用户名: 密码: 验证码:
瞬态极化统计特性及处理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代战场电磁环境的日趋复杂恶劣,用动态的、统计的观点研究时变电磁波的极化现象,揭示波极化变化的内在规律,挖掘蕴含其间的物理本质,探究雷达目标与环境极化散射的特征机理,建立雷达目标极化散射统计特性的有效表征方法,最大限度的发掘和利用雷达传感系统所获得的电磁信息,使之能够适应复杂多变的战场环境、具备智能化的探测识别能力,已经成为雷达极化信息处理技术领域所面临的基础课题和紧迫任务。
     为了能够有效提取和利用蕴含在随机极化波和起伏目标极化散射中的内在规律和丰富信息,以统计的、动态的观点来重新审视、研究了电磁波和雷达目标电磁散射的时变极化特性,建立了瞬态极化统计学理论的基础框架。在此基础上,针对导弹、飞机等空间/空中目标,对极化雷达中的弱目标检测、真假目标鉴别及目标识别等应用问题进行了系统深入的研究,为雷达系统削弱恶劣电磁环境的影响、对抗有源干扰、反隐身和识别真假目标等方面提供了新颖的、极具潜力的技术途径。
     具体内容可分为理论研究和应用研究两个方面:
     在理论研究方面,以瞬态极化理论为基点,以时变电磁波和雷达目标极化散射为对象,研究了瞬态极化的统计特性,建立了瞬态极化统计学理论的基础框架,深刻地揭示出时变电磁波和雷达目标极化散射的统计规律,为时变电磁波极化表征以及雷达目标极化散射特性的刻划提供了有力的理论工具。具体内容包括:①研究了随机极化波瞬态极化的统计特性,提出了电磁波瞬态极化相似系数、极化起伏度和极化采样序列等新概念,研究了正交极化基的选择对瞬态极化描述子的影响,阐释了瞬态Stokes矢量和瞬态极化投影矢量等表征参量的物理内涵及其性质,导出了零均值和非零均值随机极化波在正态分布假设条件下幅度、相位、幅度比、相位差、瞬态Stokes矢量以及瞬态极化投影矢量等的概率密度分布,分析了随机极化波瞬态极化投影矢量数字特征与波的极化参数(如极化度)之间的依赖关系;②从确定性和统计性两个角度分别研究了雷达目标的时变电磁散射极化特性的表征问题,深入研究了在时变电磁波激励下雷达目标的瞬态极化表征方法,提出了雷达目标瞬态极化散射的特征参量描述和目标间极化散射相似性度量等表征方法;在此基础上,提出并深入研究了雷达目标的瞬态极化Wigner-Ville时频分布及瞬态极化一般类时频分布;最后,给出了起伏目标瞬态极化散射矩阵的统计描述方法,研究了典型电磁波激励下雷达目标散射波的统计特性,分析了雷达目标瞬态极化散射的统计特性与入射波之间的依赖关系。
     这些概念和方法构成了雷达瞬态极化统计理论的基本内容,为随机极化波和雷达目标电磁散射的极化特性分析、特征提取等研究提供了理论依据和有力工具,为随后的极化信
In modern warfare, the electromagnetic (EM) environments have been more and more complicated and adverse. In order to exploit and utilize the EM information utmost, that is, to let the radar sensing system can adapt adverse battleground environments with intelligent detection and recognition capability, some problems are becoming a groundwork and impendent mission in radar polarization information processing. These problems mainly include studying the polarization phenomena of time-varying EM waves from dynamic and statistical viewpoints, revealing the inherent rules of random EM waves, exploring polarization scattering characteristics of radar targets and environments, and founding effectual descriptive means of polarization statistics of radar targets.The dissertation can be divided into two sections. Firstly, the instantaneous polarization(InPol) statistical theory is founded, which is based on InPol theory. From the statistical viewpoint, polarization characteristics of time-varying EM waves and radar target scattering are studied. Thereby, using the theory above, target detection, multi-decoy discrimination, target recognition and other applications have been studied according to polarimetric radar systems and aerial targets (e.g. missiles). The methods and conclusions in this thesis can proffer some novel and promising techniques for weakening the influences of adverse EM environments, confronting active jamming, detecting concealed targets and recognizing targets and other applications.The main contributions of the thesis are as follows:In theory, the radar InPol statistical theory has been founded and InPol theory also has been developed deeply. The main contents include:1) The polarization characteristics of random EM waves are studied from dynamic and statistical viewpoints. Firstly, polarization similar degree, polarization fluctuant degree(PFD) and polarization sampling sequences and other conceptions are presented in this thesis. Secondly, the influences of orthogonal polarization basis to InPol descriptions have been discussed, and the properties of instantaneous Stokes vector or InPol projection vector (IPPV) and other descriptions have been explained. Thirdly, the probability density functions(PDFs) and joint PDFs of amplitude, phase, amplitude ratio, difference of phase, instantaneous Stokes vector and IPPV of random EM waves have been derived in the condition of Gaussian hypothesis, and one moment, variance, compounded moment characteristics of these parameters are also presented. Fourthly, the relation between moment characteristics of IPPV of random EM waves and its polarization parameters (such as degree of polarization) are analyzed. At last, statistical distributions and numerical characteristics of polarization sampling sequences are also analyzed.2) The description problem of time-varying polarization scattering of radar target have been respectively studied from determinate and statistical viewpoints. Firstly, the characteristic descriptions of instantaneous polarization scattering of radar target are derived. Secondly, InPol time-frequency distributions of radar target are presented and the properties of InPol Wigner-Ville distribution or general time-frequency distribution of radar target are also derived. Thirdly, statistical descriptions of instantaneous polarization scattering matrix of radar target have been presented and statistical properties of scattered wave of radar target inspirited by typical electromagnetic wave are given.
    These conceptions and conclusions proffer theoretical foundations and avail tools for polarization characteristic analyzing of random EM waves or radar target scattering, feature extraction and other applications. And these are possessed of practical significance to engineering applications.In application, the InPol statistical properties of radar targets and electro-jamming are presented, and their applications in target detection, discrimination of active-decoy and radar target, classification and recognition of targets in modern warfare are also studied. The main achievements include:1) Statistical and power properties of radar target scattering signal and receiver noise are analyzed respectively based on narrowband polarimetric radar systems. Then, their different statistical properties in IPPV series or instantaneous sub-Stokes series are analyzed and two kinds of detection problems are studied when signal polarization is known or not. Two novel and promising detection algorithms of dim targets are presented by polarization accumulating, which are based on IPVS and PFD respectively. Theories and simulation results show that it can improve the detection performance greatly by optimizing the receiver's bandwidth and transmit pulse width.2) Aiming at coherent pulse radar systems, utilizing the correlation difference between radar targets and receiver noise, a novel dim target detection algorithm which can extract targets' motion information has been presented by "polarization accumulation". Theoretical results and computer simulations show that the detection performance is greatly improved compared to the conventional detector.3) The discrimination problem of radar targets and any elliptic polarized active-decoys is studied. Firstly, polarization scattering characteristics of radar targets and active-decoys are analyzed. Aiming at different polarimetric measuring systems (such as narrowband full-polarimetric radar, narrowband timesharing polarization measurement radar and broadband timesharing polarization measurement radar), several polarimetric discriminators are designed. Then, the usage of these polarization discriminators are analyzed too. And computer simulations indicate that polarimetric radars have potential to distinguish active multi-decoy from radar targets.4) The problem of feature-extraction and recognition of ballistic missile targets is studied in this thesis. Firstly, based on instantaneous polarization scattering matrix of radar targets, the descriptions of its polarization scattering characteristics are presented by theory of matrices. Then, the first and second order polarization measures of radar targets are extracted with measured data of warhead targets, which are insensitive with radar targets' pose. Finally, missile targets classification and identification problem are studied through nearest neighbor recognition methods and satisfied recognition results are achieved.
引文
[1] W. M. Boerner eds. Direct and Inverse Methods in Radar Polarimetry (Proc. of DIMRP'88). Netherlands: Kluwer Academic Publishers, 1992
    [2] D. Giuli. Polarization diversity in radars. Proc. of the IEEE, 1986, 74(2): 245~269
    [3] J.J.van Zyl. On the importance of polarization in radar scattering problems [Ph.D. Dissertation] California Institute of Technology, Pasadena, CA, Jan. 1986
    [4] J.R. Huynen. Phenomenological Theory of Radar Target [Ph.D. Dissertation]. Netherlands: Technical University Delft, 1970
    [5] E.M.Kennangh. Polarization properties of radar reflectors [M.Sc.Thesis]. Dept. Of Electr. Eng., The Ohio State University, Columbus, OH 43212, 1952
    [6] G.Sinclair. The transmission and reception of elliptically polarized radar waves. Proc. IRE-38: 148~151, Feb. 1950
    [7] 王雪松.宽带极化信息处理的研究[博士学位论文].长沙:国防科技大学电子科学与工程学院,1999.6
    [8] 庄钊文,肖顺平,王雪松.雷达极化信息处理及其应用.北京:国防工业出版社,1999
    [9] 肖顺平.宽带极化雷达目标识别的理论与应用[博士学位论文].长沙:国防科技大学电子技术系,1995.12
    [10] 曾勇虎.极化雷达时频分析与目标识别的研究[博士学位论文].长沙:国防科技大学电子科学与工程学院,2004.6
    [11] 何松华.高距离分辨率毫米波雷达目标识别的理论与应用[博士学位论文].长沙:国防科技大学电子技术系,1993.12
    [12] 庄钊文.雷达频域极化域目标识别的研究[博士学位论文].北京理工大学电子工程系,1989.10
    [13] R.Barakat. The statistical properties of partially polarized light, OPTICA ACTA,Vol.32, No.3:295-312,1985
    [14] R.Barakat. Statistics of Stokes Parameters, Journal of Opt. Soc. Au. 4(T):1256-1263, July 1987.
    [15] S.Axellson, Polarimetric statistics of electromagnetic waves scattered by distributed targets, PB93-195907, 1993.2
    [16] R.Touzi, A.Lopes. Statistics of the Stokes parameters and of the complex coherence parameters in one-look and multi-look speckle fields, IEEE. Trans. GRE, Vol.34, No.2:519-531, 1996
    [17] Hyo J.Eom, W.M Boerner. Statistical properties of the phase difference between two orthogonally polarized SAR signals. IEEE Trans.GRS-29(1). 182-184, 1991
    [18] H.A.Ecker, J.W.Jr.cofer. Statistical characteristics of the polarization power ratio for radar return with circular polarization. IEEE Trans on AES, 5:762~769,1969
    [19] G..M.Vachula, R.M.Barrnes. Polarization detection of a fluctuating radar target. IEEE Trans. on AES, 19(2):250~257,1983
    [20] R.S.Raghavan, N.Pulsone, D.J.Mclaughlin. Adaptive estimation of the polarization of a signal. IEEE Trans.on AES, 31 (2):845~852,1995
    [21] 杜耀惟,张强,何卫国.雷达目标极化特性及其在反隐身中的应用[专题报告].信息产业部第十四研究所,1996
    [22] 王被德.电磁波德极化及其应用.电波科学学报,vol.14(3):347~356,1999
    [23] [美]H.Mott著,林昌禄等译.天线和雷达中的极化.成都:电子科技大学出版社,1989
    [24] 肖怀铁.宽带极化毫米波雷达目标特征信号测量与识别算法研究[博士学位论文].长沙:国防科技大学电子科学与工程学院,2000
    [25] 陈曾平.雷达目标结构特征识别的理论与应用[博士学位论文].长沙:国防科技大学电子技术系,1994.10
    [26] 戴博伟.多极化合成孔径雷达系统与极化信息处理研究[博士学位论文].北京:中国科学院电子学研究所,2000.10
    [27] 张国毅.高频地波雷达极化抗干扰技术研究[博士学位论文].哈尔滨:哈尔滨工业大学研究生院,2002.10
    [28] 代大海.极化SAR图像模拟检测与分类研究[硕士学位论文].长沙:国防科技大学电子科学工程学院,2003.12
    [29] 曾清平,董天临,万山虎.极化雷达的发展动态与极化信息的应用前景.北京:系统工程与电子技术,2003,25(6):669~673
    [30] 柯有安.雷达极化理论.南京:现代雷达,1987
    [31] J. R. Huynen. Study on Ballistic-Missile Sorting Based on Radar Cross-Section Data. Special Report NO.4, Radar Target Sorting Based on Polarization Signature Analysis. Palo Alto, CA, Lockheed Aircraft Corp., Missiles and Space Division, Rept. LMSD-288216, May 1960
    [32] A. B. Kostinski, W. M. Boerner. On foundations of radar polarimetry. IEEE Trans. AP, 1986, 34(12): 1395~1404
    [33] Xi A Q, Boerner W M. The characteristic radar target polarization state theory for the coherent monostatic and reciprocal case using the generalized polarization transformation ratio formulation. AEU, Vol.44,No.4,pp.273-281, 1990
    [34] Yamaguchi Y, Sasagawa K, Sengoku M,Abe T, Boerner W M, Yan W L, Xi A Q. Characteristic polarization states of coherently reflected waves based on the Stokes vector formulation. Japan Journal for Electronics and Communication Engineering(JECE),Vol.8,Sept. 1990
    [35] Davidovitz M and Boerner W M. Extension of Kennaugh's optimal polarization concept to the asymmetric matrix case. IEEE Trans.AP-34(4),PP.569-574,Apr. 1986
    [36] Yoshio Yamaguchi, W.M Boerner, Hyo J. Eom etc. On characteristic polarization states in the cross-polarized radar channel. IEEE Trans.GRS-30(5),PP. 1078-1080, 1992
    [37] Y. Foo, and W. M. Boerner. Basic monostatic polarimetric broad band target scattering analysis required for high resolution polarimetric target downrange crossrange imaging of airborne scatterers. Measurement, processing and analysis of radar target signatures, vol. z, OSV-ESL, Sept. 1985
    [38] Dino Giuli, et al. Homopolar and heteropolar generalized ambiguity functions in polarimetric radars. Direct and Inverse Methods in Radar Polarmetry, Part Ⅰ:1367~1388, Kluwer Academic Publishers, Netherlands, 1992
    [39] S.R.Cloude. Group theory and polarization algebra. Optik, 75-1: 26~36, 1986
    [40] A.Guissard. Mueller and Kennaugh matrices in radar polarimetry. IEEE Trans. GRS-32(3): 590~597, May 1994
    [41] J.C.Hubbert. A comparison of radar, optic, and specular null polarization theories. IEEE Trans. GRS-32(3): 658~671, May 1994
    [42] J.C.Hubbert, V.N.Bringi. Spcular null polarization theory: applications to radar metrology. IEEE Trans. GRS-34(4): 859~873, July 1996
    [43] G.S. SANDHU. A real-time statistical polarimetric target model. IEEE Trans. AES, vol.24(1):51~67, 1988
    [44] K.Sarabandi, Derivation of phase statistics from the Mueller matrix. Radio Science, Vol.27,No.5:553~560,1992
    [45] S.H.Yueh, J.A.Kong, J.K.Jao, et al, K-distribution and polarimetric terrain radar clutter, J.Electromagnetic Waves Appl.3 (8):748~768, 1989
    [46] S.Chitroub, A.Houacine, B.Sansal, Statistical characterization and modeling of SAR images, Signal Processing, 82:69~92, 2002
    [47] G.De Grandi, E.Nezry, J.S.Lee et al. On the Statistics of Polarimetric Synthesized Images. IGARSS' 1995: 1418-1421
    [48] Shaun Quegan, Ian Rhodes, Ron Caves. Statistical Models for Polarimetric SAR data. IGARSS' 1994: 1371-1373
    [49] F.T.Ulaby, K.Sarabandi, A.Nashashibi. statistical properties of the Mueller matrix of distributed targets. IEE Proceeding-F, Vol. 139, No.2,April, 1992:136~146
    [50] 金亚秋,张维雄.合成孔径雷达多视图像中4个Stokes参数的统计特性.电子与信息学报,Vol.24,No.11,2002:1948-1658
    [51] A.J.Poelman. On using orthogonally polarized receiving channels to detect target echoes in Gaussian noise. IEEE Trans A.E.S., Vol. AES-11, 1975
    [52] A.J.Poelman. Cross-correlation of orthogonally polarized backscatter components. IEEE Trans A.E.S., Vol. AES-12, 1976
    [53] J. Poelman. Virtual poladsation adaptation: A method for increasing the detection capability of a radar system through polarisation-vector processing. Proc. IEE, Pt. F, 1981, 128(5): 261~270
    [54] J. Poelman. Polarisation-vector translation in radar systems. Proc. IEE, Pt. F, 1983, 130(2): 161~165
    [55] J. Poelman, and J. R. F. Guy. Multinotch logic-product polarisation suppression filters: A typical design example and its performance in a rain clutter environment. Proc. IEE, Pt. F, 1984, 131 (4): 383~396
    [56] J. Poelman. Nonlinear polarization-vector translation in radar system: A promising concept for real-time polarization -vector signal processing via a single-notch polarization suppression filter. Proc. IEE, pt. F, 1984, 131(5): 451~465
    [57] R.T.Compton, JR. On the performance of a polarization sensitive adaptive array. IEEE Trans. AP, 1981, 29(5): 718~725
    [58] R.T.Compton, JR. The tripole antenna: an adaptive array with full polarization flexibility. IEEE Trans. AP, 1981, 29(6):944~952
    [59] R.T.Compton, JR. The performance of a tripole adaptive array against cross-polarized jamming. IEEE Trans. AP, 1983, 31 (4):682~685
    [60] F.E. Nathanson. Adaptive circular polarization. IEEE Int. Radar Conf., 221~225, 1975
    [61] D.Giuli, M.Fossi, M.Gherardelli. Polarization behavior of ground clutter during dwell time. IEE Proc.-F. 138(3), June 1991
    [62] D.Giuli, M.Fossi, M.Gherardelli. A technique for adaptive polarization filtering in radars. Proc. of IEEE Int. Radar Conf., 213~219, 1985
    [63] G. Wanielik, D.J.R.Stock. Radar polarization jamming using the suppression of two fully polarized waves. Radar-87
    [64] G.A.Ioannidis, D.E.Hammers. Optimum antenna polarizations for target discrimination in clatter. IEEE Trans. AP-27(3): 357~363, May 1979
    [65] A.B.Kostinski, W.M.Boerner. On the polarimetric contrast optimization. IEEE Trans. AP-35(8): 988~991, Aug. 1987
    [66] J.J.van Zyl, et al. Imaging radar polarization signatures: theory and observation. Radio Science-22(4): 529~543, July/August 1987
    [67] J.J.van Zyl, C.H.Pages, C.Elachi. On the optimum polarizations of incoherently reflected waves. IEEE Trans. AP-35(7): 818~824, July 1987
    [68] A.B.Kostinski, B.D.James, W.M.Boerner. On the optimal reception of partially polarized waves. 1988 Int'l Symposium on Radio Propagation, Beijing
    [69] D.P.Stapor. Optimal receive antenna polarization in the presence of interference and noise. IEEE Trans. AP-43(5): 473~477, May 1995
    [70] Qiao Xiaolin, Liu Yongtan. Sequential polarization filtering for a ground wave radar. Proc. of CIE 1991 Int'l Conf. on Radar, BeiJing
    [71] 张国毅,刘永坦.高频地波雷达多干扰的极化抑制.电子学报,2001,29(9):1206~1209
    [72] 王雪松,庄钊文,肖顺平等.极化信号的优化接收理论:完全极化情形.电子学报,1998,26(6):42~46
    [73] 王雪松,庄钊文,肖顺平等.极化信号的优化接收理论:部分极化情形.电子科学学刊,1998,20(4):468~473
    [74] 王雪松,庄钊文,肖顺平等.SINR极化滤波器通带性能研究.微波学报,2000,16(1):29~37
    [75] Wang Xuesong, Zhuang Zhaowen, Xiao Shunping. Nonlinear programming modeling and solution of radar target polarization enhancement. Progress in Natural Science, 10(1):62~67,2000
    [76] Wang Xuesong, Zhuang Zhaowen, Xiao Shunping. Nonlinear optimization method of radar target polarization enhancement. Progress in Natural Science, 10(2): 136~140, 2000
    [77] 徐振海 极化敏感阵列信号处理研究[博士学位论文].长沙:国防科技大学电子科学与工程学院,2004.6
    [78] 顾尔顺 有源欺骗干扰的对抗技术 航天电子对抗,1998.No.3:13~16
    [79] 倪汉昌 抗欺骗式干扰技术途径研究 航天电子对抗.1998.No.3:17~20
    [80] 李永祯,王雪松,王涛,肖顺平,庄钊文.有源诱饵的极化鉴别研究.国防科大学报,2004,26(3):83~88
    [81] M. Gherardelli. Adaptive polarization suppression of intentional radar disturbance. Proc. IEE, Pt. F, 1990, 137(6): 407~416
    [82] L. M. Novak, M. B. Sechtin, and M. J. Cardullo. Studies of target detection algorithms that use polarimetric radar data. IEEE Trans. AES, 1989, 25(2): 150~165
    [83] R. D. Chaney, M. C. Burl, and L. M. Novak. On the performance of polarimetric target detection algorithms. IEEE Intl. Radar Conference, 1990:520~525
    [84] L. M. Novak, M. C. Burl, and W. W. Irving. Optimal polarimetric processing for enhanced target detection. IEEE Trans. AES, 1993, 29(1): 234~243
    [85] L.M. Novak, et al. Optimal polarizations for radar detection and recognition of target in clutter. 1993 IEEE National Radar Conference
    [86] E. Pottier, and J. Saillard. Optimal polarimetric detection of radar target in a slowly fluctuating environment of clutter. IEEE Intl. Radar Conference, 1990: 211~216
    [87] D. Maio. Polarimetric adaptive detection of range-distributed targets. IEEE Trans. SP, 2002, 50(9): 2152~2158
    [88] H.R. Park, Y. K. Kwag, and H. Wang. An efficient adaptive polarimetric processor with an embedded CFAR. ETRI Journal, 2003, 25(3): 171~178
    [89] D. Pastina. Adaptive polarimetric target detection with coherent radar. IEEE Intl. Radar Conference, 2000: 93~97
    [90] Farina, F. Scannapieco, and F. Vinelli. Target detection and classification with polarimetric high range resolution radar. Proc. of DIMRP'88: 1021~1041
    [91] D. A. Garren, et at. Full-polarization matched-illumination for target detection and identification. IEEE Trans. AES, 2002, 38(3): 824~835
    [92] S. Tatarinov, L. Ligthart, and E. Gaevoy. Dynamical polarization contrast of complex radar targets. Proc. IEEE International Geoscience and Remote Sensing Symposium, IGARSS'99: 1387~1389
    [93] V. Tatarinov, L. Ligthart, and S. Tatarinov. Matrix spectral form of the full polarization-doppler response function. ⅪⅤ International Conference on Microwaves, Radar and Wireless Communication, 2002, vol. 1: 151~154
    [94] V. Tatarinov, L. Ligthart, and S. Tatarinov. An introduction to the statistical theory of polarization parameters of fields scattered by complex radar objects. IGARSS'99:351~354
    [95] 李永祯,王雪松,肖顺平等.基于非线性积累的高分辨极化目标检测.红外与毫米波学报,2000,19(4):307~312
    [96] 李永祯,王雪松,肖顺平等.一种新的高分辨极化目标检测方法 国防科大学报,2000.6
    [97] 李永祯,王雪松,徐振海等.基于强散射点径向积累的高分辨极化目标检测研究.电子学报,2001,29(3):307~310
    [98] 王雪松,李永祯,徐振海等.高分辨雷达信号极化检测研究.电子学报,2000,28(12):15-18
    [99] 王雪松,徐振海,李永祯等.高分辨雷达目标极化检测仿真实验与结果分析.电子学报,2000,28(12):59~63
    [100] 中国国防科技信息中心研究报告.隐身与反隐身技术和武器系统,总装备部情报研究所,2001
    [101] 王俊.微弱目标信号积累检测的方法研究.[博士论文].西安:西安电子科技大学.1999.12
    [102] N.A.Stewaart. Use of crosspolar returns to enhance target delectability. Advance in radar techniques. edited by J.Clarke, Peregrinus Ltd, 1985
    [103] A.J.Poelman. Virtual polarization adoption, a method of increasing the detection capabilities of a radar system through polarization vector processing. IEEE Proc. Communication, Radar and Signal Processing, 128(19), Oct. 1991
    [104] J. R. Huynen. A new approach to radar cross-section measurements. IRE Internat'l Cony., Rec., Pt. t, vol. ⅹ, 1962
    [105] S.H. Brickel. Some invariant properties of the polarization scattering matrix. Proc. IEEE, 1965
    [106] Lowenschuss O. Scattering matrix application. Proc. IEEE, 1965
    [107] Kuhl F, Covell Ri. Object identification by multiple observation of the scattering matrix. Proc.IEEE, 1965
    [108] V. I. Ponomaryouv, etc. Detection and recogntion of targets by using signal polarization properties. SPIE Proc., 1999, Vol. 3718: 283~291
    [109] J. J. van Zyl. Unsupervised classification of scattering behavior using radar polarimetry data. IEEE Trans. GRS, 1989, 27(1): 36~45
    [110] Yunhan Dong, Bruce C. Forster, and Catherine Ticehurst. A new decomposition of radar polarization signatures. IEEE Trans. GRS, 1998, 36(3): 933~939
    [111] W. L. Cameron, and L. K. Lenng. Feature motivated polarization scattering matrix decomposition. IEEE Int'l Conf. On Radar, 1990
    [112] B. Y. Foo, and W. M. Boerner. Basic monostatic polarimetric broad band target scattering analysis required for high resolution polarimetric target downrange crossrange imaging of airborne scatterers. Measurement, processing and analysis of radar target signatures, vol. z, OSV-ESL, Sept. 1985
    [113] W. M. Boerner, et al. A state-of-the-art review in radar polarimetry and its applications in remote sensing. Proc. of the 1989 Int'l symposium on noise and clutter rejection in radars and imaging sensor, Japan
    [114] W. M. Boerner, and B. Y. Foo. Recent advances of the direct and inverse methods in radar polarimetry: extension of the physical optics inverse scattering theory. Proc. of the 2nd Int'l symposium on antennas and EM theory, 1989, Shanghai
    [115] Kenji KITAYAMA, Yoshio YAMAGUCHI,Jian YANG, and Hiroyoshi YAMADA. Compound scattering matrix of targets aligned in the range direction. IEICE Trans. COMMUN.,VOL.E84,NO.1 Jan,2001
    [116] E.Pottier. On radar full poladmetric target decomposition theorems with application to classification and identification of real target cross section. Intil Conf. On Radar, Paris, 1994
    [117] J.Yang, Y.N.Peng, S.M.Lin. Similarity between Two Scattering Matrices, Electron. Letters, vol. 37, no. 3, pp. 193-194, Feb., 2001
    [118] S. R. Cloude, and E. Pottier. A review of target decomposition theorems in radar poladmetry. IEEE GRS, 1996, 34(2): 498~517
    [119] M. H. Unal, and L. P. Ligthart. Decomposition theorems applied to random and stationary radar targets. Progress in electromagnetics research, 1998, PIER 18:45~66
    [120] S.R. Cloude, E. Pottier. An entropy based classification scheme for land applications of poladmetric SAR. IEEE Trans. GRS, 1997, 35(1): 68~78
    [121] Jaan Praks, Martti Hallikainen. A novel approach in polarimetric covariance matrix eigendecomposition. IEEE Proc. IGARSS'2000, 1119-1121
    [122] Ya-Qiu Jin, and Fei Chen. Polarimetric scattering indexes and information entropy of the SAR imagery for surface monitoring. IEEE Trans. GRS, 2002, 40(11): 2502~2506
    [123] Muhtar Qong. A new scattering Mechanism enhencement scheme for polarimetric SAR images. IEEE GRS,2002, 40(12):2582-2592
    [124] Irena Hajnsek, S.R. Cloude,Jong-Sen Lee,E.Pottier. Inversion of surface parameters from polarimetric SAR data. IEEE Proc. IGARSS'2000, 1095-1097
    [125] T.L.Ainsworth, J.S.Lee, D.L.Schuler. Multi-Frequency polarimetric SAR data analysis of Ocean surface Features. IEEE Proc. IGARSS'2000, 1113-1115
    [126] M.Hellmann, E.Krogager. Comparison of decompositions for Pol-SAR image interpretation. IEEE Proc. IGARSS'2000, 1313-1315
    [127] L.Ferro-famil, E.Pottier, J.S.Lee. Unsupervised classification of multi-frequency and fully polarimetric SAR images based on the H/A/Alpha-Wishart classifier. IEEE Proc. IGARSS'2000, 1104-1106
    [128] Morten T.Svendsen, Hening Skriver, Anton Thomsen. Investigation of Polarimetric SAR data Acquired at Multiple Incidence Angles. IGARSS'98, 1720~1722
    [129] N. F. Chamberlain, E. K. Walton, and F. D. Garber. Radar target identification of aircraft using polarization diverse features. IEEE Trans. AES, 1991, 27(1)
    [130] 何松华,郭桂蓉,庄钊文.雷达目标高分辩率距离—极化结构成像方法研究.北京:电子学报,第二十一卷,第三期,1993
    [131] 肖顺平,郭桂蓉,庄钊文,王雪松.基于极化谱的飞机目标识别.电子学报,1997,12
    [132] 肖顺平,庄钊文,郭桂蓉,王雪松.目标动态极化结构特征提取与识别.电子学报,1998,3
    [133] 肖顺平,王雪松,庄钊文.基于极化不变量的飞机目标识别.红外与毫米波学报,1996,12
    [134] 李莹,任勇,山秀明.基于目标分解的极化雷达飞机识别方法.清华大学学报,2001,No.7:32~35
    [135] C.Stewart, V.Larson and J.D.Halsey. Comparison of classification approaches for high range resolution radar. SPIE, vol. 1700, Automatic object recognition Ⅱ, P. 146, 1992
    [136] K.B.Eom. Non-cooperative target classification using hierarchical modeling of HRR radar signatures. Proc.SPIE, vol.2757, P:194~205, 1996
    [137] S.K.Wong, S.Kashyap, S.Gauthier, etc. Target identification in the frequency domain. Presented at the RTO SCI Symposium on "Non-Cooperative Air Target Identification using Radar", 1998, Mannheim, Germany
    [138] C.T.Schnaider, et al. A polarimetric tool for radar target analysis. Intil Conf. On Radar, Paris, 1994
    [139] Yeliz Akyildiz. Scattering center model for SAR imagery. SPIE Proc., 1999, Vol. 3869:76~85
    [140] Firooz Sadjadi, etc. New experiments in the use of radar polarimetry for improving target recognition performance. SPIE Proc., 1997, Vol. 3069: 368~374
    [141] Firooz Sadjadi, etc. Improved target classification using optimum polarimetric SAR signatures. IEEE Trans AES, 38(1): 38-49
    [142] L.M. Novak, and S. D. Halversen. Effects of polarization and resolution on SAR ATR. IEEE Trans. AES, 1997, 33(1): 102~116
    [143] A. J. Bennett, etc. The use of high resolution polarimetric SAR for automatic target recognition. SPIE Proc., 2002, Vol. 4727: 146~153
    [144] R. Efard, M. Cohen, E. S. Sjoberg. Advanced intrapulse polarization agile radar near deployment. Microwave syst., 1984, News-14
    [145] M. N. Cohen, E. S. Sjoberg. Intrapulse polarization agile radar. Advances in radar techniques, edited by J. Clarke, Peter Peregrinus Ltd., 1985
    [146] X波段双极化天气雷达在玉溪安装,中国气象报2004-6-25
    [147] 黄培康,反导系统中的目标识别技术,战略防御,1981.5
    [148] 魏克珠,李士根.双模铁氧体器件的发展及应用.现代雷达,2001,23(3):71~74
    [149] 蒋仁培,魏克珠.微波铁氧体新器件.北京:国防工业出版社,1995
    [150] 马骏声,目标识别与GBR地基成像雷达,航天电子对抗,1996.10
    [151] 马骏声,GBR地基雷达的对抗技术初探,航天电子对抗,1998.1
    [152] 马骏声,战术弹道导弹防御用地基雷达的现状与未来,航天电子对抗,1995.3
    [153] 薛雷达,美国国家导弹防御系统地基雷达测量与识别能力,863先进防御技术通讯(A类),2000.6
    [154] 美国陆军防空与导弹防御计划执行办公室,洲际弹道导弹防御的地基雷达设计,863先进防御技术通讯(A类),2001.2
    [155] 舍曼.弗兰克尔,用有源假目标挫败战区导弹防御雷达(连载一),863先进防御技术通讯(A类),1997.11
    [156] 舍曼.弗兰克尔,用有源假目标挫败战区导弹防御雷达(连载二),863先进防御技术通讯(A类),1997.12
    [157] 孙俭,TMD-GBR的发展与演变,863先进防御技术通讯,1995.8
    [158] Wanielik G, Stock D J R. Broadband scattering matrix measurements and their modeling. IEEE Antennas and Propapation Society International Symposium, Ontario, 1991:740~743
    [159] N.F.Chamberlain, E.K.Walton, F.D.Garber. Radar target identification of aircraft using polarization diverse features. IEEE trans. AES-27(1), Jan. 1991
    [160] E.K.Walton. Identification of ships, aircrafts and ground vehicles using radar.雷达目标特征信号的测量与分析(专辑),黄培康总编,北京:北京环境特性研究所,1988
    [161] N.A.Stewaart. Use of crosspolar returns to enhance target delectability. Advance in radar techniques. edited by J.Clarke, Peregrinus Ltd, 1985
    [162] M.Fossi, M.Gherardelli, P.Girrnino, D.Giuli, Experimental results or dual-polarization behaviour of ground clutter. Record of CIE 1986 Int'l Conf. on Radar, Nanjing, 1986
    [163] A.P.Agrawal, D.W.Carnegie, W.M.Boerner. Evaluation of dual polarization scattering matrix radar rain backscatterer measurements in the X and Q band. Proc.of ICAP-97,1987
    [164] S.Haykin,et al. Effect of polarization on the marine radar detection of icebergs. Radar-85
    [165] G.Wanielik,DJ.R.Stock. Measured scattering matrix data and o polarimetric CFAR detector, which works on this data. IEEE 1990 INt-l Radar Conf
    [166] A. L. Pazmany, J. Galloway, and R. E. McIntosh. Dual polarization pulse pair technique for high unambiguous doppler and range measurements of tornadoes with a 95 GHz radar. Proc. IEEE International Geoscience and Remote Sensing Symposium, IGARSS'95: 2135~2137
    [167] V.N. Bringi, V. Chandrasekar, and J. Hubbert. Advanced polarimetric measurements and analysis with the CSU-CHILL weather radar. NTIS-ADA356452
    [168] D.Giuli, M.Fossi, L.Facheris. Radar target scattering matrix measurement through orthogonal signals. IEE Proceedings-F, Vol. 140, No.4, August, 1993
    [169] F.E.Natharson, et al. Radar design principles (2nd Ed.). McGraw.Hill, Inc.,1991
    [170] 刘华京,蔺万钟.变极化及隐身理论与测试结果分析.雷达与电子对抗在现代战争中的作用论文集,1992
    [171] 康士峰,葛德彪,罗贤云等.多波段多极化海杂波特性的实验研究.微波学报,2000,16(5):463~468
    [172] 董庆,郭华东.多波段多极化合成孔径雷达的海洋学应用.地球科学进展,2001,16(1):93~97
    [173] 金亚秋,陈轶,张巍.雷达卫星SAR与防卫气象卫星SSMA对渤海海冰的观测研究.地球物理学报,2001,44(2):163~170
    [174] 王国玉,基于雷达对抗的战区导弹突防仿真研究[博士学位论文],长沙:国防科学技术大学,1999.9
    [175] 刘永祥 弹道导弹防御系统中雷达目标综合识别研究[博士论文].长沙:国防科技大学,2004.6
    [176] 《世界地面雷达手册》第二版.电子信息产业部第14研究所,2002
    [177] (俄)维利卡洛夫等著.弹道导弹突防中的电子对抗.成都:信息产业部电子二十九研究所,2001
    [178] 黄培康主编.雷达目标特征信号.北京:宇航出版社,1993
    [179] 阮颖铮等.雷达截面与隐身技术.北京:国防工业出版社,1998.
    [180] 林茂庸,柯有安.雷达信号理论.北京:国防工业出版社,1984.
    [181] 张毅等.弹道导弹弹道学.长沙:国防科技大学出版社,1999
    [182] 汪胡祯,徐利治等编.现代工程数学手册.武汉:华中工学院出版社,1986
    [183] 马振华主编.现代应用数学手册:概率统计与随机过程卷.北京:清华大学出版社,2000
    [184] 张贤达,保铮.非平稳信号分析与处理.北京:国防工业出版社,1998
    [185] [美]L.科恩著,白居宪译.时频分析:理论与应用.西安:西安交通大学出版社,1998
    [186] 孙即祥等.现代模式识别.长沙:国防科学技术大学出版社,2002
    [187] 王朝瑞,史荣昌.矩阵分析.北京:北京理工大学出版社,1989
    [188] 臼井支朗编著,何希才译.信号分析.北京:科学出版社,2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700