用户名: 密码: 验证码:
细菌核酸诱导滋养细胞死亡及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
单增李斯特菌是一类重要的人畜共患的胞内致病菌,可造成妊娠过程中严重的母胎感染。该病原是为数不多的可穿过胎盘屏障的病原菌,因而常作为研究母胎界面病原与母体互作的模式菌。
     众所周知,机体诱导组织细胞的死亡,是先天免疫系统中对抗病原感染的重要机制。来自胞内病原菌或是病毒的双链DNA成分作为重要的病原相关分子模式,能够被模式识别受体识别,介导免疫应答反应,是先天免疫系统发挥抗感染作用的重要环节。对于滋养细胞如何感受并识别脂多糖,双链RNA等病原相关分子模式已有详尽的报道,而滋养细胞如何识别来自病原的双链DNA,它在妊娠的维持中有何意义仍不清楚。为了进一步了解滋养细胞能否感受外源的双链DNA并诱导相关的免疫反应,本研究利用人工合成的双链DNA,即poly (dA: dT)转染滋养细胞。通过MTT和流式分析发现,poly (dA: dT)可以剂量依赖的方式诱导滋养细胞的死亡。caspase和PARP在细胞死亡中会发生显著的活化,因而在细胞死亡鉴定中具有重要的意义。转染poly (dA: dT)到滋养细胞后,PARP发生了显著的活化。而泛caspase抑制剂可以抑制poly (dA: dT)诱导的部分的滋养细胞的死亡。因而,poly (dA: dT)诱导的滋养细胞的死亡除了有依赖于caspase的细胞死亡之外,应该存在一类不依赖于caspase的细胞死亡。
     坏死性凋亡是最新发现的不依赖于caspase的一类程序性的细胞死亡。该类细胞死亡存在其特定的信号活化通路。RIPK1和RIPK3是该类细胞死亡的两种特异性的蛋白。RIPK1抑制剂Necrostatin-1(Nec-1)和/或RIPK3下游信号分子MLKL的抑制剂Necrosulfonamide (NSA)可以抑制多数诱导剂诱导的坏死性凋亡。本研究发现,在多种滋养细胞中,如HTR-8/SVneo、BeWo、JAR和JEG-3细胞中都有RIPK1、RIPK3、FADD和caspase8等细胞死亡相关蛋白的表达,其中RIPK3呈现弱表达。转染poly (dA: dT)后,RIPK1和RIPK3的基因和蛋白水平显著的上调。此外,免疫荧光染色发现poly (dA: dT)诱导的RIPK3蛋白的表达主要集中在细胞核内。
     为了研究poly (dA: dT)诱导的细胞死亡中是否有坏死性凋亡的存在,我们应用了RIPK1和RIPK3-MLKL的特异性抑制剂做了以下的研究。在caspase受抑制或不受抑制的情况下分别加入Nec-1和/或NSA,并通过MTT、LDH、Western-Blot和流式细胞术检测poly (dA: dT)诱导的细胞死亡的变化情况。结果发现,无论caspase的活性是否受到抑制,Nec-1和NSA对poly (dA: dT)诱导的细胞死亡均无显著的影响。
     为了进一步分析是否由于RIPK3在滋养细胞上的弱表达导致该细胞对dsDNA诱导的坏死性凋亡信号不敏感。本课题通过体外构建RIPK3的过表达质粒转染入滋养细胞,并筛选稳定高表达RIPK3的滋养细胞做进一步的研究。然而,在RIPK3呈现过表达的滋养细胞中,poly (dA: dT)诱导细胞死亡也非坏死性凋亡。同时,RIPK3过表达后,caspase和PARP的活化与对照组相比也无显著增加的趋势。此外,坏死性凋亡的经典活化分子,TNF-α在RIPK3过表达或非过表达状态下都不能诱导坏死性凋亡的发生。然而, TNF-α信号对poly (dA: dT)诱导的滋养细胞死亡有显著的促进作用。总之,以上的实验表明poly (dA: dT)可以诱导坏死性凋亡重要组件RIPK1和RIPK3的基因和蛋白的表达,然而RIPK1和RIPK3的表达与滋养细胞中坏死性凋亡的发生无关。而poly (dA: dT)在滋养细胞中诱导的细胞死亡主要为细胞凋亡。
     众所周知,细胞发生坏死时,会迅速发生胞膜破裂,从而释放胞内的一系列的损伤相关分子模式。这些分子可以被模式识别受体识别,诱导机体组织细胞的过度炎症反应,对组织细胞造成损伤。然而,凋亡细胞发生裂解之前,通常会被周围的吞噬细胞所吞噬,并促进释放抑制炎症反应的IL-10和TGF-β等细胞因子。如上所述,即使在RIPK3蛋白过表达的情况下,滋养细胞仍对坏死性凋亡的各类刺激因子不敏感。滋养细胞受到病原微生物感染时,更倾向于发生凋亡而非坏死,这种选择性死亡可能是滋养细胞内在的妊娠保护机制
     本课题进一步分析了病原来源的DNA成分是否与人工合成的DNA有相似的效应。我们提取单增李斯特菌的基因组DNA后,转染滋养细胞。结果发现,单增李斯特的基因组DNA以剂量依赖的方式诱导滋养细胞的死亡。同时,转染单增李斯特的基因组DNA后,滋养细胞中PARP的活化显著增加。细胞死亡中LDH的释放可以被caspase的抑制剂显著的抑制,而RIPK1和RIPK3的抑制剂无显著的效应。因而,以上的分析表明,病原来源的基因组DNA与人工合成的DNA在诱导滋养细胞死亡方面具有相似的效应。此外,敲除IFI16受体后,滋养细胞死亡显著降低,死亡率从17%降到10%。敲除AIM2对于poly (dA: dT)诱导细胞死亡无显著的影响。总之,以上的研究表明,病原核酸进入滋养细胞后,可以被IFI16受体识别,介导滋养细胞的凋亡,从而发挥有效的抗病原微生物感染的作用。
Pathogenic Nucleic Acid of Bacterium Induces Trophoblast Cell Death
     Listeria monocytogenes, an intracellular pathogen, is an important cause ofmaternal-fetal infections. It can spread to the placenta and fetus, serves as a modelorganism to study placental barrier.
     The death of infected cells is an important host innate defense mechanism. Doublestranded DNA (dsDNA) introduced by intracellular bacteria and dsDNA virus duringinfection, was identified as a potent PAMP. Immune sensing of cytosolic dsDNA hasemerged as a central component of antimicrobial innate defense. While the response oftrophoblast cells to PAMP such as LPS has been extensively studied, little is knownabout the direct effects of cytosolic dsDNA. To analyze the effect of cytosolic foreignDNA delivery on cell survival of trophoblasts cells, poly (dA: dT), a double-strandedhomopolymer with poly dA annealed to poly dT were used. Transfection with poly (dA:dT) on HTR-8/SVneo cell resulted a dose-dependent cell death using MTT and AnnexinV-PI assay. Caspase activation and PARP cleavage is the key event of cell death.Transfection with poly (dA: dT) on HTR-8/SVneo cell induced PARP cleavage.Caspase inhibitor z-VAD-fmk partially inhibited cell death after transfected with poly(dA: dT). Thus, there probably exists a caspase-independent cell death induced by poly(dA: dT) in trophoblast cells.
     Necroptosis is a new cell death passway which are independent of caspase. Itexhibits a unique signaling pathway that requires the involvement of receptorinteraction protein kinase1and3(RIPK1and RIPK3) and can be specifically inhibitedby necrostatins and/or NSA. The first trimester trophoblast cell line HTR-8/SVneo,BeWo, JAR and JEG-3cells constitutively expressed RIPK1, RIPK3, FADD andcaspase8mRNA, as demonstrated by semi-quantitative RT-PCR. RIPK1and RIPK3were expressed in human first-trimester placenta tissue. Furthermore, the gene andprotein expression of RIPK1and RIPK3were all increased after transfected with poly(dA: dT). Meanwhile, immunofluorescence demonstrated the protein expression and thelocation of RIPK3after transfected with poly (dA: dT). Together these results indicatedthat poly (dA: dT) transfection promoted gene and protein expression of RIPK1andRIPK3, the protein of RIPK3were mostly located in nucleus.
     In order to measure whether cell death induced by poly (dA: dT) was directly responsible for necroptosis, specific inhibitor of RIPK1and MLKL, a proteindownstream of RIPK3were used. Transfect poly (dA: dT) in the presence or absence ofthe pan-caspase inhibitor z-VAD-fmk, RIPK1inhibitor Nec-1or MLKL inhibitor NSAin trophoblast cells. Cell death was determined using MTT, LDH, Western-Blot andAnnexin V-PI assay. Caspase inhibitor z-VAD-fmk but not Nec-1and NSA may partiallyinhibit caspase activation, PARP cleavage and cell death induced by poly (dA: dT).Moreover, the liberation of LDH induced by poly (dA: dT) were also inhibit byz-VAD-fmk to some extent. Meanwhile, on the condition of inhibit caspase, Nec-1and/or NSA have no effect on cell death induced by poly (dA: dT).
     For futher determin whether low expression of RIPK3in trophoblast cells give riseto insensitivity of dsDNA induced necroptosis signal. Stable over expression system forRIPK3were used after screening. Unfortunately, necroptosis was not found aftertransfected with poly (dA: dT) in over expression RIPK3trophoblast cells. Caspaseactivation and PARP cleavage were all not increased in over expression RIPK3trophoblast cells. Moreover, Cell death of necroptosis induced by TNF-α andz-VAD-fmk can not be found even if RIPK3is over expression in trophoblast cells.Taken together, these observations suggested that dsDNA may induce the mRNA andprotein of RIPK1and RIPK3expression, while the increased protein of RIPK3may notused for necroptosis.
     It is often stated that necrosis often provoke inflammation. Morphologically,apoptotic cells initially maintain plasma membrane integrity and don't rapidly releasetheir intracellular contents. Before apoptotic cells disintegrate, they are usually ingestedby resident phagocytes. Moreover, phagocytosis of apoptotic cells stimulates theproduction of IL-10and TGF-β, which inhibit inflammation. Thus, it is reasonable thatthe invulnerability of trophoblasts to necroptosis induction contributes to placentalbarrier against PAMPs.
     To investigate the effect of genomic DNA of pathogen on trophoblast cells duringinfection, several concentration of genomic DNA of Listeria monocytogenes were used.Cell death was found after transfection with genomic DNA of Listeria monocytogenesin a dose dependent manner. Furthermore, PARP cleavage was also detected introphoblast cells after transfected with genomic DNA of Listeria monocytogenes. LDHliberation was inhibited by z-VAD-fmk but not RIPK1and MLKL inhibitor.Theseobservations suggested that genomic DNA of Listeria monocytogenes may also induce cell death in trophoblat cells in parallel with poly (dA: dT). Knockdown of AIM2withsmall interfering RNA had no effect on poly (dA: dT)-induced cell death. However, celldeath induced by poly (dA: dT) was inhibited to some extent in the IFI16knockdowntrophoblasts, cell death rate were reduced from17%to10%. Taken together, cytosolicdsDNA induced IFI16-dependent, but AIM2-independent, apoptosis of humantrophoblast cells.
引文
[1]胡文艳.双链RNA对细胞凋亡和HBV复制的影响及细胞黏附对药物诱导凋亡的影响[D]:重庆医科大学,2011.
    [2] DEGTEREV A, HUANG Z, BOYCE M, et al. Chemical inhibitor ofnonapoptotic cell death with therapeutic potential for ischemic brain injury [J]. Naturechemical biology,2005,1(2):112-119.
    [3] VANDENABEELE P, DECLERCQ W, BERGHE T V. Necrotic cell death and‘necrostatins’: now we can control cellular explosion [J]. Trends in biochemicalsciences,2008,33(8):352-355.
    [4] WANG K, LI J, DEGTEREV A, et al. Structure–activity relationship analysis of anovel necroptosis inhibitor, Necrostatin-5[J]. Bioorganic&medicinal chemistryletters,2007,17(5):1455-1465.
    [5] KALAI M, VAN LOO G, VANDEN BERGHE T, et al. Tipping the balancebetween necrosis and apoptosis in human and murine cells treated with interferon anddsRNA [J]. Cell Death&Differentiation,2002,9(9):
    [6] HITOMI J, CHRISTOFFERSON D E, NG A, et al. Identification of a molecularsignaling network that regulates a cellular necrotic cell death pathway [J]. Cell,2008,135(7):1311-1323.
    [7] CARSWELL E, OLD L J, KASSEL R, et al. An endotoxin-induced serum factorthat causes necrosis of tumors [J]. Proceedings of the National Academy of Sciences,1975,72(9):3666-3670.
    [8] LASTER S M, WOOD J, GOODING L. Tumor necrosis factor can induce bothapoptic and necrotic forms of cell lysis [J]. The Journal of Immunology,1988,141(8):2629-2634.
    [9] ANDERA L. Signaling activated by the death receptors of the TNFR family [J].Biomedical Papers,2009,153(3):173-180.
    [10]CHAN F K-M, CHUN H J, ZHENG L, et al. A domain in TNF receptors thatmediates ligand-independent receptor assembly and signaling [J]. Science,2000,288(5475):2351-2354.
    [11] WERTZ I E, DIXIT V M. Ubiquitin-mediated regulation of TNFR1signaling [J].Cytokine&growth factor reviews,2008,19(3):313-324.
    [12]MAHONEY D, CHEUNG H, MRAD R L, et al. Both cIAP1and cIAP2regulateTNFα-mediated NF-κB activation [J]. Proceedings of the National Academy ofSciences,2008,105(33):11778-11783.
    [13]VARFOLOMEEV E, GONCHAROV T, FEDOROVA A V, et al. c-IAP1andc-IAP2are critical mediators of tumor necrosis factor α (TNFα)-induced NF-κBactivation [J]. Journal of biological chemistry,2008,283(36):24295-24299.
    [14]KOVALENKO A, CHABLE-BESSIA C, CANTARELLA G, et al. The tumoursuppressor CYLD negatively regulates NF-κB signalling by deubiquitination [J].Nature,2003,424(6950):801-805.
    [15]ALAMEDA J, MORENO-MALDONADO R, NAVARRO M, et al. Aninactivating CYLD mutation promotes skin tumor progression by conferringenhanced proliferative, survival and angiogenic properties to epidermal cancer cells[J]. Oncogene,2010,29(50):6522-6532.
    [16]URBANIK T, K HLER B C, BOGER R J, et al. Down-regulation of CYLD as atrigger for NF-κB activation and a mechanism of apoptotic resistance inhepatocellular carcinoma cells [J]. International journal of oncology,2011,38(1):121.
    [17]WERTZ I E, O'ROURKE K M, ZHOU H, et al. De-ubiquitination and ubiquitinligase domains of A20downregulate NF-κB signalling [J]. Nature,2004,430(7000):694-699.
    [18]SHEMBADE N, MA A, HARHAJ E W. Inhibition of NF-κB signaling by A20through disruption of ubiquitin enzyme complexes [J]. Science,2010,327(5969):1135-1139.
    [19]EA C-K, DENG L, XIA Z-P, et al. Activation of IKK by TNFα requiressite-specific ubiquitination of RIP1and polyubiquitin binding by NEMO [J].Molecular cell,2006,22(2):245-257.
    [20]WONG W W, GENTLE I, NACHBUR U, et al. RIPK1is not essential forTNFR1-induced activation of NF-κB [J]. Cell Death&Differentiation,2010,17(3):482-487.
    [21]LEE T H, SHANK J, CUSSON N, et al. The kinase activity of Rip1is notrequired for tumor necrosis factor-α-induced IκB kinase or p38MAP kinase activationor for the ubiquitination of Rip1by Traf2[J]. Journal of Biological Chemistry,2004,279(32):33185-33191.
    [22]SCHNEIDER-BRACHERT W, TCHIKOV V, MERKEL O, et al. Inhibition ofTNF receptor1internalization by adenovirus14.7K as a novel immune escapemechanism [J]. Journal of Clinical Investigation,2006,116(11):2901-2913.
    [23]BERTRAND M J, MILUTINOVIC S, DICKSON K M, et al. cIAP1and cIAP2facilitate cancer cell survival by functioning as E3ligases that promote RIP1ubiquitination [J]. Molecular cell,2008,30(6):689-700.
    [24]OSBORN S L, DIEHL G, HAN S-J, et al. Fas-associated death domain (FADD)is a negative regulator of T-cell receptor–mediated necroptosis [J]. Proceedings of theNational Academy of Sciences,2010,107(29):13034-13039.
    [25]FENG S, YANG Y, MEI Y, et al. Cleavage of RIP3inactivates itscaspase-independent apoptosis pathway by removal of kinase domain [J]. Cellularsignalling,2007,19(10):2056-2067.
    [26]VANDENABEELE P, GALLUZZI L, BERGHE T V, et al. Molecularmechanisms of necroptosis: an ordered cellular explosion [J]. Nature ReviewsMolecular Cell Biology,2010,11(10):700-714.
    [27]VANLANGENAKKER N, BERGHE T V, VANDENABEELE P. Many stimulipull the necrotic trigger, an overview [J]. Cell Death&Differentiation,2012,19(1):75-86.
    [28]LENARDO M J, ANGLEMAN S B, BOUNKEUA V, et al. Cytopathic killing ofperipheral blood CD4+T lymphocytes by human immunodeficiency virus type1appears necrotic rather than apoptotic and does not require env [J]. Journal of virology,2002,76(10):5082-5093.
    [29]PETIT F, ARNOULT D, LELI VRE J-D, et al. Productive HIV-1infection ofprimary CD4+T cells induces mitochondrial membrane permeabilization leading to acaspase-independent cell death [J]. Journal of Biological Chemistry,2002,277(2):1477-1487.
    [30]CHU J, NG M. The mechanism of cell death during West Nile virus infection isdependent on initial infectious dose [J]. Journal of general virology,2003,84(12):3305-3314.
    [31]CHO Y, CHALLA S, MOQUIN D, et al. Phosphorylation-driven assembly of theRIP1-RIP3complex regulates programmed necrosis and virus-induced inflammation[J]. Cell,2009,137(6):1112-1123.
    [32]UPTON J W, KAISER W J, MOCARSKI E S. Virus inhibition ofRIP3-dependent necrosis [J]. Cell hostµbe,2010,7(4):302-313.
    [33]BOLTON D L, HAHN B-I, PARK E A, et al. Death of CD4+T-cell lines causedby human immunodeficiency virus type1does not depend on caspases or apoptosis[J]. Journal of virology,2002,76(10):5094-5107.
    [34]ARJONA A, LEDIZET M, ANTHONY K, et al. West Nile virus envelope proteininhibits dsRNA-induced innate immune responses [J]. The Journal of Immunology,2007,179(12):8403-8409.
    [35]CHAN F K-M, SHISLER J, BIXBY J G, et al. A role for tumor necrosis factorreceptor-2and receptor-interacting protein in programmed necrosis and antiviralresponses [J]. Journal of Biological Chemistry,2003,278(51):51613-51621.
    [36]LIN Y, CHOKSI S, SHEN H-M, et al. Tumor necrosis factor-inducednonapoptotic cell death requires receptor-interacting protein-mediated cellularreactive oxygen species accumulation [J]. Journal of Biological Chemistry,2004,279(11):10822-10828.
    [37]MACK C, SICKMANN A, LEMBO D, et al. Inhibition of proinflammatory andinnate immune signaling pathways by a cytomegalovirus RIP1-interacting protein [J].Proceedings of the National Academy of Sciences,2008,105(8):3094-3099.
    [38]UPTON J W, KAISER W J, MOCARSKI E S. Cytomegalovirus M45cell deathsuppression requires receptor-interacting protein (RIP) homotypic interaction motif(RHIM)-dependent interaction with RIP1[J]. Journal of biological chemistry,2008,283(25):16966-16970.
    [39]RADIN J N, GONZ LEZ-RIVERA C, IVIE S E, et al. Helicobacter pylori VacAinduces programmed necrosis in gastric epithelial cells [J]. Infection and immunity,2011,79(7):2535-2543.
    [40]ROCA F J, RAMAKRISHNAN L. TNF dually mediates resistance andsusceptibility to mycobacteria via mitochondrial reactive oxygen species [J]. Cell,2013,153(3):521-534.
    [41]GALLUZZI L, KROEMER G. Shigella Targets the MitochondrialCheckpoint of Programmed Necrosis [J]. Cell hostµbe,2009,5(2):107-109.
    [42]WILLINGHAM S B, BERGSTRALH D T, O'CONNOR W, et al. Microbialpathogen-induced necrotic cell death mediated by the inflammasome componentsCIAS1/cryopyrin/NLRP3and ASC [J]. Cell hostµbe,2007,2(3):147-159.
    [43]DUNCAN J A, GAO X, HUANG M T-H, et al. Neisseria gonorrhoeae activatesthe proteinase cathepsin B to mediate the signaling activities of the NLRP3andASC-containing inflammasome [J]. The Journal of Immunology,2009,182(10):6460-6469.
    [44]HUANG M T-H, TAXMAN D J, HOLLEY-GUTHRIE E A, et al. Critical role ofapoptotic speck protein containing a caspase recruitment domain (ASC) and NLRP3in causing necrosis and ASC speck formation induced by Porphyromonas gingivalisin human cells [J]. The Journal of Immunology,2009,182(4):2395-2404.
    [45]WILLINGHAM S B, ALLEN I C, BERGSTRALH D T, et al. NLRP3(NALP3,Cryopyrin) facilitates in vivo caspase-1activation, necrosis, and HMGB1release viainflammasome-dependent and-independent pathways [J]. The Journal of Immunology,2009,183(3):2008-2015.
    [46]YAMAMOTO M, SATO S, MORI K, et al. Cutting edge: a novel Toll/IL-1receptor domain-containing adapter that preferentially activates the IFN-β promoter inthe Toll-like receptor signaling [J]. The Journal of Immunology,2002,169(12):6668-6672.
    [47]OSHIUMI H, MATSUMOTO M, FUNAMI K, et al. TICAM-1, an adaptormolecule that participates in Toll-like receptor3–mediated interferon-β induction [J].Nature immunology,2003,4(2):161-167.
    [48]MA Y, TEMKIN V, LIU H, et al. NF-κB Protects Macrophages fromLipopolysaccharide-induced Cell Death THE ROLE OF CASPASE8ANDRECEPTOR-INTERACTING PROTEIN [J]. Journal of Biological Chemistry,2005,280(51):41827-41834.
    [49]ZHANG D-W, SHAO J, LIN J, et al. RIP3, an energy metabolism regulator thatswitches TNF-induced cell death from apoptosis to necrosis [J]. Science,2009,325(5938):332-336.
    [50]GITLIN L, BARCHET W, GILFILLAN S, et al. Essential role of mda-5in type IIFN responses to polyriboinosinic: polyribocytidylic acid and encephalomyocarditispicornavirus [J]. Proceedings of the National Academy of Sciences,2006,103(22):8459-8464.
    [51]YU M, WANG H, DING A, et al. HMGB1signals through toll-like receptor(TLR)4and TLR2[J]. Shock,2006,26(2):174-179.
    [52]CAVASSANI K A, ISHII M, WEN H, et al. TLR3is an endogenous sensor oftissue necrosis during acute inflammatory events [J]. The Journal of experimentalmedicine,2008,205(11):2609-2621.
    [53]ZHANG Q, RAOOF M, CHEN Y, et al. Circulating mitochondrial DAMPs causeinflammatory responses to injury [J]. Nature,2010,464(7285):104-107.
    [54]FRANCO M P, MULDER M, GILMAN R H, et al. Human brucellosis [J]. TheLancet infectious diseases,2007,7(12):775-786.
    [55]PAPPAS G, PAPADIMITRIOU P, AKRITIDIS N, et al. The new global map ofhuman brucellosis [J]. The Lancet infectious diseases,2006,6(2):91-99.
    [56]GROSS A, TERRAZA A, OUAHRANI-BETTACHE S, et al. In vitro Brucellasuis infection prevents the programmed cell death of human monocytic cells [J].Infection and immunity,2000,68(1):342-351.
    [57]ARENAS G N, STASKEVICH A S, ABALLAY A, et al. Intracellular traffickingof Brucella abortus in J774macrophages [J]. Infection and immunity,2000,68(7):4255-4263.
    [58]PIZARRO-CERD J, MORENO E, GORVEL J-P. Invasion and intracellulartrafficking of Brucella abortus in nonphagocytic cells [J]. Microbes andinfection,2000,2(7):829-835.
    [59]KYLE J A. Listeriosis: An Overview [J]. US Pharm,2012,37(8):38-41.
    [60]MCLAUCHLIN J, AUDURIER A, TAYLOR A. Aspects of the epidemiology ofhuman Listeria monocytogenes infections in Britain1967-1984; the use of serotypingand phage typing [J]. Journal of medical microbiology,1986,22(4):367-377.
    [61]JARLIER V, NIKAIDO H. Mycobacterial cell wall: structure and role in naturalresistance to antibiotics [J]. FEMS microbiology letters,1994,123(1):11-18.
    [62]ROSSI E D, A NSA J A, RICCARDI G. Role of mycobacterial efflux transportersin drug resistance: an unresolved question [J]. FEMS microbiology reviews,2006,30(1):36-52.
    [63]FLYNN J L, CHAN J. Immunology of tuberculosis [J]. Annual review ofimmunology,2001,19(1):93-129.
    [64]KAUFMANN S H, MCMICHAEL A J. Annulling a dangerous liaison:vaccination strategies against AIDS and tuberculosis [J]. Nature medicine,2005,11S33-S44.
    [65]LEWINSOHN D M, LEWINSOHN D A, GROTZKE J E. TB vaccines at the turnof the century: insights into immunity to M. tuberculosis and modern approaches forprevention of an ancient disease; proceedings of the Seminars in respiratory infections,F,2003[C].
    [66]CHEERAN M C-J, LOKENSGARD J R, SCHLEISS M R. Neuropathogenesis ofcongenital cytomegalovirus infection: disease mechanisms and prospects forintervention [J]. Clinical microbiology reviews,2009,22(1):99-126.
    [67]MCCARTHY F P, GILES M L, ROWLANDS S, et al. Antenatal interventions forpreventing the transmission of cytomegalovirus (CMV) from the mother to fetusduring pregnancy and adverse outcomes in the congenitally infected infant [J].Cochrane database syst rev,2011,3
    [68]PEREIRA L, MAIDJI E. Cytomegalovirus infection in the human placenta:maternal immunity and developmentally regulated receptors on trophoblasts converge
    [M]. Human Cytomegalovirus. Springer.2008:383-395.
    [69]LIU T, ZHENG X, CHEN J, et al. Effect of human cytomegalovirus on invasivecapability of early pregnant extravillous cytotrophoblasts [J]. Journal of HuazhongUniversity of Science and Technology [Medical Sciences],2011,31819-823.
    [70]HOELZER K, SHACKELTON L A, PARRISH C R, et al. Phylogenetic analysisreveals the emergence, evolution and dispersal of carnivore parvoviruses [J]. Journalof general virology,2008,89(9):2280-2289.
    [71]GUESS H, BROUGHTON D, MELTON L R, et al. Population-based studies ofvaricella complications [J]. Pediatrics,1986,78(4):723-727.
    [72]BRUNELL P A, NOVELLI V M, KELLER P M, et al. Antibodies to the threemajor glycoproteins of varicella-zoster virus: search for the relevant host immuneresponse [J]. Journal of infectious diseases,1987,156(3):430-435.
    [73]PASTUSZAK A L, LEVY M, SCHICK B, et al. Outcome after maternal varicellainfection in the first20weeks of pregnancy [J]. New England Journal of Medicine,1994,330(13):901-905.
    [74]YAO C, DONELSON J E, WILSON M E. The major surface protease (MSP orGP63) of Leishmania sp. Biosynthesis, regulation of expression, and function[J]. Molecular and biochemical parasitology,2003,132(1):1-16.
    [75]GHOSH A, ZHANG W W, MATLASHEWSKI G. Immunization with A2proteinresults in a mixed Th1/Th2and a humoral response which protects mice againstLeishmania donovani infections [J]. Vaccine,2001,20(1):59-66.
    [76]HEMMI H, TAKEUCHI O, KAWAI T, et al. A Toll-like receptor recognizesbacterial DNA [J]. Nature,2000,408(6813):740-745.
    [77]LATZ E, SCHOENEMEYER A, VISINTIN A, et al. TLR9signals aftertranslocating from the ER to CpG DNA in the lysosome [J]. Nature immunology,2004,5(2):190-198.
    [78]KRUG A, FRENCH A R, BARCHET W, et al. TLR9-dependent recognition ofMCMV by IPC and DC generates coordinated cytokine responses that activateantiviral NK cell function [J]. Immunity,2004,21(1):107-119.
    [79]CUI G-Y, DIAO H-Y. Recognition of HBV antigens and HBV DNA by dendriticcells [J]. Hepatobiliary Pancreat Dis Int,2010,9(6):584-592.
    [80]HONDA K, YANAI H, MIZUTANI T, et al. Role of atransductional-transcriptional processor complex involving MyD88and IRF-7inToll-like receptor signaling [J]. Proceedings of the National Academy of Sciences ofthe United States of America,2004,101(43):15416-15421.
    [81]KONNO H, YAMAMOTO T, YAMAZAKI K, et al. TRAF6establishes innateimmune responses by activating NF-κB and IRF7upon sensing cytosolic viral RNAand DNA [J]. PloS one,2009,4(5): e5674.
    [82]AKIRA S, TAKEDA K. Toll-like receptor signalling [J]. Nature ReviewsImmunology,2004,4(7):499-511.
    [83]TAKAOKA A, WANG Z, CHOI M K, et al. DAI (DLM-1/ZBP1) is a cytosolicDNA sensor and an activator of innate immune response [J]. Nature,2007,448(7152):501-505.
    [84]WANG Z, CHOI M K, BAN T, et al. Regulation of innate immune responses byDAI (DLM-1/ZBP1) and other DNA-sensing molecules [J]. Proceedings of theNational Academy of Sciences,2008,105(14):5477-5482.
    [85]UPTON J W, KAISER W J, MOCARSKI E S. DAI/ZBP1/DLM-1complexeswith RIP3to mediate virus-induced programmed necrosis that is targeted by murinecytomegalovirus vIRA [J]. Cell hostµbe,2012,11(3):290-297.
    [86]CHENG G, ZHONG J, CHUNG J, et al. Double-stranded DNA anddouble-stranded RNA induce a common antiviral signaling pathway in human cells[J]. Proceedings of the National Academy of Sciences,2007,104(21):9035-9040.
    [87]CHIU Y-H, MACMILLAN J B, CHEN Z J. RNA polymerase III detects cytosolicDNA and induces type I interferons through the RIG-I pathway [J]. Cell,2009,138(3):576-591.
    [88]ABLASSER A, BAUERNFEIND F, HARTMANN G, et al. RIG-I-dependentsensing of poly (dA: dT) through the induction of an RNA polymerase III–transcribedRNA intermediate [J]. Nature immunology,2009,10(10):1065-1072.
    [89]ZHONG B, YANG Y, LI S, et al. The adaptor protein MITA links virus-sensingreceptors to IRF3transcription factor activation [J]. Immunity,2008,29(4):538-550.
    [90]ISHIKAWA H, MA Z, BARBER G N. STING regulates intracellularDNA-mediated, type I interferon-dependent innate immunity [J]. Nature,2009,461(7265):788-792.
    [91]BURDETTE D L, MONROE K M, SOTELO-TROHA K, et al. STING is a directinnate immune sensor of cyclic di-GMP [J]. Nature,2011,478(7370):515-518.
    [92]SAUER J-D, SOTELO-TROHA K, VON MOLTKE J, et al. TheN-ethyl-N-nitrosourea-induced Goldenticket mouse mutant reveals an essentialfunction of Sting in the in vivo interferon response to Listeria monocytogenes andcyclic dinucleotides [J]. Infection and immunity,2011,79(2):688-694.
    [93]OUYANG S, SONG X, WANG Y, et al. Structural analysis of the STING adaptorprotein reveals a hydrophobic dimer interface and mode of cyclic di-GMP binding [J].Immunity,2012,36(6):1073-1086.
    [94]SHANG G, ZHU D, LI N, et al. Crystal structures of STING protein reveal basisfor recognition of cyclic di-GMP [J]. Nature structural&molecular biology,2012,19(7):725-727.
    [95]SHU C, YI G, WATTS T, et al. Structure of STING bound to cyclic di-GMPreveals the mechanism of cyclic dinucleotide recognition by the immune system [J].Nature structural&molecular biology,2012,19(7):722-724.
    [96]YIN Q, TIAN Y, KABALEESWARAN V, et al. Cyclic di-GMP sensing via theinnate immune signaling protein STING [J]. Molecular cell,2012,46(6):735-745.
    [97]UNTERHOLZNER L, KEATING S E, BARAN M, et al. IFI16is an innateimmune sensor for intracellular DNA [J]. Nature immunology,2010,11(11):997-1004.
    [98]DAWSON M J, ELWOOD N J, JOHNSTONE R W, et al. The IFN-induciblenucleoprotein IFI16is expressed in cells of the monocyte lineage, but is rapidly andmarkedly down-regulated in other myeloid precursor populations [J]. Journal ofleukocyte biology,1998,64(4):546-554.
    [99]GARIGLIO M, AZZIMONTI B, PAGANO M, et al. Immunohistochemicalexpression analysis of the human interferon-inducible gene IFI16, a member of theHIN200family, not restricted to hematopoietic cells [J]. Journal of interferon&cytokine research,2002,22(7):815-821.
    [100] BRIGGS L, JOHNSTONE R, ELLIOT R, et al. Novel properties of theprotein kinase CK2-site-regulated nuclear-localization sequence of theinterferon-induced nuclear factor IFI16[J]. Biochem J,2001,35369-77.
    [101] VEERANKI S, CHOUBEY D. Interferon-inducible p200-family proteinIFI16, an innate immune sensor for cytosolic and nuclear double-stranded DNA:regulation of subcellular localization [J]. Molecular immunology,2012,49(4):567-571.
    [102] KERUR N, VEETTIL M V, SHARMA-WALIA N, et al. IFI16acts as anuclear pathogen sensor to induce the inflammasome in response to KaposiSarcoma-associated herpesvirus infection [J]. Cell hostµbe,2011,9(5):363-375.
    [103] VEERANKI S, DUAN X, PANCHANATHAN R, et al. IFI16proteinmediates the anti-inflammatory actions of the type-I interferons through suppressionof activation of caspase-1by inflammasomes [J]. PloS one,2011,6(10): e27040.
    [104] DUAN X, PONOMAREVA L, VEERANKI S, et al. Differential roles for theinterferon-inducible IFI16and AIM2innate immune sensors for cytosolic DNA incellular senescence of human fibroblasts [J]. Molecular Cancer Research,2011,9(5):589-602.
    [105] ZHANG Z, YUAN B, BAO M, et al. The helicase DDX41sensesintracellular DNA mediated by the adaptor STING in dendritic cells [J]. Natureimmunology,2011,12(10):959-965.
    [106] PARVATIYAR K, ZHANG Z, TELES R M, et al. The helicase DDX41recognizes the bacterial secondary messengers cyclic di-GMP and cyclic di-AMP toactivate a type I interferon immune response [J]. Nature immunology,2012,13(12):1155-1161.
    [107] WILSON S A, BROWN E C, KINGSMAN A J, et al. TRIP: a novel doublestranded RNA binding protein which interacts with the leucine rich repeat of flightlessI [J]. Nucleic acids research,1998,26(15):3460-3467.
    [108] ARAKAWA R, BAGASHEV A, SONG L, et al. Characterization ofLRRFIP1[J]. Biochemistry and Cell Biology,2010,88(6):899-906.
    [109] YANG P, AN H, LIU X, et al. The cytosolic nucleic acid sensor LRRFIP1mediates the production of type I interferon via a [beta]-catenin-dependent pathway[J]. Nature immunology,2010,11(6):487-494.
    [110] DAI P, JEONG S Y, YU Y, et al. Modulation of TLR signaling by multipleMyD88-interacting partners including leucine-rich repeat Fli-I-interacting proteins [J].The Journal of Immunology,2009,182(6):3450-3460.
    [111] B RCKST MMER T, BAUMANN C, BL ML S, et al. An orthogonalproteomic-genomic screen identifies AIM2as a cytoplasmic DNA sensor for theinflammasome [J]. Nature immunology,2009,10(3):266-272.
    [112] FERNANDES-ALNEMRI T, YU J-W, DATTA P, et al. AIM2activates theinflammasome and cell death in response to cytoplasmic DNA [J]. Nature,2009,458(7237):509-513.
    [113] RATHINAM V A, JIANG Z, WAGGONER S N, et al. The AIM2inflammasome is essential for host defense against cytosolic bacteria and DNAviruses [J]. Nature immunology,2010,11(5):395-402.
    [114] HORNUNG V, ABLASSER A, CHARREL-DENNIS M, et al. AIM2recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome withASC [J]. Nature,2009,458(7237):514-518.
    [115] WENZEL M, WUNDERLICH M, BESCH R, et al. Cytosolic DNA triggersmitochondrial apoptosis via DNA damage signaling proteins independently of AIM2and RNA polymerase III [J]. The Journal of Immunology,2012,188(1):394-403.
    [116] FERNANDES-ALNEMRI T, YU J-W, JULIANA C, et al. The AIM2inflammasome is critical for innate immunity to Francisella tularensis [J]. Natureimmunology,2010,11(5):385-393.
    [117] CHOUBEY D, DUAN X, DICKERSON E, et al. Interferon-induciblep200-family proteins as novel sensors of cytoplasmic DNA: role in inflammation andautoimmunity [J]. Journal of Interferon&Cytokine Research,2010,30(6):371-380.
    [118] ROBERTS T L, IDRIS A, DUNN J A, et al. HIN-200proteins regulatecaspase activation in response to foreign cytoplasmic DNA [J]. Science,2009,323(5917):1057-1060.
    [119] DONG M, DING G, ZHOU J, et al. The effect of trophoblasts on Tlymphocytes: possible regulatory effector molecules-a proteomic analysis [J]. CellularPhysiology and Biochemistry,2008,21(5-6):463-472.
    [120] HALWACHS-BAUMANN G, WILDERS-TRUSCHNIG M, DESOYE G, etal. Human trophoblast cells are permissive to the complete replicative cycle of humancytomegalovirus [J]. Journal of virology,1998,72(9):7598-7602.
    [121] HE S, WANG L, MIAO L, et al. Receptor interacting protein kinase-3determines cellular necrotic response to TNF-α [J]. Cell,2009,137(6):1100-1111.
    [122] VAN HERREWEGHE F, FESTJENS N, DECLERCQ W, et al. Tumornecrosis factor-mediated cell death: to break or to burst, that’s the question [J].Cellular and molecular life sciences,2010,67(10):1567-1579.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700