用户名: 密码: 验证码:
有机介质环境机械化学球磨作用下金属粉末结构演变与反应行为
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
机械球磨不仅广泛应用于粉体材料制备,成为片状金属粉体制备的标准工艺,而且近年扩展应用至环境保护领域,被视为最具商业化应用前景的POPs无害化处理技术。与国外相比,我国片状金属粉体制备工艺差距明显,尤其是片状铜粉、镍粉及锌粉都未能实现产业化,包括POPs在内的含氯有机废物无害化处理研究更是空白,鉴于此,本文开展以下三个方面的研究:(1)片状金属粉体机械球磨制备工艺研究;(2)金属粉体片状化过程微观结构演变及形变机制;(3)含氯有机废物/锌粉机械球磨化学脱氯工艺及行为机理研究。
     通过研究,取得以下主要成果:
     (1)通过球磨条件参数对粉体片状化程度的影响研究,发现介质环境是影响金属粉体片状化的重要因素,有机介质球磨更有利于粉末片状化,在此基础上,确定了机械球磨制备片状镍粉、铜粉、锌粉的最佳工艺参数,并制备得到径厚比大、片状形貌好,片层表面干净平整,具有良好的金属光泽的片状粉末产品;片状锌粉产品相关技术性能指标达到国际同类先进产品水平。
     (2)采用XRD、SEM、TEM等检测手段,分析了球磨过程中铜/镍/锌粉微观结构演变,发现随着球磨时间延长,镍粉、铜粉的晶粒尺寸阶梯减小,而微观应变、位错密度、晶格常数、晶胞体积皆随片状化进程阶梯增长,且微观应变、位错密度表现为各向异性。比较而言,铜粉的微观应变、位错密度均小于镍粉。片状化的铜、镍粉微观结构最显著特征是存在择优取向且晶粒呈现片层/条状;片状镍、铜粉的择优取向为<200>,且<200>取向越明显,镍/铜粉片状化程度与形貌越好。
     (3)在微观结构上,铜粉片状化体现为等轴晶粒在径向方向被拉长形成片层晶粒及片层晶沿径向发生碎裂形成条形晶。该过程具体形变机制为在多向载荷周期作用下,晶粒内部产生大量位错,并发生聚集重排,从而导致晶粒细化与形成择优取向。其晶粒细化主要通过两条途径实现:一是主体区域遵循晶粒内部位错细分机制,微米/亚微晶粒在应力作用下形成位错胞墙,从而使晶粒逐步细分直至形成纳米晶;二是局部区域晶粒在高应变量/应变速率作用下,碰撞瞬间形成的位错保持或再结晶形成纳米晶。
     (4)首先开发了含氯有机废物/锌粉机械球磨化学脱氯新工艺,确定了最佳工艺条件,实现PVC、PVDC、HCB的脱氯率100%,为含卤有机废物脱卤开辟了一条安全高效的新途径。
     (5)采用XRD、IR、Raman、NMR等检测方法对PVC、PVDC、HCB/锌粉机械化学脱氯产物及其结构进行了表征,确定了其机械化学反应路径。含氯有机废物/锌粉机械球磨化学脱氯遵循自由基反应机理,机械球磨过程中,锌粉在机械力作用下形成自由基,自由基进攻有机氯化物中的氯,使氯原子从有机氯化物上脱离与金属锌粉反应,形成Zn(OH)Cl、Zn_2OCl_2化合物。HCB苯环相互发生平面聚合,形成石墨结构,在空间以金刚石形式聚合,最终形成无定形碳,小部分多氯苯则发生氧化开环生成脂肪酸。
     (6) PVC/PVDC经脱氯、交联、脱氯化氢及氧化等路径发生降解,转变成类金刚石型碳、少量线型碳碎片及聚乙炔等产物;线性碳碎片通过氯化氢脱除反应路径形成。若进一步优化机械球磨反应条件,如采用还原性气氛下低温球磨等,有可能制得较纯净线性碳产品,从而开发一种新颖高效线型碳制备工艺。
Ball milling is widely used in the preparation of powder materials and identified as the standard preparation process for metal flake powder. With the use extending to environmental protection, ball milling is identified as the most promising technology for the destruction and decontamination of POPs in 1990s. In our country, the technologies for metal flake powder preparation lag far behind that in Euramerican country, for examples, the preparation technologies for nickel, copper and zinc flake haven't been industrialized. Meanwhile, no research is developed for destruction and decontamination of POPs. etc. chlorinated organic contaminates by ball milling.
     In order to address the issues mentioned above, in this paper, three aspects have been investigated: 1) Preparation process of metal nickel, copper and zinc flake by ball milling; 2) Microstructure evolution and deformation mode of metal powder during the flaking process; 3) Mechano-chemical de-chlorination process and behavior of chlorinated organic contaminates by ball milling zinc powder. The following summaries are obtained:
     (1) The effect of ball milling parameters on the flaking level of metal powder was investigated. It was found that medium environment affect the flaking level of the metal powder in great degree, and metal powder was flaked better in organic medium than in air. The most appropriate conditions to prepare nickel, copper and zinc flake powder were determined and metal flake powder with a high flaking level, good flaky microshape and metal luster were successfully prepared. The properties such as flaking level and microshape of zinc flake powder prepared almost reach the standard of best production in the world.
     (2) The microstructures of copper, nickel and zinc powder during flaking process were investigated by XRD, SEM, and TEM. It was found that the grain size decreased, while the microstrain, dislocation density, lattice parameter, and unit cell volume increased with increasing flaking time steppedly, and the microstrain, dislocation density possessed anisotropic behaviors. The microstrain and dislocation density of copper were relatively less than that of nickel. The microstructures of nickel and copper flake powder were characterized by the layer/rod-shaped grains, as well as the preferred orientation. The preferred orientation of nickel and copper flake was <200>, and the flaking level increased with the higher <200> preferred orientation.
     (3) On the aspect of microstructure, flaking process of copper powder was characterized as the equiaxed grains were elongated along the direction of the flake radius to layer-shaped and then the layer-shaped grains were broken into rod-shaped. In this process, a high density of dislocations were introduced into the grains with the random cycling loading and resultant strain, then dislocations aggregated and rearranged, which resulted grain refinement and preferred orientation. The grain refinement modes included: (1) In the main body of grains, dislocation cells/walls formed during straining, which subdivided initial grains on a smaller and smaller scale; (2) In local area of grains, the dislocation arrangements introduced at the instant of the impact could be maintained and forming nanograins due to high strain and strain rate in these areas.
     (4) The new technology for mechano-chemical de-chlorination of chlorinated organic contaminates by ball milling with zinc powder was developed in this paper for the first time. The optimum conditions were examined and determined, and the dechlorination rate of PVC, PVDC, HCB were almost reach to 100% on the optimum condition. Therefore, mechano-chemical de-chlorination would become a new process for de-halogenation of halogenated organic contaminates in an effective and safe way.
     (5) On the basis of characterizing and investigating the de-chlorination products by XRD, IR, Raman, GC/MS and NMR, the de-chlorination reaction paths were determined and verified. The mechanism of mechano-chemical dechlorination of chlorinated organic contaminates with zinc powder was accordance with the free radical theory. During the milling process, free radical formed in zinc powder under the effect of impact, which then attacked Cl atom in the chlorinated organic contaminates. Cl atom was split off from the chlorinated organic contaminates and reacted with zinc powder to form Zn(OH)Cl and Zn_2OCl_2. A great part of HCB were transformed into amorphous carbon, through the pathway of benzene ring polymerized in the direction of plane and space, besides a slight part was transformed into fatty acid in the way of oxidation and opening of benzene ring.
     (6) PVC/PVDC can be de-chlorinated following the paths of de-chlorination, crosslink, de-hydrochlorination and oxidation and transformed to diamond-like carbon, carbyne fragments and polyacelytene. Through the path of de-hydrochlorination, carbyne fragment formed. If the process can be performed in the more appropriate milling conditions such as low milling temperature, the reductive atmosphere, the pure carbye would be obtained, and the mechano-chemical de-chlorination process of PVC/PVDC would become a novel and effective approach for carbyne synthesizing,
引文
[1]杨南如.机械力化学过程及效应(Ⅰ)—机械力化学效应.建筑材料学报,2000,3(1):19-26
    [2]赵中伟.含金硫化矿的机械化学及其浸出研究:[博士学位论文].长沙:中南工业大学,1995
    [3]Pourghahramani P.Mechanical activation of hematite using different grinding methods with special focus on structural changes and reactivity:[Doctoral Thesis].Lule(?)(Sweden):Lule(?) University of Technology,2007
    [4]Tkacova K.Mechanical activation of minerals.Amsterdam:Elsevier,1989
    [5]李洪桂,杨家红,赵中伟,等.机械活化黄铜矿的浸出研究.中南工业大学学报,1998,29(1):28-31
    [6]Suryanarayana C.Mechanical alloying and milling.Progress in Materials Science,2001,46:1-184
    [7]Murty B S,Ranganatana S.Novel materials synthesis by mechanical alloying/milling.International Materials Reviews,1998,43(3):101-141
    [8]Liang G,Boily S,Huot J,et al.Mechanical alloying and hydrogen absorption properties of the Mg-Ni system.Journal of Alloys and Compounds,1998,267:302-306
    [9]Zhao Y H,Jin Z H,Lu K.Mechanical-milling-induced amorphization of Se:a crystallite destabilization model.Philosophical Magazine Letters,1999,79(9):747-754
    [10]李冷,曾宪滨.粉碎机械化学在材料开发中的应用.武汉工业大学学报,1993,15(1):23-26
    [11]Rowlands S A,Hall A K,McCormick P G,et al.Destruction of toxic materials.Nature,1994,367:223
    [12]Montinaro S,Concas A,Pisu M,et al.Remediation of heavy metals contaminated soils by ball milling.Chemosphere,2007,67(4):631-639
    [13]赵麦群.铜金粉制造技术及工艺理论研究:[博士学位论文].西安:西北工业大学,2000
    [14]朱骥良,吴申年.颜料工艺学(第二版).北京:化学工业出版社,2002.376-377
    [15]Besold R,Neubing H C,Lloyd E D.Metal flakes:highly innovative powder products.Powder metallurgy,1989,32(1):28-29
    [16]段继伟,段红珍,车呈芳.纳米片状铝粉颜料的制备及应用进展.辽宁化工,2007,36(5):334-336
    [17]Silberline有限公司.铝粉颜料的应用领域.涂料工业,1995,(2):134-35
    [18]Stone P.Metallic pigments:beyond color-the functional attributes of metallic pigment.In:Function Fillers for Plastics 2002,Toronto:Intertechpira Corporation,2002,10.0-10.20
    [19]Mais B.Uses of copper and copper alloy powders.Metall,1999,53(4):196-197
    [20]曲志敏,黄金玲.达克罗处理技术的应用研究概况.上海涂料,2005,43(9):30-31
    [21]金晓鸿,郑添水.鳞片状锌基环氧富锌底漆的研究.材料保护,1999,32(4):25-26
    [22]王群,葛凯勇,毛倩谨等.超细镍粉在电磁防护功能材料中的应用.新技术新工艺.材料与表面处理,2002,(2):41-43
    [23]Yoshinaga Y,Arami Y,Kajita O,et al.Highly densed-MH electrode using flaky nickel powder and gas-atomized hydrogen storage alloy powder.Journalof Alloys and Compounds,2002,330-332:846-850
    [24]曹晓国,吴伯麟.化学还原法制备导电涂料用片状超细铜粉的研究.涂料工业,2004,34(6):10-13
    [25]Hong S H,Lee D W,Kim B K.Manufacturing of aluminum flake powder from foil scrap by dry ball milling process.Journal of Materials Processing Technology,2000,100:105-109
    [26]Hong S H,Kim B K.Fabrication of aluminum flake powder from foil crap by a wet ball milling process.Materials Letter,2001,51:139-143
    [27]James J D,Pounds C A,Wilshire B.Production and characterization of flake metal powder for fingerprint detection.Powder metallurgy,1991,34(1):39-43
    [28]James J D,Lewis W P,Wilshire B.Control of reflective properties of flake metal products.Powder metallurgy,1993,36(1):42-46
    [29]付义平,李凤生,付廷明等.闪光铝粉颜料的制备研究.轻合金加工技术,2005,33(7):33-35
    [30]Seubert J,Fetz A.PVD aluminum pigments:Superior brilliance for coatings &graphic arts.Paint & Coatings Industry,2000,(6):40-48
    [31]毕胜.国内外颜料工艺概况及发展趋势.涂料工业,2003,33(7):44-48
    [32]陈振兴,黄巧萍,陆必志,等.仿金铜金粉研究现状与发展趋势.包装工程, 2003,24(4):7-9
    [33]Benjamin J S.Fundamentals of mechanical alloying.Mater.Sci.Forum,1992,(88):1-7
    [34]古军辉.高能球磨纳米铁粉的制备及其稳定性分析:[硕士学位论文].广州:华南理工大学,2002
    [35]沈礼庆.高能球磨法制备超细Ni粉的工艺研究:[硕士学位论文].广州:华南理工大学,2002
    [36]Yang B,Fan J Z,Hao B,et al.Synthesis and characterization of nanocrystalline Ni produced by cryo-milling in liquid nitrogen.Rare metals,2007,26(2):147-151
    [37]Chung K H,He J H,Shin D H,et al.Mechanisms of microstructure evolution during cryomilling in the presence of hard particles.Materials science &engineering A,2003,356:23-31
    [38]Reinisch E,Bernhardt C,Husemann K,et al.The influence of additives during wet ultra-fine grinding in agitator bead mills,Part 1:General principle and experimental.Cfi/Ber.DKG,2001,78(3):E38-42
    [39]Reinisch E,Bernhardt C,Husemann K et al.The influence of additives during wet ultra-fine grinding in agitator bead mills,Part 2:results and conclusions.Cfi/Ber.DKG,2001,78(4):E36-40
    [40]Li L,Zhang Y F.Influence of process control agent on interdiffusion between Al and Mg during mechanical alloying.Journal of alloys and compounds,1999,290:279-283
    [41]Xiao X,Zeng Z G,Zhao Z W,et al.Flaking behavior and microstructure evolution of nickel & copper powder during mechanical milling in liquid environment.Materials Science & Engineering A,2008,475:166-171
    [42]肖骁,潘炳,曾子高,等.湿法机械球磨制备片状镍粉研究.中国粉体技术,2007,13(3):1-3
    [43]Osborn D H,Basley R J.Production of highly reflective metal flake.US patent.US4486225,1984-12-4
    [44]Valiv R Z,Mishral R S,Grozal J,et al.Processing of nanostructured nickel by severe plastic deformation consolidation of ball-milled powder.Scripta Materialia,1996,34(9):1443-1448
    [45]Klemm R,Thiele E,Holste C et al.Thermal stability of grain structure and defects in submicrocrystalline and nanocrystalling nickel.Scripta Materialia, 2002,46:685-690
    [46]Portnoi V K,Tret'yakov K V,Fadeeva V I.Structural transformation during the mechanochemical synthesis and heating of Co-Al alloys.Inorganic Materials,2004,40(9):937-944
    [47]Zhao Y H,Sheng H W,Lu K.Microstructure evolution and thermal properties in nanocrystalline Fe during mechanical attrition.Acta Mater,2001,49:365-375
    [48]梁国宪,王尔德.球磨条件对Ni-Ti粉末结构转变及机械合金化速度的影响.材料研究学报,1994,8(4):297-303
    [49]Huang J Y.HRTEM and EELS studies of defects structure and amorphous-like graphite induced by ball-milling.Acta Materials,1999,47(6):1801-1808
    [50]Deeb C,Castaing J,Walter P.Dislocation in milled Galena(PbS).Metallurgical and materials transactions A,2004,35:2004-2223
    [51]尹君,周畅然,王建强等.球磨纯铁中纳米铁素体的形成机制.金属学报,2002,38(2):113-118
    [52]程军胜,陈汉宾,杨滨等.低温球磨制备高热稳定性纳米晶Al-Zn-Mg-Cu合金块体材料.中国有色金属学报,2006,16(7):1196-1201
    [53]Ahn B,Erdman N,Nutt S R.SEM and TEM analysis of cryomilled nanocrystalling Al powder.Macrosc Microanal(suppl.2),2007,13:540-541
    [54]Huang J Y,Jiang J Z,Yasuda H,et al.Kinetic process of mechanical alloying in Fe_(50)Cu_(50).Physical Review B,1998,58(8):817-820
    [55]Sherif E1-Eshandarany M,Aoki K,Sumiyama K,et al.Cyclic phase transformation of mechanically alloyed Co_(75)Ti_(25) powders.Acta Materialia,2002,50:1113-1123
    [56]黄建宇,吴玉琨,何安强.难互溶Cu-Fe系机械合金化过程中的结构变化研究.电子显微镜学报,1994,(1):26-31
    [57]Murayama M,Howe J M,Hidaka H.Atomic-level observation of disclination dipoles in mechanical milled nanacrytalline Fe.Science,2002,295:2433-2435
    [58]Koch C C.Synthesis of nanostructured materials by mechanical milling:problems and opportunities.NanoStructured Materials,1997,9:12-22
    [59]59 Eckert J,Holzer J C,Krill C E,et al.Reversible grain size changes in ball-milled nanocrystalline Fe-Cu alloys.J Mater Res.,1992,7:1980-1983
    [60]Lau M L,Jiang H G,Perez P J,et al.Synthesis of nanocrystalline M50 steel powders by cryomilling.NanoStructured Materials,1996,7(8):847
    [61]Han B Q,Lavemia E J,Mohamed F A.Mechanical properties of nanostructured materials.Rev.Adv.Mater.Sci.,2005,9:1-16
    [62]Huang B,Perez R J,Lavemia E J.Grain growth of nanocrystalline Fe-Al alloys produced by cryomilling in liquid argon and nitrogen.Mater Sci.Eng.A,1998,255:124-132
    [63]Shen T D,Koch C C.The influence of dislocation structure on formation of nanocrystals by mechanical attrition.Materials Science Forum,1995,179-181:17-24
    [64]尹君.球磨铁-碳合金中纳米铁素体的形成机制及退火行为的研究:[博士学位论文].沈阳:中国科学院金属研究所,2002
    [65]Koch C C.The synthesis and structure of nanocrystalline materials produced by mechanical attrition.A review.Nanosturcture Material,1993,2:109-129
    [66]Hellstern E,Fecht H J,Fu Z,et al.Structural and thermodynamic properties of heavily mechanically deformed Ru and AlRu.Japanese Journal of Applied Physics,1989,65(1):305-310
    [67]Fecht H J,Hellstern E,Fu Z,et al.Nanocrystalline metals prepared by high-energy ball milling.Metall Trans A,1990,21:2333
    [68]He J H,Lavernia E J.Development of nanocrystalline structure during cryomilling of Inconel 625.J.Mater.Res.,2001,16(9):2724-2732
    [69]He J H,Lavernia E J.Microstructural evolution in cryomilled Inconel 625.Mat.Res.Soc.Symp.Proc.,2001,634:B181-188
    [70]Liu Z G,Fecht H J,Umemoto M.Microstructural evolution and nanocrystal formation during deformation of Fe-C alloys.Materials Science and Engineering A,375-377:839-843
    [71]Liao X Z,Huang J Y,Zhu Y T.Nanostructures and deformation mechanisms in cryogenically ball-milled Al-Mg alloy.Philosophical Magazine,2003,83(26):3065-3075
    [72]Zhou F,witkin D,Nutt S R.Formation of nanostructure in Al produced by a low-energy ball milling at cryogenic temperature.Materials Science and Engineering A,2004,375-377:917-921
    [73]Fecht H J,Hellstern E,Zhou F.Nanocrystalline metal and compounds prepared by high energy ball milling.Adv.Powder.Metall.,1989,2:111-122
    [74]Paz J G,Vigueras D J.Nanometric grain formation in ductile powders by low-energy ball milling.Nanostructured materials,1999,11(8):1123-1132
    [75]Xu Y,Liu Z G,Umemoto M,et al.Formation and annealing behavior of nanocrystalling ferrite in Fe-0.89C spheroidite steel produced by ball milling.Metallurgical and Materials Transactions A,2002,33A:2195-2203
    [76]梁天权.热喷球磨法制备超细铜锌粉的工艺优化及其组织研究:[硕士学位论文].西安:西安理工大学,2005
    [77]Zhang X H.Synthesis and Characterization of nanocrystalline Zn:[Ph.D dissertation].North Carolina:Faculty of North Carolina State University,2001
    [78]Zhou F,Nutt S R,Bampton C C,et al.Nanostructure in an Al-Mg-Sc alloy processed by low-energy ball milling at cryogenic temperature.Metallurgical Materials Transaction A,2003,34(9):1985-1992
    [79]Zhou F,Liao X Z,Zhu Y T et al.Microstructural evolution during recovery and recrystallization of a nanocrystalline Al-Mg alloy prepared by cryogenic ball milling.Acta Materialia,2003,51(10):2777-2791
    [80]Huang J Y,Liao X Z,Zhu Y I et al.Grain boundary structure of nanocrysalline Cu processed by cryomilling.In:Y T Zhu,T G Langdon,R Z Vallev eds.Ultrfine Grained materials Ⅲ,TMS(The minerals,metals & Materials Society),2004
    [81]Umemoto M,Liu Z G,Masuyama K.Nanostructured Fe-C alloys produced by ball milling.Scripta materialia,2001,44(8-9):1741-1745
    [82]Jiang J Z,Gente C,Bormann R.Mechanical alloying in the Fe-Cu system.Mater.Sci.Eng.A,1998,242:268-277
    [83]Umemoto M,Liu Z G,Xu Y.Formation of nanocrystalline ferrite in Fe-0.89C spheroidite by ball milling.Materials Science Forum,2002,386/388:323-328
    [84]Zhao Y H,Zhu Y T,Liu T.Mechanism of solid-state amorphization of Se induced by mechanical milling.Journal of Applied Physics,2004,95(12):7674-7680
    [85]Benameur T,Inoue A.Amorphization of aluminum base multicomponent systems by ball milling(Overview).Materials Transactions,JIM,1995,36(2):240-250
    [86]Takeshi U,Fumiaki A,Osamu U.Structure changes during amorphization of Ge-Se alloys by mechanical milling.Materials Transactions,2003,44(3):344-350
    [87]Lee P Y,Hung S S,Jason S.C.Jang.Formation of Ni_(57)Zr_(20) Ti_(22)Pb_1amorphous powders by mechanical alloying.Materials Science Forum,2007,539/543(Part 3):2767-2772
    [88]Zhao Y H,Lu K,Zhang K.Microstructure evolution and thermal properties in nanocrystalline copper during mechanical attrition.Physical review B,2002,66:085404.1-8
    [89]Huang J Y,Wu Y K,Ye H Q.Ball milling of ductile metals.Materials Science &Engineering A,1995,199:165-172
    [90]Huang J Y,Wu Y K,Ye H Q.Deformation structure in ball milled copper.Acta mater.,1996,44(3):1211-1221
    [91]He J H,Chung K H,Liao X Z,et al.Mechanical milling-induced deformation twinning in fcc materials with high stack fault energy.Metallurgial and Materials Transactions A,2003,34:707-711
    [92]Liao X Z,Zhou F,Lavernia,et al.Deformation twins in nanocrystalline Al.Applied Physics Letters,2003,83(24):5062-5064
    [93]陶乃镕.表面机械研磨导致的纯Fe和Inconel 600表面纳米化微观结构及晶粒细化机制研究:[博士学位论文].沈阳:中国科学院金属研究所,2003
    [94]Timothy S P.The structure of adiabatic shear bands in metals:a critical review,Acta Metall.,1987,35:301-306
    [95]Cho K M,Lee S,Nutt S R.Adiabatic shear band formation during dynamic torsional deformation of a HY-100 steel.Acta Metall.Mater.,1993,41:923-932
    [96]Fecht H J.Nanostructure formation by mechanical attrition.Nanostructured Materials,1995,6:33-42
    [97]郝新江.双相合金的塑性变形驱动超细组织控制:[博士学位论文].沈阳:东北大学,2001
    [98]Huang J Y,Wu Y K,Ye H Q.Microstructure investigations of ball milled materials.Microscopy Research and Technique,1998,40:101-121
    [99]Witkin D B,Lavernia E J.Synthesis and mechanical behavior of nanostructured materials via cryomilling.Porgress in Materials Science,2006,51:1-6
    [100]程军胜.液氮球磨制备铝合金纳米材料的组织与性能研究:[博士学位论文].北京:北京科技大学,2006
    [101]Xun Y W,Lavernial E J,Mohamed F A.Synthesis of nanocrystalline Zn-22 pct Al using cryomilling.Metallurgical and Materials Transaction A,2004,35:573-581
    [102]Zhang X,Wang H,Narayan J.Evidence for the formation mechanism of nanoscale microstructure in cryomilled Zn powder.Acta Mater.,2001,49:1319-1326
    [103]Benjamin J S.Mechanical alloying.Scientific American,1976,234(5):40-48
    [104]#12
    [105]Atzmon M.In situ thermal observation of explosive compound formation reaction during mechanical alloying.Phys.Rev.Lett.,1990,64(4):487-490
    [106]Hellstern E,Fecht H J,Zhou F.Structural and thermodynamic properties of heavily mechanically deformed Ru and AlRu.Journal of Applied Physics,1989,65(1):305-310
    [107]Hansen N.Cold deformation microstructure.Materials Science and Technology,1990,6:1039-1047
    [108]Hughes D A,Hansen N.High angle boundaries formed by grain subdivision mechanisms.Acta Mater.,1997,45(7):3871-3886
    [109]Murayama M,Howe J M,Hidaka H,et al.Atomic-level observation of disclination dipoles in mechanically milled nanocrystalline Fe.Science,2002,295:2433-2435
    [110]Ke M,Hackney S A,Milligan W W.Observation and measurement of grain rotation and plastic strain in nanostructured metal thin films.Nanostructured Materials,1995,5(6):689-697
    [111]黄建宇,吴玉琨,叶恒强.纯铜在球磨过程中的形变机制研究.电子显微学报,1994,(4):499
    [112]高全芹.浅述我国废旧聚氯乙烯的回收与利用.中国资源综合利用,2004,(5):15-18
    [113]柴国棵.2005年中国废弃塑料进出口分析.中国石油和化工经济分析,2006,(7):56-63
    [114]孙小红,那天海,宋春雷等.废旧塑料回收再生利用技术的新进展.高分子通报,2006,(4):29-34
    [115]关于持久性有机污染物的斯德哥尔摩公约.From:http://www.pops.int/documents/convtext/convtext_ch.pdf
    [116]黄汝广,李莎,李毓阳等.二恶英污染及其防控措施的研究进展.安徽农业科学,2007,35(30):9670-9671
    [117]Bailey R E.Global hexachlorobenzene emissions.Chemosphere,2001,43(2):67-182
    [118]欧育湘,刘治国.回收废旧PVC的新技术.江苏化工,31(6):17-20
    [119]Tange L,Drohmann D.Waste electrical and electronic equipment plastics with brominated flame retardants-from legislation to separate treatment-thermal process.Polymer Degradation and Stability,2005(88):35-40
    [120]关于对由持久性有机污染物构成、含有此种污染物或受其污染的废物实行 无害环境管理的一般性技术准则.From:http://www.basel.int/techmatters/pops/pops_guid_final_c.pdf
    [121]The Scientific and Technical Advisory Panel of the GEF United Nations Environment Programme- Review of emerging,innovative technologies for the destruction and decontamination of POPs and the identification of promising technologies for use in developing countries(Final report GF/8000-02-02-2205)from:http://www.basel.int/techmatters/review_pop_feb04.pdf
    [122]Hall A K,Harrowfield J M,Hart R J,et al Mechano-chemical reaction of DDT with calcium oxide.Environ.Sci.Technol.,1996,30:3401-3407
    [123]Tanaka Y,Zhang Q W,Saito F.Mechano-chemical de-chlorination of trichlorobenzene on oxide surfaces.J Phys Chem B,2003,107:11091-11097
    [124]Tanaka Y,zhang Q W,Saito F.Mechano-chemical de-chlorination of chlorinated compounds.Journal of Materials Science,2004,39:5497-5501
    [125]Birke V.Economic and ecologically favorable destruction of poly-halogenated pollutions applying the DMCR.Contaminated Soil 2000.London:Thomas Telford Publishing,2001.1330-1331
    [126]Birke V,Mattik J,Runne D.Mechano-chemical reductive de-halogenation of hazardous Polychlorinated Contaminants.Journal of Materials Science,2004,39:5111-5116
    [127]Birke V.Economic and ecologically favorable detoxification of polyhalogenated pollutants in complex matter applying the DMCR-technology.http://www.tribochem.com/downloads/download/feahi_eng,pdf,2008-01-01
    [128]Black B.Combined mechanical/Chemical process removes POPs from soil and sediment[EB/OL].http://clu-in.org/download/newstrs/tnanddt0107.pdf,2007-01-8
    [129]Saeki S,Kano J,Saito F,et al.Effect of additives on dechlorination of PVC by mechanochemical treatment.J Mater Cycles Waste Manag,2001,3:20-23
    [130]Inoue T,Miyazaki M,Kamitani M,et al.Dechlorination of polyvinyl chloride by its grinding with KOH and NaOH.Advanced Powder Technol.,2005,16(1):27-34
    [131]Zhang Q W,Saito F,Shimme K,et al.Dechlorination of PVC by a mechanochemical treatment under atmospheric condition.J.Soc.Powder Technol.,1999,36:468-473
    [132]肖骁,肖松文.锌粉对聚氯乙烯的机械化学还原脱氯.化工环保,2006,26(5): 362-365
    [133]Zoz H,Ren H.Ductile metal flakes based on(An),(Ag),(Al),(Cu),(Ti),(Zn)and(Fe) materials by high energy milling(HEM)- Part Ⅰ.In:Advances in Powder Metallurgy & Particulate Materials.Vancouver,B C,1999.(1-93)-(1-108)
    [134]徐金富,张亚非,杨修贵,等.鳞片状超微铝粉的制备工艺.金属热处理,2005,30(11):18-23
    [135]蔡晓兰,林兴铭,王国富.高能球磨法制备超细鳞片状锌粉.有色金属,2004,56(3):29-30
    [136]彭胜峰.片状铝粉颜料的制备与性能研究:[硕士学位论文].长沙:中南大学,2006
    [137]李凤生等.超细粉体技术.北京:国防工业出版社,2000.16
    [138]Batzilla T,Tulke A.Preparation of encapsulated aluminum pigments by emulsion polymerization and their characterization.Journal of coating technology,1998,70(881):77-83
    [139]Kiehl A,Brendel H.Corrosion inhibited metal pigments.Macromol.Symp.,2002,187:109-120
    [140]Hans J K.Encapsulated gold bronze pigment.In:7th nurnberg congress,European coatings show,Nnurnberg,Germany,2003.32-41
    [141]Enayati M H,Sadeghian Z,Salehi M,et al.The effect of milling parameters on the synthesis of Ni3Al intermetallic compound by mechanical alloying.Materials Science and Engineering A,2004,375-377:809-811
    [142]Jiang J C S,Koch C C.The Hall-Petch relationship in nanocrystalline iron produced by ball milling.Scripta Metall.Mater.,1990,24:1599-1604
    [143]143 Hidaka H,Kimura Y,Takaki S.Ultra grain refining of steels and dissolution capacity of cementite by super-heavy deformation,Iron & Steel,1999,85:52-58
    [144]Yang Z Q,He L L,Ye H Q.The effect of ball milling on the microstructure of ceramic AlN.Materials Science & Engineering A,2002,323:354-357
    [145]Klug H P,Alexander L E,In:Sheng S X(Translator),X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials,Metallurgical Industry Press,Beijing,1986.421
    [146]146 Youssef K M S,Koch C C,Fedkiw P S.Improved corrosion behavior of nanocrystalline zinc produced by pulse-current electrodeposition.Corrision Science,2004,46:51-64
    [147]Gleiter H.Nanostructured materials:basic concepts and microstructure.Acta Materialia,2000,48(1):1-29
    [148]林吉忠.金属的缺陷、载荷与疲劳.北京:中国铁道出版社,1993:33-34
    [149]赵志岗.材料力学.天津:天津大学出版社,2001:377-379
    [150]吴承玲.大变形异步叠轧制备超细晶铜的组织及织构演变研究:[硕士学位论文].昆明:昆明理工大学,2006
    [151]康锋.等径弯曲通道变形制备超细晶纯铜及组织性能研究:[硕士学位论文].西安:西安建筑科技大学,2005
    [152]Hughes D A,Hansen N.Deformation structures developing on fine scales.Philosophical Magazine,2003,83(31-34):3871-3893
    [153]Belyakov A,Sakai T,Miura H,et al.Grain refinement in copper under large Strain deformation.Philosophical Magazine A,2001,81:2629-2643
    [154]Wang K,Tao N R,Liu G,et al.Plastic strain-induced grain refinement at the nanometer scale in copper.Acta Materialia,2006,54:5281-5291
    [155]王科,刘刚,许并社等.表面机械研磨处理纯铜的表面纳米化.见:全国第三届纳米材料和技术应用会议论文集.北京:中国材料研究学会,2003.651-654
    [156]Tao N R,Wang Z B,Tong W P,et al.An investigation of surface nanocrystallization mechanism in Fe induced by surface mechanical attrition treatment.Acta Mater,2002,50:4603-4616
    [157]Arnold W A,Ball W P,Roberts A L.Polychlorinated ethane reaction with zero-valent zinc:pathways and rate control.Journal of contaminant hydrology,1999,40:183-200
    [158]Li W,Klabunde K J.Ultrafine zinc and nickel,palladium,silver coated zinc particles used for reductive dehalogenation of chlorinated ethylenes in aqueous solution.Croatica chemical acta,1998,CCACAA 74(4):853-872.
    [159]Warren K D,Arnold R G,Bishop T L,et al.Kinetics and mechanism of reductive dehalogenation of carbon trtrachloride using zero-valence metals.Journal of hazardous materials,1995,41:217-227
    [160]Kavan L.Electrochemical preparation of hydrogen free carbyne-like materials.Carbon,1998,36(5-6):801-808
    [161]Vointseva I I,Gilman L M,Kudryavtsev Yu P,et al.Chemical dehydrochlorination of polytrichlorobutadienes-a new route to carbines.Eur. Polym.J.,1996,32(1):61-68
    [162]Kaito C,Kimura Y,Hanamoto K,et al.Carbyne formation by synchrotron radiation.Physical research A,2001,467-468:1217-1220
    [163]Kumagai H,Tashiro T,Kobayashi T.Formation of conjugated carbon bonds on poly(vinyl chloride) film by microwave-discharge oxygen-plasma treatment.Journal of applied polymer science,2005,96:589-594
    [164]Kavan L.Molecular and electron spectroscopy of carbine structures.Physics and Chemistry of Materials with Low-Dimensional Structures,1999,21:343-357
    [165]王世华,王茹,夏雨青,等.α型和β型线型碳的合成及热稳定性研究.新型碳材料,2000,15(4):30-34
    [166]Casari C S,Bassi A L,Ravagnan L,et al.Chemical and thermal stability of carbyne-like structures in cluster-assembled carbon films.Physical review B,2004,69:075422(1-7)
    [167]Heimann R B,Evsyukov S E,Kavan L.Carbyne and carbynoid structure.In:Heimann R B,Evsyukov S E,Kavan L,eds.Dordrecht,Netherlands:Kluwer academic,1999.371-394
    [168]Kastner J,Kuzmany H,Kavan L,et al.Reductive preparation of carbyne with high yield.An in situ raman scattering study.Macromolecules,1995,28:344-353
    [169]Kavan L,Kastner J,Kuzmany H,et al.Electrochemical carbine from perfluorinated hydrocarbons-synthesis and stability studied by Raman scattering.Carbon,1995,33(9):1321-1329.
    [170]Evsyukov S E,Paasch S,Ihomas B,et al.Formation of carbynoid structures by chemical dehydrohalogenation of poly(vinylidene chloride)-A 13C solid-state NMR study.Ber.Bunsenges Phys.Chem,1997,101:837-841
    [171]Bartik T,Bartik B,Brady M,et al.A step-growth approach to metal-capped one-dimensional carbon aliotropes:Syntheses of C_(12),C_(16),and C_(20)mu-polyynediyl complexes.Angewandte Chemic,1996,35(4):414-417
    [172]郭少云,徐僖.在应力作用下聚氯乙烯降解的研究.高分子材料科学与工程,1993,(6):106-110
    [173]郭少云,徐僖.振磨降解制备的低分子量聚氯乙烯形态结构的研究.高等学校化学学报,1994,15(1):127-131
    [174]丛秋滋.多晶二维X射线衍射.北京:科学出版社,1997:222-225
    [175]Maurice D R,Courtney T H.The physics of mechanical alloying:A first report. Metallurgical and Materials Transactions A,1990,21(1):289-303
    [176]杨君友,吴建生,曾振鹏.机械合金化过程中粉末的形变及其能量转化.金属学报,1998,34(10):1061-1067
    [177]余立新,李晨辉,熊惟皓等.机械合金化过程理论模型研究进展.材料导报,2002,16(8):11-14
    [178]Nomura Y,Nakai S,Hosomi M.Elucidation of degradation mechanism of Dioxins during mechano-chemical treatment.Environ Sci.Technol,2005,39:3799-3804
    [179]Xu X,Guo S Y,Wang Z.Effect of mechanochemical degradation on processability and properties of PVC,Journal of polymer research,1995,2(4):233-238
    [180]Pendleton P,Vincent B,Hair M L.Dehydrochlorination of monodisperse poly (vinylidene chloride) latex.J.Colloid Interface Sci.,1981,80:512-527
    [181]Yabe A.Low-dimensional Mater.Stru.Phy.Chem.1995,21:75-91
    [182]Cataldo F.Stability of polyynes in air and their degradation by ozonolysis.Polymer degradation and stability,2006,91:317-323
    [183]Aldissi M.Review of the synthesis of polyacetylene and its stabilization to ambient atmosphere.Synthetic Metals,1984,4:131-141
    [184]Goresy A E,Donney G T.A new form of carbon from the Ries crater.Science,1968,161:363-364
    [185]Lagow R J,Kampa J J,Wei H C,et al.Synthesis of linear acetylenic carbon:the "SP" carbon allotrope.Science,1995,267:362-367
    [186]Lebedev B V.Reviews:Thermodynamics of carbine.Russian Chemical Bulletin,2000,49(6):965-975
    [187]Komatsu T,Nomura M.Characterization of dehydrochlorinated poly(vinylidene chloride) and the shock-compressed material.Macromol Chem Phy.,1995,196:3031-3040
    [188]Vointseva S E,Thomas B,Hemann R B.Chemical dehydrohalogenation of poly(ethylene-alt-chlorotrifluoroethylene).Materials Chemistry and Physics,2000,66:34-40
    [189]任大成,范庆军,王茹,等.线型碳的合成及应用研究进展.化学通报,2004,67(w45):1-10
    [190]Kudryavtsev Yu R Heimann R B,Evsyukov S E.Review carbines:advances in the field of linear carbon chain compounds.Journal of Materials science,1996,31:5557-5571

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700