells inhibit natural killer-cell proliferation, cytotoxicity, and cytokine production: roleof indoleamine2,3-dioxygenase and prostaglandin E2. Blood.2008;111(3):1327-1333.
    [62]. Gieseke F, Bohringer J, Bussolari R, et al. Human multipotentmesenchymal stromal cells use galectin-1to inhibit immune effector cells. Blood.2010;116(19):3770-3779.
    [63]. Giuliani M, Oudrhiri N, Noman ZM, et al. Human mesenchymal stemcells derived from induced pluripotent stem cells down-regulate NK-cell cytolyticmachinery. Blood.2011;118(12):3254-3262.
    [64]. Prigione I, Benvenuto F, Bocca P, et al. Reciprocal interactions betweenhuman mesenchymal stem cells and gammadelta T cells or invariant natural killer Tcells. Stem Cells.2009;27(3):693-702.
    [65]. Nauta AJ, Kruisselbrink AB, Lurvink E, et al. Mesenchymal stem cellsinhibit generation and function of both CD34+-derived and monocyte-deriveddendritic cells. J Immunol.2006;177(4):2080-2087.
    [66]. Zhang W, Ge W, Li C, et al. Effects of mesenchymal stem cells ondifferentiation, maturation, and function of human monocyte-derived dendritic cells.Stem Cells Dev.2004;13(3):263-271.
    [67]. Spaggiari GM, Abdelrazik H, Becchetti F, et al. MSCs inhibitmonocyte-derived DC maturation and function by selectively interfering with thegeneration of immature DCs: central role of MSC-derived prostaglandin E2. Blood.2009;113(26):6576-6583.
    [68]. Le Blanc K, Tammik L, Sundberg B, et al. Mesenchymal stem cellsinhibit and stimulate mixed lymphocyte cultures and mitogenic responsesindependently of the major histocompatibility complex. Scand J Immunol.2003;57(1):11-20.
    [69]. Tan J, Wu W, Xu X, et al. Induction therapy with autologousmesenchymal stem cells in living-related kidney transplants: a randomized controlledtrial. JAMA.2012;307(11):1169-1177.
    [70]. Ning H, Yang F, Jiang M, et al. The correlation betweencotransplantation of mesenchymal stem cells and higher recurrence rate inhematologic malignancy patients: outcome of a pilot clinical study. Leukemia.2008;22(3):593-599.
    [71]. Jurewicz M, Yang S, Augello A, et al. Congenic mesenchymal stem celltherapy reverses hyperglycemia in experimental type1diabetes. Diabetes.2010;59(12):3139-3147.
    [72]. Si Y, Zhao Y, Hao H, et al. Infusion of mesenchymal stem cellsameliorates hyperglycemia in type2diabetic rats: identification of a novel role inimproving insulin sensitivity. Diabetes.2012;61(6):1616-1625.
    [73]. Sordi V, Malosio ML, Marchesi F, et al. Bone marrow mesenchymalstem cells express a restricted set of functionally active chemokine receptors capableof promoting migration to pancreatic islets. Blood.2005;106(2):419-427.
    [74]. Lee RH, Seo MJ, Reger RL, et al. Multipotent stromal cells from humanmarrow home to and promote repair of pancreatic islets and renal glomeruli indiabetic NOD/scid mice. Proc Natl Acad Sci U S A.2006;103(46):17438-17443.
    [75]. Ezquer FE, Ezquer ME, Contador D, et al. MSC Anti-Diabetic Effect isUnrelated to Their Trans-Differentiation Potential but to their Capability to RestoreTh1/Th2Balance and to Modify the Pancreatic Microenvironment. Stem Cells.2012.
    [76]. Sordi V, Melzi R, Mercalli A, et al. Mesenchymal cells appearing inpancreatic tissue culture are bone marrow-derived stem cells with the capacity toimprove transplanted islet function. Stem Cells.2010;28(1):140-151.
    [77]. Yeung TY, Seeberger KL, Kin T, et al. Human mesenchymal stem cellsprotect human islets from pro-inflammatory cytokines. PLoS One.2012;7(5):e38189.
    [78]. Li YM, Schilling T, Benisch P, et al. Effects of high glucose onmesenchymal stem cell proliferation and differentiation. Biochem Biophys ResCommun.2007;363(1):209-215.
    [79]. Keats EandKhan ZA. Unique responses of stem cell-derived vascularendothelial and mesenchymal cells to high levels of glucose. PLoS One.2012;7(6):e38752.
    [80]. Ezquer F, Ezquer M, Simon V, et al. The antidiabetic effect of MSCs isnot impaired by insulin prophylaxis and is not improved by a second dose of cells.PLoS One.2011;6(1):e16566.
    [81]. Aguayo-Mazzucato CandBonner-Weir S. Stem cell therapy for type1diabetes mellitus. Nat Rev Endocrinol.2010;6(3):139-148.
    [82]. Burke DPandKelly DJ. Substrate Stiffness and Oxygen as Regulators ofStem Cell Differentiation during Skeletal Tissue Regeneration: A MechanobiologicalModel. PLoS One.2012;7(7):e40737.
    [83]. Beane OSandDarling EM. Isolation, Characterization, andDifferentiation of Stem Cells for Cartilage Regeneration. Ann Biomed Eng.2012.
    [84]. Liu Y, Wang L, Kikuiri T, et al. Mesenchymal stem cell-based tissueregeneration is governed by recipient T lymphocytes via IFN-gamma and TNF-alpha.Nat Med.2011;17(12):1594-1601.
    [85]. Goldberg JL, Laughlin MJandPompili VJ. Umbilical cord blood stemcells: implications for cardiovascular regenerative medicine. J Mol Cell Cardiol.2007;42(5):912-920.
    [86]. Noort WA, Feye D, Van Den Akker F, et al. Mesenchymal stromal cellsto treat cardiovascular disease: strategies to improve survival and therapeutic results.Panminerva Med.2010;52(1):27-40.
    [87]. Schafer RandNorthoff H. Cardioprotection and cardiac regeneration bymesenchymal stem cells. Panminerva Med.2008;50(1):31-39.
    [88]. Chiu RC. MSC immune tolerance in cellular cardiomyoplasty. SeminThorac Cardiovasc Surg.2008;20(2):115-118.
    [89]. Burdon TJ, Paul A, Noiseux N, et al. Bone marrow stem cell derivedparacrine factors for regenerative medicine: current perspectives and therapeuticpotential. Bone Marrow Res.2011;2011:207326.
    [90]. Silva GV, Litovsky S, Assad JA, et al. Mesenchymal stem cellsdifferentiate into an endothelial phenotype, enhance vascular density, and improveheart function in a canine chronic ischemia model. Circulation.2005;111(2):150-156.
    [91]. Loffredo FS, Steinhauser ML, Gannon J, et al. Bone marrow-derived celltherapy stimulates endogenous cardiomyocyte progenitors and promotes cardiacrepair. Cell Stem Cell.2011;8(4):389-398.
    [92]. Suzuki G, Iyer V, Lee TC, et al. Autologous mesenchymal stem cellsmobilize cKit+and CD133+bone marrow progenitor cells and improve regionalfunction in hibernating myocardium. Circ Res.2011;109(9):1044-1054.
    [93]. Lee RH, Pulin AA, Seo MJ, et al. Intravenous hMSCs improvemyocardial infarction in mice because cells embolized in lung are activated to secretethe anti-inflammatory protein TSG-6. Cell Stem Cell.2009;5(1):54-63.
    [94]. Semont A, Mouiseddine M, Francois A, et al. Mesenchymal stem cellsimprove small intestinal integrity through regulation of endogenous epithelial cellhomeostasis. Cell Death Differ.2010;17(6):952-961.
    [95]. Duijvestein M, Vos A, Roelofs H, et al. Autologous bonemarrow-derived mesenchymal stromal cell treatment for refractory luminal Crohn'sdisease: results of a phase I study. Gut.
    [96]. Panes JandSalas A. Mechanisms underlying the beneficial effects ofstem cell therapies for inflammatory bowel diseases. Gut.2009;58(7):898-900.
    [97]. Gonzalez-Rey E, Anderson P, Gonzalez MA, et al. Human adult stemcells derived from adipose tissue protect against experimental colitis and sepsis. Gut.2009;58(7):929-939.
    [98]. Gonzalez MA, Gonzalez-Rey E, Rico L, et al. Adipose-derivedmesenchymal stem cells alleviate experimental colitis by inhibiting inflammatory andautoimmune responses. Gastroenterology.2009;136(3):978-989.
    [99]. Reagan MRandKaplan DL. Concise review: Mesenchymal stem celltumor-homing: detection methods in disease model systems. Stem Cells.2011;29(6):920-927.
    [100]. Chaffer CLandWeinberg RA. A perspective on cancer cell metastasis.Science.2011;331(6024):1559-1564.
    [101]. Friedl PandWolf K. Tumour-cell invasion and migration: diversity andescape mechanisms. Nat Rev Cancer.2003;3(5):362-374.
    [102]. Valastyan SandWeinberg RA. Tumor metastasis: molecular insights andevolving paradigms. Cell.2011;147(2):275-292.
    [103]. Chambers AF, Groom ACandMacDonald IC. Dissemination and growthof cancer cells in metastatic sites. Nat Rev Cancer.2002;2(8):563-572.
    [104]. Zannettino AC, Psaltis PJandGronthos S. Home is where the heart is: viathe FROUNT. Cell Stem Cell.2008;2(6):513-514.
    [105]. Belema-Bedada F, Uchida S, Martire A, et al. Efficient homing ofmultipotent adult mesenchymal stem cells depends on FROUNT-mediated clusteringof CCR2. Cell Stem Cell.2008;2(6):566-575.
    [106]. Gupta GPandMassague J. Cancer metastasis: building a framework. Cell.2006;127(4):679-695.
    [107]. Etheridge SL, Spencer GJ, Heath DJ, et al. Expression profiling andfunctional analysis of wnt signaling mechanisms in mesenchymal stem cells. StemCells.2004;22(5):849-860.
    [108]. Chiang ACandMassague J. Molecular basis of metastasis. N Engl J Med.2008;359(26):2814-2823.
    [109]. Quante M, Tu SP, Tomita H, et al. Bone marrow-derived myofibroblastscontribute to the mesenchymal stem cell niche and promote tumor growth. CancerCell.2011;19(2):257-272.
    [110]. Loebinger MR, Eddaoudi A, Davies D, et al. Mesenchymal stem celldelivery of TRAIL can eliminate metastatic cancer. Cancer Res.2009;69(10):4134-4142.
    [111]. Mohr A, Lyons M, Deedigan L, et al. Mesenchymal stem cellsexpressing TRAIL lead to tumour growth inhibition in an experimental lung cancermodel. J Cell Mol Med.2008;12(6B):2628-2643.
    [112]. Grisendi G, Bussolari R, Cafarelli L, et al. Adipose-derivedmesenchymal stem cells as stable source of tumor necrosis factor-relatedapoptosis-inducing ligand delivery for cancer therapy. Cancer Res.2010;70(9):3718-3729.
    [113]. Loebinger MR, Sage EK, Davies D, et al. TRAIL-expressingmesenchymal stem cells kill the putative cancer stem cell population. Br J Cancer.
    [114]. Sasportas LS, Kasmieh R, Wakimoto H, et al. Assessment of therapeuticefficacy and fate of engineered human mesenchymal stem cells for cancer therapy.Proc Natl Acad Sci U S A.2009;106(12):4822-4827.
    [115]. Ren C, Kumar S, Chanda D, et al. Therapeutic potential of mesenchymalstem cells producing interferon-alpha in a mouse melanoma lung metastasis model.Stem Cells.2008;26(9):2332-2338.
    [116]. Ren C, Kumar S, Chanda D, et al. Cancer gene therapy usingmesenchymal stem cells expressing interferon-beta in a mouse prostate cancer lungmetastasis model. Gene Ther.2008;15(21):1446-1453.
    [117]. Studeny M, Marini FC, Champlin RE, et al. Bone marrow-derivedmesenchymal stem cells as vehicles for interferon-beta delivery into tumors. CancerRes.2002;62(13):3603-3608.
    [118]. Eliopoulos N, Francois M, Boivin MN, et al. Neo-organoid of marrowmesenchymal stromal cells secreting interleukin-12for breast cancer therapy. CancerRes.2008;68(12):4810-4818.
    [119]. Seo SH, Kim KS, Park SH, et al. The effects of mesenchymal stem cellsinjected via different routes on modified IL-12-mediated antitumor activity. GeneTher.2011;18(5):488-495.
    [120]. Yuan X, Hu J, Belladonna ML, et al. Interleukin-23-expressing bonemarrow-derived neural stem-like cells exhibit antitumor activity against intracranialglioma. Cancer Res.2006;66(5):2630-2638.
    [121]. Gao Y, Yao A, Zhang W, et al. Human mesenchymal stem cellsoverexpressing pigment epithelium-derived factor inhibit hepatocellular carcinoma innude mice. Oncogene.29(19):2784-2794.
    [122]. Chang DY, Yoo SW, Hong Y, et al. The growth of brain tumors can besuppressed by multiple transplantation of mesenchymal stem cells expressing cytosinedeaminase. Int J Cancer.127(8):1975-1983.
    [123]. Garcia-Castro J, Alemany R, Cascallo M, et al. Treatment of metastaticneuroblastoma with systemic oncolytic virotherapy delivered by autologousmesenchymal stem cells: an exploratory study. Cancer Gene Ther.2010;17(7):476-483.
    [124]. Nakamura K, Ito Y, Kawano Y, et al. Antitumor effect of geneticallyengineered mesenchymal stem cells in a rat glioma model. Gene Ther.2004;11(14):1155-1164.
    [125]. Maestroni GJ, Hertens EandGalli P. Factor(s) from nonmacrophage bonemarrow stromal cells inhibit Lewis lung carcinoma and B16melanoma growth inmice. Cell Mol Life Sci.1999;55(4):663-667.
    [126]. Khakoo AY, Pati S, Anderson SA, et al. Human mesenchymal stem cellsexert potent antitumorigenic effects in a model of Kaposi's sarcoma. J Exp Med.2006;203(5):1235-1247.
    [127]. Zhu Y, Sun Z, Han Q, et al. Human mesenchymal stem cells inhibitcancer cell proliferation by secreting DKK-1. Leukemia.2009;23(5):925-933.
    [128]. Li GC, Ye QH, Xue YH, et al. Human mesenchymal stem cells inhibitmetastasis of a hepatocellular carcinoma model using the MHCC97-H cell line.Cancer Sci.
    [129]. Secchiero P, Zorzet S, Tripodo C, et al. Human bone marrowmesenchymal stem cells display anti-cancer activity in SCID mice bearingdisseminated non-Hodgkin's lymphoma xenografts. PLoS One.5(6):e11140.
    [130]. Sun B, Yu KR, Bhandari DR, et al. Human umbilical cord bloodmesenchymal stem cell-derived extracellular matrix prohibits metastatic cancer cellMDA-MB-231proliferation. Cancer Lett.
    [131]. Maurya D, Doi C, Kawabata A, et al. Therapy with un-engineered naiverat umbilical cord matrix stem cells markedly inhibits growth of murine lungadenocarcinoma. BMC Cancer.10(1):590.
    [132]. Ganta C, Chiyo D, Ayuzawa R, et al. Rat umbilical cord stem cellscompletely abolish rat mammary carcinomas with no evidence of metastasis orrecurrence100days post-tumor cell inoculation. Cancer Res.2009;69(5):1815-1820.
    [133]. Klopp AH, Lacerda L, Gupta A, et al. Mesenchymal stem cells promotemammosphere formation and decrease e-cadherin in normal and malignant breastcells. PLoS One.5(8).
    [134]. Tsai KS, Yang SH, Lei YP, et al. Mesenchymal stem cells promoteformation of colorectal tumors in mice. Gastroenterology.2011;141(3):1046-1056.
    [135]. Coffelt SB, Marini FC, Watson K, et al. The pro-inflammatory peptideLL-37promotes ovarian tumor progression through recruitment of multipotentmesenchymal stromal cells. Proc Natl Acad Sci U S A.2009;106(10):3806-3811.
    [136]. Rhodes LV, Antoon JW, Muir SE, et al. Effects of human mesenchymalstem cells on ER-positive human breast carcinoma cells mediated throughER-SDF-1/CXCR4crosstalk. Mol Cancer.9(1):295.
    [137]. Karnoub AE, Dash AB, Vo AP, et al. Mesenchymal stem cells withintumour stroma promote breast cancer metastasis. Nature.2007;449(7162):557-563.
    [138]. Liu Y, Han ZP, Zhang SS, et al. Effects of inflammatory factors onmesenchymal stem cells and their role in the promotion of tumor angiogenesis incolon cancer. J Biol Chem.2011;286(28):25007-25015.
    [139]. Walter M, Liang S, Ghosh S, et al. Interleukin6secreted from adiposestromal cells promotes migration and invasion of breast cancer cells. Oncogene.2009;28(30):2745-2755.
    [140]. Li HJ, Reinhardt F, Herschman HR, et al. Cancer-stimulatedmesenchymal stem cells create a carcinoma stem-cell niche via Prostaglandin E2signaling. Cancer Discov.2012.
    [141]. Yan XL, Fu CJ, Chen L, et al. Mesenchymal stem cells from primarybreast cancer tissue promote cancer proliferation and enhance mammosphereformation partially via EGF/EGFR/Akt pathway. Breast Cancer Res Treat.2011.
    [142]. Corcoran KE, Trzaska KA, Fernandes H, et al. Mesenchymal stem cellsin early entry of breast cancer into bone marrow. PLoS One.2008;3(6):e2563.
    [143]. Beckermann BM, Kallifatidis G, Groth A, et al. VEGF expression bymesenchymal stem cells contributes to angiogenesis in pancreatic carcinoma. Br JCancer.2008;99(4):622-631.
    [144]. Spaeth EL, Dembinski JL, Sasser AK, et al. Mesenchymal stem celltransition to tumor-associated fibroblasts contributes to fibrovascular networkexpansion and tumor progression. PLoS One.2009;4(4):e4992.
    [145]. Kidd S, Spaeth E, Watson K, et al. Origins of the tumormicroenvironment: quantitative assessment of adipose-derived and bonemarrow-derived stroma. PLoS One.2012;7(2):e30563.
    [146]. Bobis S, Jarocha DandMajka M. Mesenchymal stem cells:characteristics and clinical applications. Folia Histochem Cytobiol.2006;44(4):215-230.
    [147]. Forraz NandMcGuckin CP. The umbilical cord: a rich and ethical stemcell source to advance regenerative medicine. Cell Prolif.2011;44Suppl1:60-69.
    [148]. Troyer DLandWeiss ML. Wharton's jelly-derived cells are a primitivestromal cell population. Stem Cells.2008;26(3):591-599.
    [149]. Berz D, McCormack EM, Winer ES, et al. Cryopreservation ofhematopoietic stem cells. Am J Hematol.2007;82(6):463-472.
    [150]. Richards AB, Krakowka S, Dexter LB, et al. Trehalose: a review ofproperties, history of use and human tolerance, and results of multiple safety studies.Food Chem Toxicol.2002;40(7):871-898.
    [151]. Rodrigues JP, Paraguassu-Braga FH, Carvalho L, et al. Evaluation oftrehalose and sucrose as cryoprotectants for hematopoietic stem cells of umbilicalcord blood. Cryobiology.2008;56(2):144-151.
    [152]. Eroglu A, Russo MJ, Bieganski R, et al. Intracellular trehalose improvesthe survival of cryopreserved mammalian cells. Nat Biotechnol.2000;18(2):163-167.
    [153]. Buchanan SS, Gross SA, Acker JP, et al. Cryopreservation of stem cellsusing trehalose: evaluation of the method using a human hematopoietic cell line. StemCells Dev.2004;13(3):295-305.
    [154]. Angelopoulou M, Novelli E, Grove JE, et al. Cotransplantation ofhuman mesenchymal stem cells enhances human myelopoiesis andmegakaryocytopoiesis in NOD/SCID mice. Exp Hematol.2003;31(5):413-420.
    [155]. Keefe DM, Brealey J, Goland GJ, et al. Chemotherapy for cancer causesapoptosis that precedes hypoplasia in crypts of the small intestine in humans. Gut.2000;47(5):632-637.
    [156]. Tebbutt NC, Norman AR, Cunningham D, et al. Intestinal complicationsafter chemotherapy for patients with unresected primary colorectal cancer andsynchronous metastases. Gut.2003;52(4):568-573.
    [157]. Tomita S, Ishida M, Nakatani T, et al. Bone marrow is a source ofregenerated cardiomyocytes in doxorubicin-induced cardiomyopathy and granulocytecolony-stimulating factor enhances migration of bone marrow cells and attenuatescardiotoxicity of doxorubicin under electron microscopy*1. The Journal of Heart andLung Transplantation.2004;23(5):577-584.
    [158]. Qiao L, Xu Z, Zhao T, et al. Suppression of tumorigenesis by humanmesenchymal stem cells in a hepatoma model. Cell Res.2008;18(4):500-507.
    [159]. Qiao L, Zhao TJ, Wang FZ, et al. NF-kappaB downregulation may beinvolved the depression of tumor cell proliferation mediated by human mesenchymalstem cells. Acta Pharmacol Sin.2008;29(3):333-340.
    [160]. Qiao L, Xu ZL, Zhao TJ, et al. Dkk-1secreted by mesenchymal stemcells inhibits growth of breast cancer cells via depression of Wnt signalling. CancerLett.2008;269(1):67-77.
    [161]. De Boeck A, Pauwels P, Hensen K, et al. Bone marrow-derivedmesenchymal stem cells promote colorectal cancer progression through paracrineneuregulin1/HER3signalling. Gut.2012.
    [162]. Dwyer RM, Khan S, Barry FP, et al. Advances in mesenchymal stemcell-mediated gene therapy for cancer. Stem Cell Res Ther.2010;1(3):25.
    [163]. Klopp AH, Gupta A, Spaeth E, et al. Concise review: Dissecting adiscrepancy in the literature: do mesenchymal stem cells support or suppress tumorgrowth? Stem Cells.2011;29(1):11-19.
    [164]. Feinberg AP, Ohlsson RandHenikoff S. The epigenetic progenitor originof human cancer. Nat Rev Genet.2006;7(1):21-33.
    [165]. Grivennikov SI, Greten FRandKarin M. Immunity, inflammation, andcancer. Cell.2010;140(6):883-899.
    [166]. Tolar JandTolar M. Reinventing mesenchymal stromal cells. Cytotherapy.2012;14(4):388-390.
    [167]. Campisi J. Senescent cells, tumor suppression, and organismal aging:good citizens, bad neighbors. Cell.2005;120(4):513-522.
    [168]. Kahlem P, Dorken BandSchmitt CA. Cellular senescence in cancertreatment: friend or foe? J Clin Invest.2004;113(2):169-174.
    [169]. Zhang DY, Wang HJandTan YZ. Wnt/beta-catenin signaling induces theaging of mesenchymal stem cells through the DNA damage response and the p53/p21pathway. PLoS One.2011;6(6):e21397.
    [170]. Sethe S, Scutt AandStolzing A. Aging of mesenchymal stem cells.Ageing Res Rev.2006;5(1):91-116.
    [171]. Coppe JP, Patil CK, Rodier F, et al. Senescence-associated secretoryphenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53tumor suppressor. PLoS Biol.2008;6(12):2853-2868.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700