用户名: 密码: 验证码:
氯丁橡胶生产中二烯废液处理工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氯代有机化合物是一类重要的难降解性有机化合物,具有极大的危害性。几乎所有的氯代有机物都有毒性,其中许多化合物被认为具有“致癌、致畸、致突变”效应;同时,由于很多氯代有机物具有高挥发性和类脂物可溶性,易被皮肤、粘膜等吸收,而对人体、动植物造成严重损害。为此,在使用及生产过程中形成的高浓度氯代有机物工业废水,严重影响人类健康和生态环境安全,已成为一类必需处置的废水。目前,国内外对高浓度氯代有机物废水的处理主要方法有物理法、生物法、化学氧化法和化学还原法等,但尚未成熟,还未找到一条合理、高效的处理工艺路线。
     本论文以二氯丁二烯生产过程的废液(简称二烯废液)为对象,开展降解氯代有机物的基础和应用研究,并以解决二烯废液脱臭和高浓度COD降解问题为研究目标。二烯废液的主要成分为:NaCl 30%、水55~60%、木焦油、N-亚硝基二苯胺、四氯丁烷、五氯丁烷、二氯丁烯、三氯丁烯、二氯丁二烯等5~10%。该混合废液呈碱性(pH=10~11),其CODCr值可高达32214.2mg/L,有非常强的刺激性臭味。针对该废液的特点,本论文探索性地开展了双金属还原法脱氯和Fenton氧化法降解COD的应用基础研究,初步建立了双金属还原--Fenton氧化联合工艺路线,实现了同时脱氯除臭和降解高COD的目的。
     论文重点研究了二烯废液基本性质,分析了二烯废液(提馏液、精馏液、混合液)组成及破乳步骤对后续处理过程的影响,探讨了双金属种类及用量、硫酸亚铁用量、过氧化氢用量、初始pH值、温度、反应时间等因素对二烯废液降解效果的影响。研究结果表明,二烯废液的可行处理过程为:先调节二烯混合废液pH值为5~7,加入零价铁和锌粉各0.5~1%进行反应;随后加入0.5~1%硫酸亚铁,然后逐渐滴加浓度为30%H2O2,控制双氧水和亚铁离子的摩尔比为4~6,反应温度为60~80℃。反应完成后,基本消除了刺激性臭味,COD剩余值可达到800mg/L以下。
     论文研究工作表明,双金属还原-Fenton氧化联合工艺,首先通过双金属还原法实现氯代有机物的脱氯,然后通过Fenton法氧化降低COD值,达到了预期的脱臭和降解COD的处理效果,为二烯废液的进一步工业化处理提供了理论依据和基础数据,也为高浓度氯代有机物废水的处理研究提供了新的途径,对于工业节能减排和生态环境保护具有积极的现实意义。
Chlorinated organic compounds are harmful and resistant to degradation. Most of the chlorinated organic compounds are toxic with the negative effects of“carcinogenesis, teratogenesis and mutagenesis”. At the same time, many chloro-organic compounds are highly volatile and soluble as well as easily permealbe to skin, so they are dangerous in enviroment. So, industrial wastewater with high concention of chlorinated organic components heavily imperils human being’s health and zoology enviroment seriously. It had been an obligatory duty to purify this kind of wastewater. At present, the mostly used routs to purify the wastewater containing chloro-organic compounds include the physical method, the biological method, chemical oxidation process and chemical reduction. The investigations for a mature and economically process to deal with the chlorinated-wastewater are of importante meaning and are still under way.
     In the present work, the foundation research work as well as application exploring aimed to the dechloridation and degradation of the industry wastewater was carried out. The sample of wastewater was taken from a Chemical plant in Chongqing and it was formed in the dichloroprene producing process, so called neoprene wastewater. The compositon of this chlorinated hydrocarbon wastewater is as follows, NaCl (30%), water (55~60%), wood tars, N-nitroso diphenylamine, tetrachloridebutane, pentachlorobutane, chlorinated compounds (5~10%) including dichlorbutene, trichlorobutene, dichloroprene, etc. It is oringinal a mixture with pH of 10-11, CODCr concentration of 32214.2 mg/L and with stongly odour. The goal of the present work is to deodour and reduce COD concentration. Regarding this neoprene wastewater, the foundation research work of a route combine with bi-metal reducing method and Fenton oxidation method was investigated. A novel route of bimetal reducing method incorporated with Fenton oxidation method for the dechloridation and the reducing COD values was established here. The dechloridation for deodour and the degradation of COD were simultaneously relized with this combined route.
     Experiments were carried out to explore the factors associated with the COD removal ratio and deodoration by the combined process of bimetals reduction and Fenton oxidation. The feasible process was obtained by the purification of chlorinated hydrocarbon from the aspects of amount of bimetals, dosage of FeSO4 and H2O2 at various pH value. Results showed that the zero valent iron powder can have good performance in dechloridation and Fenton reagent can oxidize organics to remove COD. The satisfactory results were obtained by the following operation conditions. The pH value was adjusted to 5~7 by HCl and the zero valent iron and zinc powder were 0.5~1.0wt%, respectively. Then 0.5~1.0 wt% FeSO4 was put in the reactant followed by dropping in 20~30 wt% H2O2 gradually. Molar ratio of H2O2 to iron is in the range of 4~6 at optimal reaction temperature 60~80℃. The good purification performance was achieved with malodor removal and residual COD concentration 800 mg/L.
     The research work indicate that the route of bimetal reducing method combined with Fenton oxidation method can removel the chlorine from the chlorinated hydrocarbons mixture and reducing COD values by Fenton oxidation. This pilot study provides theory and basic data for the industry applications of treatment of neoprene wastewater. Further more, it also provide an new route for the treatment and purification of high concentration chlorinated organic wastewater.
引文
[1] Stowell J.P., Jensen J.N., Weber A.S. Sequential chemical/biological oxidation of 2-chlorophenol [J]. Water Sci.Technol.,1992,26,2085-2087.
    [2] Gillham R W O, Hannesin S F. International Association of Hydrologists ed. IAH Conference on Modern Trends in Hydrogeology[C]. Hamilton, 1992. 10.
    [3] Hills J.W., Hanser D.R. Carbon dioxide supercritical fluid extraction of incenerator fly ash with a reactive solvent modifier[J]. J.Chromatogr.A, 1994, 679(2): 319-328.
    [4]王淑惠,丁根娣,侯惠奇.水体中卤代芳烃污染状况及降解途径研究进展[J].环境污染治理技术与设备.2002,3(6),13-20.
    [5] Carey J H. Photodechlorination of PCB’s in presence of titanium dioxide in aqueous suspensions [J]. Bull. of Environ. Contam. Toxicol.,1976,16(06):697-701.
    [6]冯涛,刘洪波,陈姗姗.高级氧化技术在有机废水处理中的研究与应用[J].环境保护科学,2007,33(3):29-31.
    [7]李凡修,梅平,李方敏等.高级氧化技术在氯苯类废水处理中的应用研究进展[J].长江大学学报(自然科学版),2008, 5(1):79-84.
    [8]刘亮.高级氧化法处理难降解有机废水的研究进展[J].甘肃科技2008, 24(10):77-79.
    [9] Catherine Galindo, Patrice Jacques, Andre Kalt. Photodegradation of the aminoazobenzene acid orange 52 by three advanced oxidation processes: UV/H2O2, UV/TiO2 and VIS/TiO2 Comparative mechanistic and linetic investigations [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2000,130:35-47.
    [10] Zimmermann F J. New waste disposal process [J].Chem.Eng.,1958,65(8):117-121.
    [11] Michael Modell. Treatment for oxidation of organic material in supercritical water [J]. Chemical Week,1982,4:21-26.
    [12] Michael Modell.Processing Methods for the oxidation of organics in supercritical water[P]. United States Patents:4543190,1985.
    [13]孟兆龙,刘玉存,柴涛.超临界水氧化处理DDNP废水的动力学研究[J].火炸药学报,2007, 30 (5): 77-80.
    [14] Sandelewska Troy., Li T., Savage R,et al. The 2-chlorophenol oxidation in supercritical water: global kinetics and reaction products [J]. AIChE J., 1993,39(1): 178-187.
    [15] Hills J.W., Hanser D.R. Carbon dioxide supercritical fluid extraction of incenerator fly ash with a reactive solvent modifier[J]. J.Chromatogr.A, 1994, 679(2): 319-328.
    [16] Visscher A D, Ecnoo P V, et al. Kinetic model for sonochemical degradation of monocylicaromatic compounds in aqueous solution [J]. Phy.Chem., 1996,100:11636-11642.
    [17] Visscher A D, Langenhove H V. Sonochemistry of organic compounds in homogeneous aqueous oxidizing systems [J]. Ultrasonics Sonochemistry,1998,(5):87-92.
    [18] Hua Inez, Hoffmann MR. Optimization of ultrasonic irradiation as an advanced oxidation technology[J]. Environmental Science & Technology,1997,31(8):2237-2243.
    [19]邢铁玲, Chu K H,陈国强.超声降解甲基橙的研究[J].中国给水排水,2006,22(13):102-104.
    [20] Gromboni C F, Kamogawa M Y, Ferreira A G, et al. Microwave-assisted photofenton decomposition of chlorfenvinphos and cypermethrin in residual water[J]. Journal of Photochemistry and Photobiology A- Chemistry, 2007, 1:32-37.
    [21] Francis X. Mcasey, Say Kee Ong, Robert Horton. Degradation and Transformation of Trichloroethylene in Miscible-Displacement Experiments through Zero-valent Metals [J]. Eniron.Sci.Technol., 2000,34: 5023-5029.
    [22]刘菲,汤鸣皋,何小娟,等.零价铁降解水中氯代烃的实验室研究[J].环境污染与防治,2002, 27 (2): 186-188.
    [23] Arienzo, Chiarenzelli J., Scrudato R., et al.Connor.Iron-mediated eactions of polychlorinated biphenyls in electrochemical peroxidation process(ECP) [J]. Chemospere, 2001,44,1339-1346.
    [24]邹晓东,叶以富.金属材料在水处理技术中的应用现状及发展趋势[J].工业水处理. 2002, 22(10):4-8.
    [25] Kang S F, Liao C H, Chen M C. Pre-oxidation and coagulation of textile wastewater by the Fenton process [J]. Chemosphere, 2002, 46 (6):923 -928.
    [26]杨开林,陶长元,孙大贵,等.邻苯二甲酸酯降解状况研究进展[J].重庆工商大学学报(自然科学版), 2006,23(2):128-131.
    [27]陶长元,刘作华,李晓红,等.超声波促进Fenton法脱色甲基橙溶液的研究[J].环境科学, 2005, 26 (5): 111-114.
    [28] Modirshahla N, Behajady M A, Ghanbary F. Decolorization and mineralization of C.I. Acid yellow 23 by Fenton and photo-Fenton processes [J] .Dyes and Pigments, 2007, 73(1): 305- 310.
    [29] Carlos M S, Eduardo E, Juan C, et al. Goethite as a more effective iron dosage source for mineralization of organic pollutants by electro-Fenton process [J] . Electrochemistry Communications, 2007, 9:19-24.
    [30] Abdullah F H, Rauf M A, Ashraf S S. Kinetics and optimization of photolytic decoloration of carmine by UV/H2O2[J]. Dyes and Pigments, 2007,72:349-352.
    [31]赵艺,赵保卫,许生辉.Ni-Fe双金属对氯代苯酚催化还原脱氯的试验[J].工业用水与废水,2007,38(4):39-42.
    [32]谢凝子,邱罡,陈少瑾.钯铁双金属体系还原脱氯水中二氯苯同分异构体[J].农业环境科学学报, 2008,27(2):758-761.
    [33] Grittini C., Malcomson M., Fernando Q. Rapid dechlorination of polychlorinated biphenyls on the surface of a Pd/Fe bimetallic system [J]. Environ.Sci.&Technol., 1995, 29 (11): 2898.-2898
    [34] Elliott D.W, Zhang W.X. Field assessment of nanoscale bimetallic particles for groundwater treatment[J]. Environmental Science & Technology.2001,35(24): 4922 -4926.
    [35] Zhang W, Wang C, Li HL.Treatment of chlorinated organic contaminants with nanoscale bimetallic particles[J]. Catalysis Today,1998,40:387-395.
    [36]孟凡生,王业耀,汪春香,等.铬污染地下水的PRB修复试验[J].工业用水与废水, 2005, 36(2): 22-25.
    [37] Robert M P,Robert W P,Sharon K H ,et al. Coupled iron corrosion and chromate reduction: mechanisms for subsurface remediation [J]. Environ.Sci.Technol., 1995, 29(8): 1913-1922.
    [38] Karschunke K, Jekel M. Arsenic removal byiron hydroxides produced by enhanced corrosion of iron[J].Water Sci.Technol.:Water Supply,2002,2(2):237-245.
    [39] Khan A H,Rasul S B,Munir A K M,et al.Appraisal of a simple arsenic removal method for groundwater of Bangladesh[J].Environ.Sci.Health:PartA-Toxic/Hazard. Substance Environ. Engineering, 2000,35(7):1021-1041.
    [40] Olivier XL,Stephan J H. Oxidation and removal ofarsenic(III) from aerated groundwater by filtration through sand and zero-valent iron[J].Water Research,2005,39(9):1729-1740.
    [41] Gu B, Liang L, Dichey M,et al. Reductive precipitation of uranium(VI)by zero-valent iron[J]. Environ. Sci.Technol.,1998,32(21): 3366-3373.
    [42] Zhang P,Tao X,Li Z,et al. Enhanced perchloroethylene reduction in column systems using surfactant-modified zeolite/zero-valent iron pellets[J]. Environ.Sci.Technol.,2002, 36 (16): 3597-3603.
    [43] Amold WA,Winget P. Reductive dechlorination of 1,1,2,2-tetrachoroethane[J]. Environ.Sci. Technol., 2002, 36(16):3536-3541.
    [44] Matheson LJ,Tratnyek P G. Reductive dehalogenation of chlorinated methanes by iron metal[J]. Environ. Sci.Technol.,1994,28(12):2045-2053.
    [45] Liu Y,Majetich S A,Tilton R D, et al. TCE Dechlorination rates,pathways and efficiency of nanoscale iron particles with different properties[J]. Environ.Sci.Technol., 2005,39(5): 1338-1345.
    [46] Raymond M, Zhang L, Arnold W A. Reduction of haloacetic acids by Fe0: Implications for treatment and fate[J]. Environ.Sci.Technol.,2001,35(11):2258-2263.
    [47] Grittini C,Malconmson M,Fernando Q, et al. Rapid dechlorination of polychlorinatedbiphenyls on the surface of a Pa/Fe bimetallic system [J]. Environ.Sci.Technol., 1995,29(11): 2898- 2900.
    [48] You Y, Han J,Chiu P,et al. Removal and inactivation of waterborne viruses using zero-valent iron [J]. Environ.Sci.Technol.,2005,39(23):9263-9269.
    [49] Murray J P,Laband D J.Degradation of poliovirus by adsorption on inorganicsurfaces [J]. Appl. Environ. Microbiol., 1979,37(6):480-486.
    [50] Sposito G.The surface Chemistry of Soils[M].New York:Oxford University Press,1984:60-70.
    [51] Parfitt R L,Fraser AR,Farmer V C. Adsorption on hydrous oxides.III.Fulvic acid and humic acid on goethite,gibbsite and imogolite[J]. J.Soil.Sci.,1977,28(3):289-296.
    [52] Gu B,Schmitt J,Chen Z,et al. Adsorption and desorption of natural organic matter on iron oxide:mechanism and models[J]. Environ.Sci.Technol.,1994,28(1):38-46.
    [53] Paul W, Jennifer J. Nitrate removal in zero-valent iron packed columns[J].Water Research, 2003, 37(8): 1818-1830.
    [54] Alowitz M J, Scherer M M. Kinetics of nitrate,nitrite,and Cr(VI) reduction by iron metal [J]. Environ.Sci.Technol.,2002,36(3):299-306.
    [55] Krlegman-klng M R, Reinhard M. Transformation of carbon tetrachloride by pyrite in aqueous solution [J].Environ. Sci.Technol.1994,4(4):692-700.
    [56] Hooker.P.D. Destructive adsorption of carbon tetrachloride on iron(III) oxide [J]. Environ. Sci. Technol., 1994,28(7):1243-1247.
    [57] Erbs M., Hansen H.C.B., Olsen C.E. Reductive dechlorination of carbon tetrachloride using iron(II) iron(III) hydroxide sulfate (Green rust) [J]. Environ.Sci.Technol. 1999, 33(2): 307 -311.
    [58] Balko Barbara A., Tratnyek Paul G. Photoeffects on the reduction of carbon tetrachloride by zero-valent iron[J]. J.Phys.Chem.B, 1998,102,1459-1465.
    [59]赵艺,赵保卫,许生辉. Ni-Fe双金属对氯代苯酚催化还原脱氯的试验[J].工业用水与废水,2007,38(4):39-42.
    [60]吴德礼,马鲁铭,徐文英,等.Fe/Cu催化还原法处理氯代有机物的机理分析[J].水处理技术,2005,31(5):30-33.
    [61]何小娟,李旭东,沈照理,等.Ni/Fe双金属降解CCl4、CHCl3和CH2Cl2的试验[J].净水技术, 2007, 26(3):11-15.
    [62]全燮,刘会娟,杨凤林,等.二元金属体系对水中多氯有机物的催化还原脱氯特性[J].中国环境科学1998,18(4):333-336.
    [63] Ma L. M., Ding Z. G., Gao T. Y., et al. Discoloration of methylene blue and wastewater from a plant by a Fe/Cu bimetallic system [J]. Chemospher, 2004,55(9): 1207-1212.
    [64] Cheng Shu-fen, Wu Shian-chee. Feasibility of using metals to remediate water containingTCE[J]. Chemosphere, 2001,43( 8): 1023-1028.
    [65] Patel Upendra D., Suresh Sumathi. Dechlorination of trichloroethylene in aqueous solution by noble metal-modified iron[J]. Journal of Hazardous Materials, 2008,156,(1-3):308-316.
    [66] Doyle John G, Miles Teriann, Parker Erik. Quantification of total polychlorinated biphenyl by dechlorination to biphenyl by Pd/Fe and Pd/Mg bimetallic particles [J]. Microchemical Journal.1998,60:290-295.
    [67]解淑民.铝镁锌复合铁粉的制备及其降解水体中微量氯代有机物的研究[D].北京化工大学,2004.
    [68] Gotpagar J., Grulde E., Bhattacharyya D. Reductive dehalogenation of trichloroethylene using zero-valent iron [J]. Environmental Progress,1997, 16 (2): 137-137.
    [69] Boronina T., Klabunde K. J., Sergeev G. Destruction of organohalides in water using metal particles: carbon tetrachloride/water reactions with magnesium,tin, and zinc [J]. Environ. Sci. Technol.,1995, 29(6): 1511-1511.
    [70] Orth W. S., Gillham R. W. Dechlorination of trichloroethene in aqueous solution using Fe0[J]. Environ. Sci. Technol., 1996, 30 (1): 66-66.
    [71] Matheson L. J., Tratnyek P. G. Reductive dehalogenation of chlorinated methanes by iron metal [J]. Environ. Sci. Technol.,1994, 28 (12): 2045-2045.
    [72] RobertsA. L., Totten L. A., Arnold W. A. Reductive elimination of chlorinated ethylenes by zero-valent metals [J]. Environ. Sci. Technol.,1996, 30 (8):2654-2654.
    [73]王薇.包覆型纳米铁的制备及用于地下水污染修复的实验研究[D].南开大学博士学位论文,天津, 2008.
    [74] Arnlklv WA, Robens AL. Pathways and kinetics of chlorinated ethylene and chlorinated acetylene reaction with Fe0 particles [J]. Environ.Sci.Technol., 2000,34(91):1794-1805.
    [75] Matheson L J,Tratnyek PG. Reduetive dehalogenation of chlorinated methanes by iron metal [J]. Environ. Sci.Technol.,1994,28(12):2045-2053.
    [76] Johnson TL, Scherer MM, Tratnyek PG. Kineties of halogenated organic compound degradation by iron metal [J]. Environ.Sci.Technol., 1996,(30): 2634- 2640.
    [77] Burris D R, Campbell TJ, Manoranjan VS. Sorption of trichloroethylene and tetrachloroethylene in a batch reactive metallic iron-water system [J]. Environ.Sci. Technol., 1995, 29(11):2850-2855.
    [78] Deng B., Burris D. R., Campbell T. J. Reduction of vinyl chloride in metallic iron-water systems [J]. Environ.Sci. Technol.,1999, 33 (15): 2651
    [79] Kim Y, Carraway ER. Dechlorination of pentachlorophenol by zero-valent iron and modified zero-valentirons [J] .Environ.Sci.Technol.,2000,34(10):2014-2017.
    [80] Wust W F, Kober R, Schlicher O, er al. Combined zero and first-order kintic model of the degradation of TCE and cis-DCE with commereial iron [J]. Environ.Sci. Technol., 1999,33 (23): 4304-4309.
    [81] Senzaki T., Kasuo Y. Kogyo Yosui. Removal of chlorinated organic compounds from wastewater by reduction process: Treatment of 1,1,2,2-tetrachloroethane with iron powder[J]. Environ. Sci. Technol.,1988, 357: 2-7
    [82] MuftikianR, NebesnyK, FernandoQ. X-ray photoelectron spectra of the palladium-iron bimetallic surface used for the rapid dechlorination of chlorinated organic environmental contaminant[J]. Environmental Science and Techno1ogy, 1996, 30(12):3593-3596.
    [83] Bossmann.S.H,Oliverous E. New evidence against hydroxyl radicals as reaetive intermediates in the thermal and photochemically enhaneed Fenton reaction [J].Phys.Chem. A., 1998,102(28): 5542- 5550.
    [84] Chen R, Pignatello J J. Role of quinone intermediates as eleetron shuttle in Fenton and photoassisted Fenton oxidation of aromatic compounds [J]. Environ. Sci. Technol., 1997.31(8): 2399 -2406.
    [85] Zepp F G. Hydroxyl radical formation in aqueous reaction(pH3~8) of Iron(Ⅱ) with hydrogen peroxide:the Photo–Fenton reaetion[J]. Envion. Sci. Technol.1992.26(3):313-319.
    [86] Walling C., KatoS. The oxidation of alcohols by Fenton's reagent-the effect of copper ion [J]. J. Am. Chem. Soc. , 1971,93:4275-4281.
    [87] Lin S.H., Lo C.C. Fenton process for treatment of desizing wastewater[J]. Wat.Res.,1997.31(8): 2050-2056.
    [88]解清杰,马涛,王琳玲.六氯苯污染沉积物的电Fenton法处理[J].华中科技大学学报(自然科学版) ,2005,33(3):122-124.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700