用户名: 密码: 验证码:
不同施肥制度土壤团聚体微生物学特性及其与土壤肥力的关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤生物是土壤养分转化和循环的驱动力,生物肥力是土壤肥力的核心。团聚体作为土壤结构的基本单位,是土壤养分转化循环的重要场所,与土壤肥力密切相关。本论文以“北京昌平国家褐潮土土壤肥力与肥料效益监测基地”的长期肥料试验为平台,选择以下六个长期肥料试验处理:1)对照(CK,不施肥种植作物);2)氮磷钾(NPK);3)氮磷钾+有机肥(NPKM);4)氮磷钾+秸秆(NPKS);5)氮磷钾肥+种植方式Ⅱ(NPKF);6)撂荒(CK0)。采用干筛法获得:>5mm、2-5mm、1-2mm、0.5-1mm、0.25-0.5mm、<0.25mm六种不同级别的团聚体;采用湿筛法获得:>2mm、0.25-2mm、0.053-0.25mm、<0.053mm四个不同级别的水稳性团聚体,研究长期定位不同施肥制度土壤团聚体微生物学特性及其与土壤肥力的关系,为土壤生物肥力的培育与建设提供理论依据。研究取得的主要结果:
     (1)长期(16年)不施肥(CK)农田土壤养分含量和作物产量水平低;长期施肥(NPK、NPKM、NPKS和NPKF)比不施肥(CK)土壤的理化性质改善,作物增产。在不同施肥制度中,长期NPK化肥配施有机肥处理(NPKM)处理,有机质、全氮、全磷和速效磷含量最高,在pH为8左右的北京褐潮土条件下长期配施有机肥料有使土壤pH值稍有下降的趋势,容重稍也有降低。复种轮作(NPKF)和秸秆还田处理(NPKS)处理与NPK处理相比,可明显提高养分含量,pH值和容重也稍有降低。在褐潮土上增施磷肥和有机肥对提高玉米产量具有重要的作用。
     (2)长期撂荒(16年),土壤微生物量碳和氮,土壤蔗糖酶、磷酸酶和脲酶活性都高于种植作物的农田土壤,而其代谢商、pH和容重值低于农田土壤。长期施肥的农田(NPK、NPKM、NPKS和NPKF),其土壤微生物量碳和氮以及土壤蔗糖酶、磷酸酶和脲酶活性均高于不施肥的农田(CK);小麦-玉米/小麦-大豆复种轮作(NPKF)的农田上述土壤微生物量和酶活性又高于长期复种连作(NPK)的农田。在施肥处理中,长期氮磷钾化肥与有机肥配合施用的处理(NPKM)的土壤的微生物量碳和氮以及土壤蔗糖酶、磷酸酶和脲酶活性高于其它施肥处理(NPK、NPKS和NPKF),但其土壤的代谢商低、土壤pH和容重值稍有降低。
     (3)PCR-DGGE方法分析结果表明,长期氮磷钾化肥配施有机肥(NPKM)处理土壤微生物丰度最高,细菌物种最多,其次为长期撂荒(CK0)土壤,CK处理细菌物种最少。UPGMC聚类分析表明NPK和NPKF处理细菌的群落结构相似,CK和CK0处理细菌的群落结构相似,而NPKM和NPKS处理细菌的群落结构相似。
     (4)干筛法取得土壤团聚体试验表明:长期施肥对增加耕层土壤粒径2-5mm、1-2mm、0.5-1mm、0.25-0.5mm团聚体含量具有重要作用,特别是在化肥配施有机肥的条件下,这四个级别团聚体含量增加较大,说明化肥与有机肥长期配施有利于土壤较大粒径团聚体的形成。在不同水平的土壤团聚体中,0.25-0.5mm团聚体的微生物量碳、氮,土壤有机碳、全氮和全磷含量最高,而<0.25mm团聚体各种养分含量最低。长期施肥可以提高各级团聚体的养分含量、微生物量碳、氮以及酶活性,并且可显著提高土壤2-5m、1-2mm、0.5-1mm、0.25-0.5mm团聚体的养分储量和贡献率。长期施用化肥(NPK)比长期不施肥(CK)能提高团聚体养分含量和储量,长期NPK与有机肥配施(NPKM)处理各级团聚体养分含量和储量显著高于长期施化肥(NPK)处理,在相同的施肥
     条件下,长期复种轮作(NPKF)比复种连作(NPK)能更有效地提高各级团聚体养分含量和储量。土壤微生物量碳、微生物量氮、土壤脲酶和土壤蔗糖酶的活性与土壤基本肥力因子之间关系密切,因此土壤微生物量碳、微生物量氮、土壤脲酶和土壤蔗糖酶的活性也可表征土壤肥力水平。
     (5)湿筛法取得土壤水稳性团聚体试验结果表明:长期施肥对湿筛分组方法获得的水稳性团聚体数量分布和稳定性指数MWD等有显著影响,其中对>2mm和0.25-2mm水稳性大团聚体的促进作用最明显;与CK相比,施肥特别是NPK化肥与有机肥配施(NPKM)提高了团聚体的稳定性和土壤有机碳水平,并且改变了土壤养分在不同团聚体上的分布。在不同水平水稳性团聚体中,>2mm和0.25-2mm两个级别的水稳性大团聚体微生物量碳、氮的含量显著高于0.053-0.25mm和<0.053mm水稳性小团聚体。长期施化肥(NPK)与长期不施肥(CK)相比,长期NPK配施有机肥(NPKM)与长期施化肥(NPK)相比,长期复种轮作(NPKF)与长期复种连作(NPK)相比,各处理耕层土壤养分储量的增加主要是因为施肥或轮作后提高了>2mm和0.25-2mm两个级别的水稳性大团聚体养分储量,从而说明,施肥增加的养分主要向>2mm和0.25-2mm两个级别的团聚体富集。土壤有机碳、微生物量碳与水稳性大团聚体呈显著的正相关关系,而与水稳性小团聚体呈显著的负相关关系。土壤全氮、微生物量氮与水稳性小团聚体呈显著的负相关关系。
     (6)在长期定位肥料试验平台上,用干筛法和湿筛法分组所获得的团聚体,其各级团聚体含量、养分含量,微生物量碳、氮的分布规律较明显,所以两种方法均能有效地说明不同施肥制度下土壤结构和肥力的变化规律。
Soil microorganisms are the driving force of soil nutrient transformation and circulation. Soil biological fertility is the core of soil fertility. As basic units of soil structure, soil aggregates are the locale where soil nutrients transform and circulat and they are closely correlated with soil fertility. This dissertation is based on the long-term fertilization experiments in"Beijing Fluvo-aquic Soil Fertility and Fertilizer Efficiency Long Term Monitor Base (BFSFFELTMB, founded in 1990)". There are 13 different treatments available here, which were established in 1990. Six treatments were selected to conduct this doctoral research project. Among the six treatments, four were in a wheat-maize rotation system with (1) no fertilizer application (CK), (2) mineral fertilizers application (NPK), (3) mineral fertilizers plus farmyard manure application (NPKM) and (4) mineral fertilizers with maize straw incorporated application (NPKS). The fifth treatment was in a wheat-maize/wheat-soybean rotation system with NPK application (NPKF). The final treatment was deserted arable land (CK0) with weeds growing. The amount of chemical fertilizer applied per year was N 150 kg·hm~(-2), P_2O_5 75 kg·hm~(-2), K_2O 45 kg·hm~(-2), manure 22.5 t·hm~(-2) and maize straw 2.25 t·hm~(-2). Through using dry sieving method, six different aggregates were obtained, which were >5mm, 2-5mm, 1-2m, 0.5-1mm, 0.25-0.5mm, and <0.25mm in size while through using wet sieving method, another four different aggregates were collected with different size of >2mm, 0.25-2mm, 0.053-0.25mm, and <0.053mm. Biological properties and relevant soil fertility under different long-term fertilization systems were thoroughly studied. This research provides a theoretical basis for cultivation and construction of soil biology fertility. The following results were obtained in this study:
     1. The soil nutrient content and the yield of crops were low with long-term (16 years) no fertilizer application (CK) treatment. Compared CK, the physicochemical property of soil improved and the yield increased in long-term fertilizer application treatments. Under different fertilization systems, the content of :he soil organic matter, total N, total P and available phosphorus in long-term NPKM were the highest. The pH value and bulk density of soil decreased slightly with the treatment of NPKM in Fluvo-aquic Soil. Contrast to NPK treatment, the NPKF and NPKS treatments significantly improved the nutrient content and their pH value and bulk density decreased slightly. The application of phosphoric fertilizer and organic fertilizer played an important role in the process of increasing yield of crops in Fluvo-aquic Soil.
     2. The soil organic C(SOC)and total N( STN) content, microbial biomass C(SMB-C) &N(SMB-N), activities of soil invertase, phosphatase and urease, and the ratio of SMB-C/SOC and SMB-N/STN were found higher in long-term (16 years) deserted arable land than those in cultivated arable land soils. However, the soil metabolic quotient, pH value and bulk density of fallow soil were lower than those in cultivated arable land soils. The soil nutrient concentration, microbial biomass C & N, activities of soil invertase, phosphatase and urease, were higher in treatments with fertilizer application (NPK、NPKM、NPKS and NPKF) compared to CK. The soil parameters investigated above were also found higher in wheat-maize/wheat-soybean rotation cropping system compared to continuous wheat-maize cropping system. Among the four fertilizer application treatments (NPK、NPKM、NPKS and NPKF), NPKM had relative higher soil nutrient concentration, microbial biomass C&N, and enzyme activities. However, the soil metabolic quotient, pH value and bulk density of NPKM were lower than those in the remaining three treatments.
     3. The community structure of bacteria microorganisms was assessed by denaturing gradient gel electrophoresis (DGGE) and Unweighted Pair Group Method Clustering (UPGMC) analysis of the DGGE banding patterns showing that the bacterial community structure was affected by different treatments. Compared with CK, the results indicated a significant increase in microbial diversity by fertilization treatments. However the composition of the bacterial community in NPKM treatment was more complex than that in others. Cluster analysis of the DGGE profiles showed that bacteria in the six soil samples were divided into three clusters. Bacterial communities in CK and NPK soil samples belonged to one cluster, those in NPKF and CK0 soils to another cluster, and that in NPKSt and NPKM soil to a third single cluster. The similarity of bacterial community in soils with six different treatments was 53%. This research demonstrated that mineral fertilizer applied with farmyard manure at the same time could increase both biomass and diversity of bacterial community in soil.
     4. The experiment of using dry sieving method to obtain soil aggregates showed that the long-term fertilizer application helped increase the percentage of aggregates in the size groups of 2-5mm, 1-2mm, 0.5- 1mm and 0.25-0.5mm. It suggests that long-term application of chemical fertilizers with organic manures may fercilitate the formation of these four types of aggregates. This indicates that long-term application of organic manures is beneficial to the aggregate formation of soil macro-aggregates.The contents of SMB-C, SMB, soil organic C, total nitrogen and total phosphorus in different size groups were found significantly different. The group of 0.25-0.5mm size was found the highest and the group of <0.25mm size was found the lowest in all soil samples. The long-term fertilizer application was found in favor of increasing nutrient contents and storage capacities in the groups of 2-5mm, l-2mm, 0.5-1mm and 0.25-0.5mm sizes. Under all fertilized treatments, the contents and storage capacities of nutrient were significantly higher with NPKM treatment being the hightest, followed by NPKF and NPKS treatments. Compared with CK, chemical fertilizer treatments resulted in increase of contents and storage capacities of nutrient.
     5. The experiment of using wet sieving to obtain soil water-stable aggregates indicated that long-term fertilizer application had significant influence on aggregate size distribution and aggregate stability. The groups of >2mm and 0.25-2mm aggregates increased greatly in size and responded most effectively to the long-term fertilizer applications. Compared with CK, SOC level and aggregate stability were enhanced markedly under fertilizer application treatments and the nutrient distribution pattern also changed in different size aggregates. The nutrient increase in macroaggregates contributed most significantly to the nutrient increase overall.
     The contents of microbial biomass C and N were found significantly higher in the macroaggregates of >2mm and 0.25-2mm sizes than in the microaggregates of 0.053-0.25mm and <0.053mm sizes. The long-term fertilizer applications helped increase the contents of microbial biomass C and N at the same level aggregate. Under all fertilized treatments, the contents of microbial biomass C and N were found highest in the NPKM treatment, followed by NPKF and NPKS treatments.
     The contents of SOC and SMB-C showed a positively linear relationship with the content of macroaggregates and a negative correlation relationship with the content of microaggregates. Moreover, the contents of total N and SMB-N were found a negative correlation relationship with the content of microaggregates.
     6. Both dry sieving method and wet sieving method were found valid in showing the change patterns of SOC contents, total N, total P, SMB-C and SMB-N in the different aggregates. Therefore, both methods were found effective in demontrating the change regularities of the soil structure and the fertility under different fertilization systems.
引文
1.鲍士旦.土壤农化分析(第三版).北京:中国农业出版社,2000.
    2.陈恩凤,关连珠,汪景宽等.土壤特征微团聚体的组成比例与肥力评价.土壤学报,2001,38(1):49~53.
    3.陈恩凤,周礼凯,邱凤琼.土壤肥力实质的研究Ⅱ.棕壤.土壤学报,1985,22(2):113-119.
    4.陈国潮,何振立,黄昌勇.红壤微生物生物量C周转及其研究.土壤学报,2002,39(2):152~160.
    5.陈利军,周礼凯.土壤保肥供肥机理及其调节Ⅰ.棕壤型菜园土的P素保养与供应.应用生态学报,1998,9(3):254~256.
    6.陈鹏,张一.吉林省东部山区主要土壤类型及土壤动物.东北师大学报(自然科学版,1984,2:83~92.
    7.陈文新,胡正嘉.土壤和环境微生物学[M].北京:中国农业大学出版社,1990,1~80.
    8.樊军,郝明德.长期轮作施肥对土壤微生物碳氮的影响.水土保持研究,2003,10(1):85~87.
    9.冯固,张玉凤,李晓林.丛枝菌根真菌的外生菌丝对土壤水稳性团聚体形成的影响.水土保持学报,2001,15(4):99~102.
    10.高云超,朱文珊,陈文新.秸秆覆盖免耕土壤微生物生物量与养分转化的研究.中国农业科学,1996,27(6):41~49.
    11.高云超,朱文珊,陈文新.土壤微生物生物量周转的估算.生态学杂志,1993,12(6)6~10.
    12.韩晓日,郭鹏程,陈恩凤等.土壤微生物对施入肥料氮的固持及其动态研究.土壤学报,1998,35(3):412~418.
    13.韩晓日,邹德乙,郭鹏程.长期施肥条件下土壤微生物量氮的动态及其调空氮素营养的作用.植物营养与肥料学报,1996,2(1):16~22.
    14.郝文英.土壤微生物研究工作的回顾土壤,1989,21(4):185~191.
    15.何电源主编.中国南方土壤肥力与栽培植物施肥.科学出版社:1994,p.44.
    16.候彦林,王曙光,郭伟.尿素施肥量对土壤微生物和酶活性的影响.土壤通报,2000,35(3):303~306.
    17.黄韶华,王正荣,朱永绮.土壤微生物与土壤肥力的关系研究初报.新疆农垦科技,1995,3:6~7.
    18.姜岩,窦森.土壤施用有机物料后重组有机质变化规律的探讨.土壤学报,1987,24(2):97~103
    19.来璐,郝明德,王永功.黄土高原旱地长期轮作与施肥土壤微生物量磷的变化.植物营养与肥料学报,2004,10(5):546~549.
    20.赖庆旺,李茶苟,黄庆海.红壤性水稻土无机肥连施与土壤结构特性的研究.土壤学报,1992,29(2):168-185.
    21.李东坡,陈利军,武志杰等.不同施肥黑土微生物量氮变化特征及相关因素.应用生态学报,2004,15(10):1891~1896
    22.李辉信,袁颖红,黄欠如,等.不同施肥处理对红壤水稻土团聚体有机碳分布的影响.土壤学报.2006,43(3):423~429.
    23.李科江.张素芳.贾文竹等.半干旱区长期施肥对作物产量和土壤肥力的影响.植物营养与肥料学报,1999,5(1):21~25.
    24.李恋卿,张旭辉,潘根兴.退化土壤植被恢复中表层土壤微团聚体及其有机碳的储备变化,土壤通报.2000,10:193~19.
    25.李小刚,崔志军,王玲英.施用秸秆对土壤有机碳组成和结构稳定性的影响.土壤学报,2002,39 (3):421~428.
    26.李秀英,赵秉强,李絮花等.不同施肥制度对土壤微生物的影响及其与土壤肥力的关系.中国农业科学,2005,38(8):1591~1599
    27.李映强,曾觉廷.不同耕作制度下水稻土有机物质变化及其团聚作用.土壤学报,1991,28(4):404~409.
    28.梁文举,葛亭魁,段玉玺.土壤健康及土壤动物生物指示的研究与应用.沈阳农业大学学报.2001-02,32(1):70~72.
    29.梁玉衡.土壤团粒结构与土壤肥力的关系.土壤通报,1984,30~32.
    30.林英华,杨学云,张夫道等.陕西黄土区不同施肥条件下农田土壤动物的群落组成和结构.生物多样性,2005,13(3):188~196
    31.刘京,常庆瑞,李岗等连续不同施肥对土壤团聚体影响的研究.水土保持通报,2000,20(4):24~26.
    32.刘晓兵,邢宝山,Stephen.土壤质量及其评价指标.农业系统科学与综合研究,2002,18(2):109~112.
    33.刘毅,李世清,李生秀.黄土高原不同类型土壤团聚体中氮库分布的研究.中国农业科学.2007,40(2):304~313.
    34.罗明,文启凯,纪春燕等.不同施肥措施对棉田土壤微生物量及其活性的影响.土壤,2002,1:53~55
    35.庞欣,张福锁,王敬国.不同供氮水平对根际微生物量氮及微生物活度的影响.植物营养学报,2000,6(4):476~480
    36.邱莉萍,张兴昌,张晋爱.黄土高原长期培肥土壤团聚体中养分和酶的分布.生态学报.2006,26(2):364~372.
    37.沈其荣,余玲,刘兆普等.有机无机肥料配合施用对滨海盐土土壤微生物量态氮及土壤供氮特征的影响.土壤学报,1994,31(3):287~293
    38.史德明,韦启潘,梁音等.中国南方侵蚀土壤退化指标体系研究.水土保持学报,2000,14(3):1~9
    39.史吉平,张夫道,林葆.长期定位施肥对土壤有机质及生物学特性的影响.土壤肥料,1998,(3):7~11
    40.孙波.土壤质量与持续环境Ⅲ.土壤质量评价的生物学指标.土壤,1997,29:225~234.
    41.孙瑞莲,赵秉强,朱鲁生等.长期定位试验对土壤酶活性的影响及其调控土壤肥力的作用植物营养与肥料学报,2003,9(4):406~410.
    42.孙天聪,李世清,邵明安.长期施肥对褐土有机碳和氮素在团聚体中分布的影响.中国农业科学.2005,38(9):1841-1848.
    43.陶水龙,林启美,赵小蓉.土壤微生物量研究方法进展.土壤肥料,1998,(5):15~18.
    44.王继红,刘景双,于君宝等.氮磷肥对黑土玉米农田生态系统土壤微生物量碳、氮的影响.水土保持学报,2004,18(1):35~38.
    45.王敬国.植物营养的土壤化学.北京:中国科学技术出版社,1991,1~257.
    46.王俊儒,尉庆丰,曲东等.土壤多糖在土壤肥力中的意义(二).土壤通报,1995,26(6):274-275.
    47.王淑平,周广胜,孙长占等.土壤微生物量氮的动态及其生物有效性研究.植物营养与肥料学报,2003,9(1):87~90.
    48.王岩,沈其荣,史瑞和等.有机、无机肥料施用后土壤微生物量碳、氮、磷的变化及氮素转化.土壤学报,1998,35(2):227~234.
    49.王艳,孙杰,吴金水等。有机物料对土壤微生物碳和磷的影响.植物营养与肥料学报,2000,6(3):300~305.
    50.王振中,张友梅.衡山自然保护区森林土壤中动物群落研究.地理学报,1989,44(2):205~231.
    51.王宗英.九华山土壤螨类的分布.生态学报,1996,16(10):58~64.
    52.魏朝富,陈世正,谢德体.长期施用有机肥料对紫色水稻土有机无机复合性状的影响.土壤学报,1995,32(2):159~166.
    53.文倩,赵小蓉,陈焕伟等.半干旱地区不同土壤团聚体中微生物量碳的分布特征.中国农业科学,2004,37(10):1504~1509
    54.文倩,赵小蓉,妥德宝等.半干旱地区不同土壤团聚体中微生物量氮的分布特征.中国农业科学,2005,38(1):91~95.
    55.吴金水,肖和艾,陈桂秋等.旱地土壤微生物磷测定方法研究.土壤学报,2003,40(1):70~77.
    56.吴彦,刘世全,付秀琴等.植物根系提高土壤水稳性团粒含量的研究.土壤侵蚀与水土保持学报,1997,3(1):45~49.
    57.熊明彪,雷孝章,田应兵.长期施肥对紫色土土壤酶活性的影响.四川大学学报(工程科学版),2003,35(4):60~63
    58.徐阳春,沈其荣,冉炜.长期免耕与施用有机肥对土壤微生物生物量碳、氮、磷的影响.土壤学报,2002,39(1):89~96.
    59.徐阳春,沈其荣,茆泽圣.长期施用有机物料对土壤及不同粒级中有机磷含量与分配的影响.土壤学报,2003,40(4):593-598.
    60.徐阳春,沈其荣,冉炜.长期免耕与施用有机肥对土壤微生物生物量碳、氮、磷的影响.土壤学报,2002,39(1):89~95.
    61.徐阳春,沈其荣.长期施用不同有机肥料对土壤各粒级复合体中C、N、P含量与分配的影响.中国农业科学,2000,33(5):65~71.
    62.姚斌,钱晓刚,于成志等.土壤微生物多样性的表征方法.贵州农业科学,2005,33(3):91~92.
    63.姚斌,徐建民,张超烂.甲磺隆对土壤微生物多样性的研究.土壤学报,2004,41:320~322.
    64.姚槐应,何振立,黄昌勇.红壤微生物量氮的周转期及其研究意义.土壤学报,1999,36(3),385~394.
    65.姚贤良,于德芬等.集约农作系统下的土壤结构.Ⅰ.有机肥及其施用方法对土壤结构的影响.土壤学报,1985,22(3):241~249.
    66.殷士学.土壤微生物生物量及其养分循环关系的研究进展.土壤学进展,1993,21(4),1~8.
    67.尹瑞玲.微生物与土壤团聚体.土壤学进展.1985,13(4):24~29.
    68.尹文英.土壤动物学的回顾与展望[J].生物学通报,2001,36(8):1~3.
    69.袁玲.杨邦俊.郑兰君等.长期施肥对土壤酶活性和氮磷养分的影响.植物营养与肥料学报,1997,3(4):300~306
    70.张成娥,陈小莉,郑粉莉.子午岭林区不同环境土壤微生物生物量与肥力关系研究,生态学报,1998,18(2),218-222.
    71.张平究,李恋卿,潘根兴等.长期不同施肥下太湖地区黄泥土表土微生物碳氮量及基因多样性变化.生态学报,2004,24(12):2818~2824.
    72.张桃林,潘剑君,赵其国.土壤质量研究进展与方向.土壤,1999(1):1~72.
    73.张宪武等.土壤微生物研究—理论、应用、新方法.沈阳:沈阳出版社,1993,483~504.
    74.章家恩,蔡燕飞,高爱霞等.土壤微生物多样性实验研究方法概述.土壤,2004,36(4):346~350.
    75.章家恩,廖宗文.试论土壤的生态肥力及其培育.土壤与环境,2000,9(3):253~256.
    76.章明奎,何振立,陈国潮等.利用方式对红壤水稳团聚体形成的影响,土壤学报,1997,34(4):359~366.
    77.赵秉强,张夫道.我国的长期肥料定位试验研究[J].植物营养与肥料学报,2002,8(增刊):3-8.
    78.赵丽珍,王兴礼,刘郁文等.作物根茬对土壤团聚体的影响.吉林农业大学学报,1991,13(1):50~54.
    79.郑洪元,张德生.土壤动态生物化学研究.北京:科学出版社,1982
    80.周礼凯,严昶升,武冠云等.土壤肥力实质的研究Ⅲ.土壤学报,1986,23(3):193-203.
    81. Abbott L K and Murphy D V, Soil Biological Fertility. Kluwer Academic Publishers, 2003
    82. Acton D F, Gregorich L J. The health of our soils: toward sustainable agriculture in Canada [M]. Agriculture Agri-Food Canada, CDR Unit, Ottawa, 1995.
    83. Adams TM. and Laughlin RJ. The efects of agronomy on the carbon and nitrogen contained in the soil biomass. J. Agti. Sci. (Camb.), 1998, 97: 319~327.
    84. Altieri M A. The ecological role of biodiversity in agroecosystems. Agricuture, Ecosystems and Enviroment. 1999, 74: 19~31
    85. Anderson T H and Domsch K H. Ratios of microbial biomass carbon to total organic carbon in arable soils. Soil Biology and Biochemistry. 1989, 21: 471~480
    86. Angers D A, Recous S, Aita C. Fate of carbon and nitrogen in water-stable aggregates during decomposition of ~(13)C~(15)N-labelled wheat straw in situ. European J Soil Sci. 1997, 48: 295~300
    87. Anthony G O' Donnell, Melanie Seasman, Andrew Macrae, et al. Plants and fertilizers as drivers of change in microbial community structure and function in soils. Plant and Soil, 2001, 232: 135~145.
    88. Antontio Gelsomino, Anneke C Kejer-Wolters, Giovanni Cacoo. Assessment of bacterial community structure in soil by polymerase chain reaction and denaturing gradient gel electrophoresis. Journal of Microbiological Methods, 1999, 38(1-2): 1~5.
    89 Aoyama M, Angers D A, N'Dayegamiye A. Particulate and mineral associated organic matter in stable aggregates as afected by fertilizer and manure applications. Canadian J. Soil Sci. 1999a, 79: 295-302.
    90. Aoyama M, Angrs D A, N'Dayegamiye A, Bissonnete N. Metabolism of 13C-labeled glucose in aggregates from soils with manure application. Soil Biology And Biochemistr.2000, 32(3):295~300.
    91. Aref S, Wander M M. Long-term trends of corn yield and soil organic matter in different crop sequences and soil fertility treatments on the Morrow Plots[J]. Adv Agro, 1998, 62: 153~161.
    92. Aulakh M S,Rennie D A and Paul E A. Gaseous nitrogen losses from soils under zero till as compared with conventional-till management systems Journal of Environmental Quality. 1984, 13: 130~136.
    93. Ayanaba A., Tuckwell S.B. and Jeninson D.S. The effects of clearing and cropping on the organic reserves and biomass of tropical forest soils. Soil Biol. Biochem, 1976, 8, 519~525.
    94. Balota E. L., Filho A. C., Andrade D.S., Dick R.P. Long-term tillage and crop rotation effects on microbial biomass and C and N mineralization in a Brazilian Oxisol. Soil & Tillage Research, 2004, 77: 137~145.
    95. Barea. J.M. Vesicular-arbuscular myccorrhizae as modify of soil fertility. Advance Soil Science, 1991, 15: 1~10.
    96. Beare M M, et al. Influences of mycelial fungi on soil aggregation and organic matter storge in convetional and no-tillage soils. Applied Soil Ecology 1997, 5(3): 211~219.
    97. Bedard C and Knowlves R. Physiology, biochemistry and specific inhibitors of CH_4, NH_4~+ and CO oxidation by methanotrophys and nitrifiers. Microbiological Reviews. 1989, 53: 63~84.
    98. Belay A, Claassens A S, Wehner F C. Effect of direct nitrogen and potassium and residual phosphorus fertilizers on soil chemical properties, microbial components and maize yield under long-term crop rotation. Biology and Fertility of Soils, 2002, 35(6): 420~427.
    99. Berae M H, Hendrix P F, and Coleman D C. Aggregate-protected and unprotected organic matter pools in conventional and no-tillage soils. Soil Sci Soc Am J. 1994, 58:787~795.
    100. Besnard, E. et al. Fate of particulate organic matter in soil aggregates during cultivation.Eur. J. Soil Sci. 1996,47:495~503.
    101. Bethlenfalvay G J, et al. Relationship between soil aggregation and mycorrhizae as influenced by soil biota and nutrition. Bio Fertil Soil. 1999,28:356~363.
    102. Biederbeck V.O, Campbell C.A. and zentner R.P. (1984). Effect of crop rotation and fertilization on some biological properties of a loam in southwestern Saskatchewan. Can. J. Soil Sci,64,355~367.
    103. Bowman, R. A. et al. Soil organic mater changes in intensively cropped dryland systems. Soil Sci. Sco. Am. J. 1999, 63: 186~191.
    104. Bremer E,Van Kessel C.Extractability of microbial ~(14)C and ~(15)N-labelled glucose and (NH_4)_2SO_4 to soil.Soil biol.biochem, 1990,22:707~713.
    105. Brookes P C,McGrath S P. Effects of metal toxicity on the size of the soil microbial biomass.Journal of Soil Science. 1984,35:341~346.
    106. Brooks P C, Powlson D S, Jenkinson D S.Measurement of microbial bbiomass phosphorus in soil.Soil Biol.Biochem,1982, 14:319~329.
    107. Bunemanna E K, Bossiob D A, Smithsonb P C, et al. Microbial community composition and substrate use in a highly weathered soil as affected by crop rotation and P fertilization. Soil Biology & Biochemistry, 2004, 36(6): 889~901.
    108. Bushby H V A and Marshall K C. Some factors affecting the survival of rootnodule bacteria on desiccation.Soil Biology and Biochemistry.1977,9:143~147.
    109. Cambardella C A, and Elliot E T. Particulate soil organic mater across a grassland cultivation sequence. Soil Sci Sco Am J. 1992, 56:776-783.
    110. Camel, S.B., Reyes-Soils, M.G., Ferrera-Cerrato, R. Growth of vesicular arbuscular mycorrhizal mycelium throuth bulk soil. Soil Science Society of America Journal, 1991,55:389-393.
    111. Campbell C A, Lafond G P, Biederbeck V O,etc. Effect of crop rotation and culture practices on soil organic matter, microbial biomass and respiration in a thin black chernozem. Canada Journal of Soil Science. 1991,71:363~376
    112. Campbell C A and Lafond G P, Harapiak J T, et al. Relative cost to soil fertility of long-term crop production without fertilization. Canadian Journal of Plant Science, 1996, 76(3), 401~406.
    113. Carmine Crecchio, Antonio Gelsomino, Roberto Ambrosoli, et al. Functional and molecular responses of soil microbial communities under differing soil management practices. Soil Biology & Biochemistry, 2004, 36(11): 1873~1883.
    114. Changey K, et al. Studies on aggregate stability.: Re-formation of soil aggregates. J Soil Sci. 1986a, 37(2): 329~335.
    115. Changey K, Swift R S. Studies on aggregate stability. Ⅰ: The elect of humic substances on the stability of re-formed soil aggregate. J Soil Sic. 1986b, 37: 337~343.
    116. Chapman S J.Microbial sulfur in some Scottish soils.Soil Biol.Biochem,1987,19(9):301~305.
    117. Chaussod R,Houat S,Guiraud G.Size and turnover of the microbial biomass in agriculture soils,laboratory and field measurements,In Jenkinson D S,Smith K A.eds.Nitrogen Efficiency in Agriculture Soils.London and New York: Elsevier, 1988, 312~328.
    118. Chaussod R. Houat S, Guirand G. (1988). Size and turnover of the microbial biomass in agricultural soils, laboratory and field measurements. In Nitrogen Efficiency in Agricultural Soils(1) S Jenkinson and K A Smith,eds), Elsevier, London and New York, pp312-328.
    119. Christensen, B.T. Straw incorporation and soil organic matter in macro-aggregations and particle size separate. Journal of Soil Science, 1986, 37:125-135.
    120. Collins-Geirge, N., Lal, R. Infilitration into columns swelling soil as studied by high speed photography. Australia Soil Research, 1970,8:195-207.
    121. Daly M J,tewart D P C. Influence of effective microorganisums on vegetable production and carbon mineralisation—A preliminary investigation. Journal of Sustainable Agriculture. 1999, 14: 15~25.
    122. Debosz G P, Rasmussen P H,Pedersen A R,Temporal variations in microbial biomass C and cellulolytic enzyme activity in arable soils: effect of organic matter input.Applied Soil Ecology, 1999,13:209~218.
    123. Degens B P and Vojvodi-Vukovi M.ampling strategy to assess the effects of land use on microbial functional diversity in soils.Australian Journal of soil research. 1999,37:593~601.
    124. Degens B, et al. Increasing the lenghth of hyphae in a sandy soil increases the amount of water-stable aggregates. Applied Soil Ecology. 1996, 3(2): 149~159.
    125. Dick R P. A review-long-term effects of agriculture systems on soil biochemical and microbial parameters. Agriculture Ecosysterms and Environment. 1992, 40: 25~36.
    126. Dictor M C,Tessier L, Soulas G.Reassessment of Keccoefficient of fumigation-extraction method in a soil profile.Soil Biol. Biochem. 1998,30:119~127.
    127. Domzal, H., Hodara, J., Tursk R. The effects of agricultural use on the structure and physical properties of three soil types. Soil & Tilage Research, 1993, 365~375.
    128. Doran J W, Sarrantonio M A. Soil health and sustainability. Advances in Agronomy 1996, 56: 1~54.
    129. Doren J W and Werner M R. Management and Soil Biology.In:Sustainable Agriculture in Temperate Zones. 1990,15:1~177.Wiley.New York.
    130. Dofioz, J.M., Robert, M., Chenu, C. The role of roots, fungi and bacteria on clay particle organization. An experimental approach. Geodema, 1993,56:179-194.
    131. Douglas C. Edmeadesl. The long-term effects of manures and fertilizers on soil productivity and quality: a review [J]. Nutrient Cycling in Agroecosystems, 2003, 66(2): 165~180.
    132. Drinkwater L E, Wagoner P, Sarrantonio M. Legume-based cropping systems have reduced carbon and nitrogen losses. Nature, 1998, 396(6708), 262~265.
    133. Ebhin Masto R, Chhonkar P K, Dhyan Singh, et al. Changes in soil biological and biochemical characteristics in a long-term field trial on a sub-tropical inceptisol. Soil Biology & Biochemistry, 2006, 38(7): 1577~1582.
    134. Edwards C A,Lal R,Madden P, etc. Sustainable Agricuture Systems. Soil and Water Conservation Society. 1990.Ankeny.lowa.
    135. Edwards, A.P., Bremner, J.M. Microaggregates in soil. Journal of Soil Science, 1967,18:64-72.
    136. Elcio L. Balota, Arnaldo Colozzi Filho, Diva S. Andrade, et al. Long-term tillage and crop rotation effects on microbial biomassand C and N mineralization in a Brazilian Oxisol. Soil & Tillage Research, 2004, 77(2): 137~145.
    137. Elliott E T. Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils. Soil Sci Soc Am J. 1986, 50: 627-633
    138. Filip Z, Clause H,Dippell G. Degradation of humic substances by soil microorganisums-a review.Zeitschrift fur Pflanzenernahrung und Bodenkunde. 1998,161:605~612.
    139. Franzluebbers A.J., Zuberer D.A. and Hons F.M. (1995). Comparison of microbiological methods for evaluating quality and fertility of soil. Biology and Fertility of Soils, 19, 135-140.
    140. Glendining M J and Poulton P R.Iterpretation difficulties with long-term expriment. Ealuation of soil organic models. Springer-Veflag. Berlin, 1996, 99~109.
    141. Gregorich, E. G et al. Towards a minmum data set to assess soil organic matter quality in agricultural soils. Can. J. Soil Sci. 1994, 74:367~385.
    142. Greorich F G, Ellert B H. Turnover of soil organic mater and storage of corn residue carbon estimated from natural 13C abundance. Can J Soil Sci. 1995,75:161~167
    143. Guggenbergerq et al. Microbial contributions to the aggregation of a cultivated grassland soil amended with starch. Soil Bio Biochem. 1999, 31:407~419.
    144. Gupta V V S.R. and Germida J.J. Distribution of microbial biomass and its activity in diferent soil aggregate size classes as afected by cultivation. Soil Biol. Biochem., 1988, 20:777~786.
    145. Harley, J.L., Smith, S.E. Mycorrhizal Symbiosis. Academic Press, London, 1983,pp:483
    146. Hart M R, Brooks P C. Soil microbiamass and mineralisation of soil organic matter after 19 years of cumulative field applications of pesticides. Soil Biology and Biochemistry 1996, 28: 1641~1649
    147. Hassink, J. Long-term tillage effect on soil chemical properties and organic matter fractions[J]. Soil Sci. Sco. Am. J. 1999, 63: 1335~1341.
    148. Haynes R J, Beare M H. Influence of six crop species on aggregate stability and some labile organic mater fractions. Soil Bio Biochem. 1997, 29(11-12): 1647~1653.
    149. Haynes R J, Tregurha R. Effects of increasing periods intensive arable vegetable production on biological, chemical and physical indices of soil quality. Bio Fertil Soil. 1999, 28: 259~266.
    150. Haynes R J. Labile organic matter fractions and aggregate stability under short-term, grass-based leys, Soil Biology And Biochemistry. 1999, 31(13):1821~1830.
    151. Haynes, R,J., Beare, M.H. Influence of six crop species on aggregate stability and some labile organic matter fractions. Soil Biology & Biochemistry, 1997, 24:358~363.
    152. He Z L, Yao H Y, Chen G C.. Relationship of crop yield to microbial biomass in highly-weathered soils of China. In: Ando T et al, ed. Plant Nutrition for Sustainable Food Production and Environment, Tokyo: Kluwer Academic Publishers, Japan, 1997, 751~752.
    153. Hedley M J, Stewart J W B.Method to measure microbial phosphate in soils. Soil Biol. Biochem, 1982, 14: 377~385.
    154. Hedley M.J., Stewart J.M.B,Chauhan B.S. (1982). Changes in labile inorganic and organic soil phosphorus fractions induced by cultivation practices or regular carbon additions. Soil Sci.Soc.Amer.J., 46,970~976.
    155. Insam H, Mitchell C C, Dormaar J F. Relationship of soil microbial biomass and activity with fertilization practice and crop yield of three Ultisols. Soil Biol&Biochern, 1991, 23,459~464.
    156. Insam H. and Haselwandter K.H. Metabolic quotient of the soil microflora in relation to plant succession.Oecologia,1989,174~178.
    157. Jackson L E,Calderon F J,Steenwerth K L,et al,Responses of soil microbial processes and community structure to tillage events and implications for soil quality.Geoderma,2003,114(3-4) :305~317.
    158. Jastrow J D,Bouton T W,Miller R M.Carbon dynamics of aggregate associated organic mater estimated by carbon-13 natural abundance.Soil Sci Sac Am J.1996,60:801-807
    159. Jastrow J D.Soil aggregate formation and the accrual of particulate and mineral-associated organic mater,Soil Biology Biochemistry.1996,28(4-5) :665-676
    160. Jawson,M.D.,L.F.Elliott,R.I.Papendick,and GS.Campbell.The decomposition of ~(14) C-labeled wheat straw and ~(15) N-labeled microbial material.Soil Biology and Biochemistry,1989,11:417-422.
    161. Jchapman S J.Microbial sulfur in some Scottish soils.Soil Biol.Biochem,1987,19(9) :301~305
    162. Jenkinson D S and Powlson D S.The effects of biocidal treatments on metabolism in soil:A method for measuring soil biomass.Soil Biology & Biochemistry,1976,8(3) :209~213.
    163. Jenkinson D S,Parry L N.The nitrogen cycle in the Broadbalk wheat experiment.A method for the turnover of nitrogen through the soil microbial biomass.Soil Biol.Biochem,1989,2l(4) :535~54l.
    164. Jenkinson D S.The determination of microbial biomass carbon and nitrogen in soil.In Advances in nitrogen cycling in agricultural ecosystem.International Symposium,Brisbane,Australia,1987,11~15.
    165. Joergensen R G and Mueller T.The fumigation-extraction method to estimate soil microbial biomass:calibration of the k_(EC) value.Soil Biology & Biochemistry,1996,28(1) :3~37.
    166. Jordan D,Kremer R.J.,Bergfield W.A.,Kim K.Y and Cacuio VN.Evaluation of microbial methods as potential indicators of soil quality in historical agricultural fields.Biology and Fertility of Soils,1995,19,297~302.
    167. Jordan D,Kremer RIand Grace RR.Potential use of soil microbial activity as an indicator of soil quality.In Soil Biota:Management in Sustainable Farming Systems,Pankhurst C.E.and Doube B,M(eds),1994:245-249.
    168. Kabir Z,and Koide R T.The efect of dandelion or a cover crop on mycorrhiza inoculum potential,soil aggregation and yield of maize.Agriculture Ecosystems & Environment.2000,78:167-174
    169. Karlen,D.A.and CambandellaC.A.Conservation strategies for improving soil quality and organic mater storage.In:Lai R.and Stewart B.A.(Ed.) Struture and organic matter storage in agriculture soils.Adv.Soil Sci.Lewis Publ.Boca Raton,FL.1996,395-420.
    170. Kennday AC and Papendick R I.Microbial characteristics of soil quality.J Soil Water Conv,1995,50(3) :243~248
    171. Kennedy A C e tal.Soil microbial diversity and the sustainability of agricultural soils[J].Plant and Soil,1995,(170) :75~86
    172. Kilbertus,G.Etude des microhabitats contents dans les aggregate du sol:leur relation avec la biomass bacterienne et la taille des prokaryotes presents.Rev.Ecol.Biol.Sol.1980,17:573-558.
    173. Kouno K.,Lukito H.P.,Ando T.Minimum available N requirement for microbial biomass P formation in a regosol.Soil Biology & Biochemistry.1999,31,797~802.
    174. Kushwaha C.P.,Tripathi S.K.,Singh K.P.2000. Variations in soil microbial biomass and N availability due to residue and tillage management in a dryland rice agroecosystem.Soil & Tillage Research 56,153~166.
    175. Lehmann, J. et al. Organic mater stabilization in a Xanthic Ferralsol of the central Amazon as afected by single trees: chemical characterization of density, aggregate, and particle size fractions. Geoderma. 2001, 22(1-2): 147~168.
    176. Leigh R A, Johnston A E. Long-term experiments in agriculture and ecological sciences. In: Proceeding of a conference to celebrate the 150th anniversary of Rothamsted Experiment Station, held at Rothamsted, Printed and bound in the UK at University Press, Cambridge, 1994, 14-17.
    177. Lovell R D, Jarvis S C, Bardgett R D. Soil microbial biomass and activity in long-term grassland: effects of management changes. Soil Biology & Biochemistry, 1995, 27(7): 969~975.
    178. Makoto Kinura, Taketo shi Shibagaki, Yasunori Nakajina, et al. Community structure of the microbiota in the floodwater of a Japanese paddy field estimated by restriction fragment length polymorphism and denaturing gradient gel electrophoresis pattern analyses. Biol Fertil Soils, 2002, 36(4): 306~312.
    179. Marinissen J C Y, Dexter A R. Mechanisms of stabilization of earthworm casts and artificial casts. Bio Fertil Soils. 1990, 9: 163~167.
    180. Marshall K C. Clay mineralogy in relation to to survival of soil bacteria. Annual Review of Phytopathology. 1975, 13: 357~373.
    181. Martens D A. Nitrogen cycling under different soil bacteria. Advances in Agronomy. 2001, 70: 143~192.
    182. Martikainen P J,Palojarvi A.Evaluation of the fumigation-extraction method for the determination of microbial C and N in a range of forest soils.Soil Biol.Biochem,1990,22:797~802.
    183. Martin J P, Martin W P, Page J B,et al. Soil aggregation. Agronomy, 1995,23:1-7.
    184. Martyniuk S,Wagner G H.Quantitative and qualitative examination of soil microflora associated with different management systems. Soil Science, 1878,125,343~350.
    185. McCarty G W. Models of action of nitrifition inhibitors.Biology and Fertility of Soils. 1999,29:1~9
    186. McGill W B,Cannon K,Robertson J A. Dynamics of soil microbial biomass and water-soluble organic C in Breton L after 50 years of cropping to two rotations. Can.J.Soil Sci, 1986, 66,1-19.
    187. McGonigle T P and Miller M H. Development of fungibelow ground in association with plants growing in disturbed and undisturbed soils. Soil Biology and Biochemistry. 1996,3:263~269.
    188. Mendes I. C, Bandick A. K, Dick R. P, et al. Microbial Biomass and Activities in Soil Aggregates Affected by Winter Cover Crops. Soil Sci. Soc. Am. J, 1999, 63:873-881.
    189. Miller, R.M., Jastrow, J.D. Hierarchy of root and mycorrhizal fungal interactions with soil aggregation. Soil Biology & Biochemistry, 1990,22:579~584.
    190. Moore J M,Klose S and Tabatabai M A. Soil microbial biomass carbon and nitrogen as affected by cropping systems. Biology and Fertility of Soils.2000,31:200~210
    191. Nanda S K, Behera B.Effects of continuous manuring on microbial population,ammonification and CO_2 Evolution in a rice soil[J].Oryza, 1998,25(4):413~416
    192. Ndayeyamiye A,Cote D.Effect of long-term pig slurry and solid cattle manure application on soil chemical and biological properties[J].Canadian Journal of Soil Science, 1989, 69(1): 39~47
    193. Nsabimana D., Haynes R.J., Wallis F.M. Size, activity and catabolic diversity of the soil microbial biomass as affected by land use. Applied Soil Ecology,2004,26:81~92
    194. Oades, J.M., Waters, A.G. Aggregate hierarchy in soils. Aust. J. Soil Sci., 1991, 29: 815~828
    195. Petra Marschnera, Ellen Kandeler, Bernd Marschner, Structure and function of the soil microbial community in a long-term fertilizer experiment. Soil Biology & Biochemistry, 2003, 35(3): 453~461.
    196. Plaza C, Hernández D, García-Gil J C, Polo A. Microbial activity in pig slurry-amended soils under semiarid conditions. Soil Biology & Biochemistry, 2004, 36(10): 1577~1585
    197. Powlson D.S. and Jenkinson D.S. The efects of biocidal treatments on metabolism in soil-11. Gamma irradiation, autoclaving, airdrying and fumigation. Soil Biol.Biochem, 1976, 179~188.
    198. Puget, P., Angers, D.A., Chenu, C. Nature of carbohydrates associated with water-stable aggregates of two cultivated soils. Soil Biology & Biochemistry, 1999, 31(1): 55~63.
    199. Roeth F W. Enhanced herbicide degradation in soil with repeat application. Review in Wheat Science. 1986, 2: 45~65
    200. Roper M. Sorting out sandy soils. Microbiology Australia121121Piggott S1981The Agrarian History of England and Wales Volume 1 I.Prehistory. Cambridge University Press.Cambridg, 1998,213~214.
    201. Saggar S, Yeates G W, Shepherd T G. Cultivation effects on soil biological properties, microfauna and organic matter dynamics in Eutric Gleysol and Gleyic Luvisol soils in New Zealand. Soil Tillage Res, 2001, 58(1-2): 55~68
    202. Sai dou Nourou Sall, Dominique Masse, Ndèye Yacine Badiane Ndour, et al, Does cropping modify the decomposition function and the diversity of the soil microbial community of tropical fallow soil? Applied Soil Ecology, 2006, 31(3): 211~219.
    203. Sakamato K., Hodono N. And Yoshida T. Relationship between the size and the dphysiological properties of the soil microbial biomass. Trans. 15th World Congr. Soil Sci., Acapulco, Mexico, V4b, 1994, pp62-63.
    204. Schnurer J,Rosswall T.Mineralization of nitrogen form ~(15)N labbled fungi, soil microbial biomass and roots and its uptake by barley plants. Plant and Soil, 1987, 102:71~78
    205. Schwab A P, Owensby C E, Kulyingyuong S. Changes in soil chemical properties due to 40 years of fertilization. Soil Science, 1990, 149(1),35-43.
    206. Shen S M,Hart P B S,Powlson D S,et al.The nitrogen cycle in the broad balk and experiment: 15N-labbled fertilizer residues in the soil and in the soil microbial biomass. Soil Biol.Biochem,1989, 21(4):529~533.
    207. Shi Z,Wang K,Bailey J S,etc. Temporal changes in the spatial distribution of some soil properties on a temperate grassland site.Soil Use and Management.2002,18:353~362.
    208. Singh S and Singh J S. Water-stable aggregates and associated organic matter in forest, savanna, and cropland soils of seasonally dry tropical region, India. Bio Fertil Soil. 1996, 22: 76~82.
    209. Six J, Elliot E T, Paustian K and Doran J W. Aggregation and soil organic matter accumulation in cultivated and native grassland soils. Soil Sci Soc Am J. 1998, 62: 1367~1377.
    210. Six J, Elliott E T, Paustian K. Aggregate and soil organic mater dynamics under conventional and no-tillage systems. Soil Soc Sci Am.J. 1999a, 63:1350~1358.
    211. Six, J. et al. Impact of elevated CO_2 on soil organic matter dynamics as related to changes in aggregate turnover and residue quality. Plant and Soil. 2001,234:27~36.
    212. Six, J., Ellliott,K., Combrink, E.K. Soil structure and soil organic matter: Ⅰ.Distribution of aggregate associated carbon.Soil Research Society of America Journal, 2000,64:681-689.
    213. Smith J L,Paul E A.The significance of soil micro biomass estimations.IN: Bollag J,Stotzky G. ed.Soil Biochemistry. New York: Marcel Dekker, USA.1991.356~396.
    214. Sorensen L.H.. Organic matter and microbial biomass in a soil incubated in the field for 20 years with ~(14)C-albelled barley straw. Soil Biol. Biochem, 1987, 19, 39~42.
    215. Sparling G P, Murphy D V,Thompson R D,etc. Short-term net N mineralisation from plant residues and gross and net N mineralisition from soil organic N after rewetting of a seasonally dry soil.Australia Journal of Soil Research. 1995,33:961~973
    216. Sparling G P. Ratio of microbial biomass carbon to soil organic carbon as a sensitive indicator of changes in soil organic matter. Australian Journal of Soil Research, 1992, 30(2): 195~207.
    217. Sparling G P. Soil Microbial Biomass, Activity and Nutrient Cycling as Indicators of Soil Health, in: C. Pankhurst, B.M. Doube, V.V.S.R. Gupta (Eds.), Biological Indicators of Soil Health, CABI Publishing,Wallingford, Oxon, UK, 1997, pp. 97~120
    218. Sparling G P.Soil microbial biomass,activity ang nutrient cycling as indicators of soil health. Biological indicators of soil health.CAB InternationalWallingford,Oxon.UK, 1990, 97~119.
    219. Thirukkumaran C. M., Parkinson D.Microbial respiration, biomass, metabolic quotient and litter decomposition in a lodgepole pine forest floor amended with nitrogen and phosphorous fertilizers. Soil Biology & Biochemistry2000, 32, 59-66.
    220. Thompson J P. Soil biotic and biochemical factors in a long-term tillage and stubble management experiment on a Vertisol.Ⅱ.Nitrogen deficiency with zero tillage and stubble retention.Soil and Tillage Research. 1992,22:339~361.
    221. Timo Kautz, Stephan Wirth, Frank Ellmer. Microbial activity in a sandy arable soil is governed by the fertilization regime. European Journal of Soil Biology, 2004, 40(2): 87~94.
    222. Tisdall J M and Oades J M. Organic mater and water-stable aggregate in soil. JSoil Sci. 1982, 33(2): 141~163.
    223. Tisdall, J.M. Fungal hyphae and structure stability of soil. Aust. J. Soil Res, 1991,29:729-743.
    224. Tisdall, J.M. Possible role of soil microorganisms in aggregation in soils. Plant and Soil. 1994,159:115~121.
    225. Tisdall, J.M., Oades, J.M. Organic matter and water-stable aggregate in soil. Journal of Soil Science, 1982,33(2):141~163.
    226. Tisdall, J.M., Oades, J.M. The effect of crop rotation on aggregation in a red-brown earth. Australia Journal of Soil Research. 1980,18:423~433.
    227. Twomlow S,Riches C,O'Neill D,etc. Sustainable dryland smallholder farming in sub-saharan Africa.Annala of Arid Zone.1999,38:93~135.
    228. Van der Werff H M G..Assessing the impact of pesticides on the environment.Agriculture Ecosystems and Environment. 1996, 11: 213~233.
    229. Van Veen J A,Ladd L N,Amato M.Turnover of carbon and nitrogen through the microbial biomass in a sandy loam and a clay soil incubated with 14C-glucose ~(15)N-(NH_4)_2SO_4 under different moisture regimes.Soil Biol.Biochem, 1985,17:747~757.
    230. Vance E D, Brooks P C,.Jenkinson D S.An extraction method for measuring soil microbial biomass C.Soil Biol.Biochem,1987, 19(6):703~707.
    231. Verhoef H A and Brussaard L. Decomposition and nitrogen mineralisation in naturual and agroecosystems.The contribution of soil animals.Biogeochemistry. 1990,11:175~211.
    232. Voroney R P, Eldor A P.Determination of Kc and K_N in situ for calibration of the chloroform fumigation—incubation method. Soil Biol.Biochem, 1984,16(1):9~14.
    233. Wander M M, Yang X M. Influence of tillage on the dynamics of loose- and occluded particulate and humidified organic matter fraction. Soil Bio Biochem. 2000, 32: 1151~1160.
    234. Wander, M. M. and Bollero G A. Soil quality assessment of tillage impacts in Illinois. Soil Sci. Sco. Am. J. 1999, 63: 961~971.
    235. Wang Y, Shen Q.R., Yang Z.M. and Yu L. Size of microbial biomass in soils of China. Pedosphere, 1996, 6(3): 265~272.
    236. Wardle D A. A comparative assessment of fators which influence microbial biomass carbon and nitrogen levels in soil.Biologyical Reviews. 1992,67:321~355.
    237. Watts C W, Eich Sand Dexter A R. Effects of mechanical energe inputs on soil respiration at the aggregate and field scales.Soil and Tillage Research.2000,53:231~243.
    238. Wilkinson S C,Anderson J M,Scardelis S P, etc. PLFA profiles of microbial communities in decomposing conifer litters subject to moisture stress.Soil Biology and Biochemistry. 2002, 34:189~200.
    239. Witer E. Soil C balance in a long-term field experiment in relation to the size of the microbial biomass. Biology and Fertility of Soils, 1996, 23, 33~37.
    240. Witer E., Martensson A.M. and Garcia F.V. Size of the soil microbial biomass in a long-term field experiment as afected by different N-fertilizers and organic manures. Soil Biol Biochem, 1993, 25, 659-669.
    241. Wu J,Joergensen R G,Birgit Pommerening,etc.Measurement of soil microbial biomass C by fumigation—extraction—An automated procedure.Soil Biol.Biochem. 1990, 22(8): 1167~1169
    242. Wu J.The turnover of organic C in Soils.PHD.University of Reading. 1991.UK
    243. Yadav R L, Yadav D S, Singh R M, Kumar A. Long term effects of inorganic fertilizer inputs on crop productivity in a rice-wheat cropping system. Nutrient Cycling in Agroecosystems, 1998, 51: 193-200.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700