用户名: 密码: 验证码:
弹道中段目标极化特性和特征提取研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
极化特征是雷达目标识别领域的重要特征之一,在弹道中段目标特征提取和识别中具有巨大的应用潜力,本文对弹道中段目标的极化特性和特征提取问题分别进行了富有成效的研究。在对雷达目标宽窄带回波分析的基础上,本文系统深入地研究了弹道中段目标的极化特性、极化特征提取和优选等问题。具体研究内容包括极化特性分析、极化特征提取和优选两个方面:
     在弹道中段目标的极化特性分析方面,(1)针对弹道中段目标的动态全极化宽窄带雷达回波获取问题,分别对弹头的宏观运动特性和微观进动特性进行建模,建立了弹道中段目标的宽窄带雷达回波模型,给出了弹道中段目标动态全极化宽窄带雷达回波仿真方案,得到了典型战情下目标的宽窄带回波序列。(2)针对弹道中段目标的极化特性分析问题,采用时变、动态的观点重新审视其极化散射特性,利用时变极化散射矩阵分析了四类仿弹头目标的窄带极化相关特性和宽带极化相关特性。通过实验,对弹道中段目标极化特性的不同侧面分别进行了定性和定量的描述。
     在弹道中段目标的极化特征提取和优选方面,(1)利用真弹头和仿弹头诱饵的微运动特性差异对目标回波的调制作用,提出了一种基于时间熵特征H t /? t的弹道中段目标鉴别方法。仿真实验表明,在一定的信噪比下,该方法可有效、稳健的识别真弹头和仿弹头诱饵;(2)针对极化特征优选问题,预选了物理意义清晰的五个窄带极化不变量和四组宽带极化特征,利用仿真实验数据分析了各极化特征对不同弹道目标的可分性,并比较了窄带极化特征和宽带极化特征的可分性差异。通过实验,优选了宽窄带极化特征;(3)构建了基于极化特征的弹道中段目标识别仿真系统,利用优选的极化特征对不同弹道目标进行识别。实验结果表明,在先验信息给定的情况下,该系统可有效、稳健地识别不同弹道目标,验证了特征优选结果的正确性和有效性。
     本文的研究成果有助于提高弹道导弹攻防背景下导弹防御雷达的目标识别能力,对防御雷达目标识别系统构建提供一定的借鉴和参考。
Polarization characteristic is one important property in the field of radar target recognition and has great potential in the domain of feature extraction and recognition. In this paper, the polarization characteristic of midcourse target and its feature extraction are widely researched. Based on the analysis of radar target’s narrowband and wideband echoes, the paper studies the polarization characteristics of midcourse target, polarization feature extraction and optimization. The detailed content includes the analysis of polarization characteristic, the feature extraction and optimization.
     In the aspect of midcourse target’s polarization characteristic analysis, the following problems have been included: (1)Aimed to the calculation of dynamic full-polarization radar echoes of spatial targets, the movement of midcourse target is modeled. The model includes the macroscopic movement of warhead’s centroid and the precession of warhead. Then the whole midcourse movement is simulated. After that we generate the narrowband and broadband echoes of the giving situation; (2)For the analysis of polarization characteristic, a time-varying and dynamic viewpoint has been leading-in to re-examine the polarization scattering matrix. With the use of time-varying polarization scattering matrix, the narrowband and broadband polarization correlation property of four warhead-similar targets have been analysed. Through the experiment, the qualitative and quantitative description are carried out in the different aspects of midcourse target’s polarization characteristics.
     In the aspect of midcourse target’s polarization feature extraction and optimization, the other three problems have been studied: (1)Based on the different motion characteristics between warheads and decoys, an approach for identification of midcourse target has been proposed, where we calculate the time-entropy H t and the average scattering angle ? t. Simulation results show that the method can identify the warheads and decoys effectively and robustly in a certain SNR; (2)For the optimization of polarization features, a group of narrow-band polarization invariant features and four sets of wideband polarization features with clear physical-meaning are preselected. With the use of simulation data, the separability of target polarization features is analysed, and the separability of the narrowband and broadband polarization features are compared. In the foundation of the experiment, the polarization features are optimized; (3)A target recognition simulation system is built based on the optimal polarization features. The results show that the system can identify the different midcourse targets effectively and robustly with the prior-information given, which verifies the correctness and effectiveness of the optimization results.
     The research helps to improve radar’s capability of target recognition under the background of missile countermeasure, and also provides a reference for the design of radar target identification system.
引文
[1] Cuomo K M, Piou J E, Mayhan J T. Ultra-Wideband Coherent Processing[J]. Lincoln Laboratory Journal, 1997, 10(2): 203~221.
    [2]冯德军.弹道中段目标雷达识别与评估研究[D].长沙:国防科技大学研究生院, 2006, 4.
    [3]黄培康,闫锦.弹道导弹(BM)对抗中的识别与反识别技术[J].航天电子对抗, 2005, 21(3): 1~3.
    [4]薛雷达.美国国家导弹防御系统地基雷达测量与识别能力[J]. 863先进防御技术通讯(A类), 2000, 6.
    [5] Camp W W, Mayhan J T, O’Donnell R M. Wideband Radar for Ballistic Missile Defense and Range-Doppler Imaging of Satellites[J]. Lincoln Laboratory Journal, 2000, 12(2): 267~280.
    [6] V.C.Chen, F.Li, S.Ho, H Wechsler. Micro-doppler effect in radar: phenomenon, model and simulation study[J]. IEEE Trans. on AES, 2006, 42(1): 2~21.
    [7]庄钊文,刘永祥,黎湘.目标微动特性研究进展[J].电子学报, 2007, 35(3): 520~525.
    [8]金林.弹道导弹目标识别技术[J].现代雷达, 2008, 30(2): 1~5.
    [9]马骏声. NMD-GBR雷达的测量能力及其性能参数[J].航天电子对抗, 2002(5): 1~8.
    [10]饶彬.对抗条件下弹道目标的雷达跟踪技术研究[D].长沙:国防科技大学研究生院, 2011, 6.
    [11] J.R.Huynen. Phenomenological Theory of Radar Target[D]. Netherlands: Technical University Delft, 1970.
    [12] G.Sinclair. The transmission and reception of elliptically polarized radar waves[J]. Proc.IRE-38, 1950: 148~151.
    [13] A.P.Agrawal, W.M.Boerner. Redevelopment of Kennaugh’s target characteristic polarization state theory using the polarization transformation ratio formalism for the coherent case [J]. IEEE Trans. on GRS, 1989, 27(1): 2~13.
    [14] E.P.Pottier. On Dr J.R.Huynen’s main contributions in the Development of polarimetric radar techniques and how the radar targets phenomenological concept becomes a theory [J]. SPIE, 1992, 1748: 72~85.
    [15] W.M.Boerner, Wei-Ling Yan, AN-Qing Xi, Yoshio Yamaguchi. On the Baisc Principles of Radar Polarimetry: the Target Characteristic Polarization State Theory of Kennaugh, Huynen’s Polarization Fork Concept, and its Extension to the Partially Polarized Case [J]. Proceedings of the IEE, 1991, 79(10): 1538~1550.
    [16] Davidovitz M, Boerner W M. Extension of Kennaughs optimal polarization conceptto the asymmetric matrix case[J]. IEEE Trans. on AP, 1986, 34(4): 569~574.
    [17] Van Zyl J J. On the importance of polarization in radar scattering problems[D]. 1986.
    [18] Yoshio Yamaguchi, W.M.Boerner, Hyo J.Eorn, et al. On the Characteristic Polarization States in the Cross-Polarized Radar Channel[J]. IEEE Trans. on GRS, 1992, 30(5): 1078~1080.
    [19] Steedly Wm, Moses RL. High resolution exponential modeling of fully polarized radar returns[J]. IEEE Trans. on AES, 1991, 27(5):459~469.
    [20] Kostinski A. B., Boerner W.M. On foundation of radar polarimetry[J]. IEEE Trans. on AP, 1986, 34(12): 1395~1403.
    [21]郭雷.宽带雷达目标极化特征提取与核方法识别研究[D].长沙:国防科技大学研究生院,2009,4
    [22] Huynen J R. Target decomposition theorem for real target polarimetric data analysis[C]. International Conference on radar, Paris, 1989.
    [23] Berizzi F, Martorella M, Capria A. H/αpolarimetric features for man-made target classification[C]. IEEE Radar Conference, Rome, Italy, 2008: 1596~1601.
    [24] S.R.Cloude, E.Pottier. A Review of Target Decomposition Theorems in Radar Polarimetry[J], IEEE Trans. on GRS, 1996, 34(5): 498~518.
    [25] Van Zyl . Unsupervised classification of scattering behavior using radarpolarimetry data[J]. IEEE Trans. on GRS, 1989, 27(1): 36~45.
    [26] Krogager E. New decomposition of the radar target scattering matrix[J]. Electronics Letters, 1990, 26(18): 1525~1527.
    [27] Pottier E, Cloude S R. Application of the H/α/A polarimetric decompositiontheorems for land classification[C]. Proceedings of SPIE Conference on Wideband Interferometric Sensing and Imaging Polarimetry, San Diego, CA,USA, 1997: 132~143.
    [28] Cloude S R, Pottier E. An entropy based classification scheme for landapplications of polarimetric SAR[J]. IEEE Trans. on GRS, 1997, 35(1): 549~557.
    [29] Lee J S, Grunes M R, Ainsworth T L, et al. Unsupervised classification using polarimetric decomposition and the complex Wishart classifier[J]. IEEE Trans. on GRS, 1999, 37(5): 2249~2258.
    [30] Freeman.A, S.T.Durden. A Three-Component Scattering Model for Polarimetric SAR Data[J]. IEEE Trans. on GRS, 1998, 36(3): 963~973.
    [31] Holm W A, Barnes R M. On radar polarization mixed target state decomposition techniques[C]. IEEE Radar Conference, 1988: 249~254.
    [32] Yang J, Peng Y N, Lin S M. Similarity between two scattering matrices[J]. Electronic Letters, 2001, 37(3): 193~194.
    [33] C. T. Chen, K. S. Chen and J. S. Lee , The Use of Fully Polarimetric Informationfor the Fuzzy Neural Classification of SAR Images[J], IEEE Trans. on GRS, 2003, 41(4): 2089~2099.
    [34] N.F.Chamberlain, E.K.Walton, F.D.Garger. Radar Target Identification of Aircraft Using Polarization Diverse Features[J]. IEEE Trans. on AES, 1991, 27(1):58~67.
    [35]何松华,郭桂蓉,庄钊文.雷达目标高分辨距离-极化结构成像方法研究[J].电子学报,第二十一卷,第三期,1993.
    [36]陈曾平.雷达目标结构特征识别的理论与应用[D].长沙:国防科技大学研究生院, 1994.6.
    [37]肖顺平,郭桂蓉,庄钊文,王雪松.基于极化谱的飞机目标识别[J].电子学报, 1997, 25(12): 60~64.
    [38]肖顺平,王雪松,庄钊文.基于极化不变量的飞机目标识别[J].红外与毫米波学报, 1996, 15(6): 439~444.
    [39]肖顺平,郭桂蓉,王雪松.基于极化频率稳定度的目标识别[J].现代雷达, 1995, 17(5): 1~7.
    [40]肖顺平.宽带雷达极化目标识别的理论与应用[D].长沙:国防科技大学研究生院,1995.6
    [41] Tao Wang, Xuesong Wang. Estimation of Precession Parameters and Generation of ISAR Images of Ballistic Missile Targets[J], IEEE Trans. on AES, 2010(46):1983~1995.
    [42]庄钊文,肖顺平,王雪松.雷达极化信息处理及应用[J].北京:国防工业出版社,1999.
    [43]庄钊文,李永祯,肖顺平,王雪松等.瞬态极化的统计特性分析及处理[M].北京:国防工业出版社, 2005.3.
    [44]王雪松.宽带极化信息处理的研究[D].长沙:国防科技大学博士学位论文,1999.
    [45]曾勇虎.极化雷达时频分析与目标识别的研究[D],长沙:国防科技大学,2004.6.
    [46]李永祯.瞬态极化统计特性及处理的研究[D].长沙:国防科技大学, 2004.
    [47]王雪松,李永祯,代大海,肖顺平,庄钊文.电磁波瞬态极化的统计特性[J].中国科学(E辑),2004,34(8):919~929.
    [48]代大海,王雪松,肖顺平. PolSAR有源假目标干扰的鉴别与对消[J].电子学报, 35(9), 2007: 1779~1783.
    [49]徐牧.极化SAR图像人造目标提取与几何结构反演研究[D].长沙:国防科技大学研究生院, 2008.10.
    [50]郭雷,肖怀铁,赵宏钟,付强.宽带全极化雷达目标HRRP极化特征提取与优选[J].自然科学进展,2009,19(7):784~792.
    [51] William W. Camp, Joseph T. Mayhan, Robert M. O’Donnell. Wideband Radar for Ballistic Missile Defense and Range-Doppler Imaging of Satellites[J]. Lincoln Laboratory Journal, 2000,12(2): 267~280.
    [52] D K Barton, S A Leonov. Radar Technology Encyclopedia[M]. Norwood, MA: Artech House, 1998.
    [53] Philip A Ingwersen and William Z Lemnios. Radars for Ballistic Missile Defense Research[J]. Lincoln Laboratory Journal, VOL12, (2), 2000: 245~266.
    [54] James J. Stagliano, Jr., James R. Helvin, James L. Alford, Dean Nelson. Measuring the linear depolarization ratio simultaneously with the other polarimetric variables[J]. Proceedings of ERAD 2006.
    [55] 863先进防御技术通讯(A类).美国国防部声称NMD能够识别真假目标[J]. 863先进防御技术通讯简讯, 2000年第14期: 1~2.
    [56]马骏声.目标识别与GBR地基成像雷达[J].航天电子对抗, 1996, 12(4): 32~35
    [57] Andrew M S, John M Cl, Bob Dietz, et al. Countermeasures-A technical evaluation of the operational effectiveness of the planned US national missile defense system[J]. Union of Concerned Scienst, Cambridge MA, 2000.
    [58] F.E.Natharson,et al. Radar Design Principles[M](2 nd Ed.).McGraw.Hill, Inc., 1991
    [59]王涛.弹道中段目标极化域特征提取与识别[D].长沙:国防科技大学研究生院,2006.
    [60]刘勇.动态目标极化特性测量与极化雷达抗干扰新方法研究[D].国防科技大学研究生院,2011,4:26~65.
    [61]李永祯,王雪松,李金梁,肖顺平,庄钊文.弹道导弹目标的瞬态极化识别[J].应用科学学报,2005.23(6):586~590.
    [62]李永祯,王雪松,王涛,肖顺平,庄钊文.有源诱饵的极化鉴别研究[J].国防科大学报,2004, 26(3):83~88.
    [63]李永祯,王雪松,肖顺平,庄钊文.基于IPPV的真假目标极化鉴别算法[J].现代雷达,2004,26(9):38~42.
    [64]胡万秋.弹道中段目标进动特征提取方法研究[D].长沙:国防科技大学硕士学位论文,2010,10.
    [65] W. M. Boerner eds. Direct and Inverse Methods in Radar Polarimetry[J] (Proc. of DIMRP'88). Netherlands: Kluwer Academic Publishers, 1992.
    [66] J.J.van Zyl. On the importance of polarization in radar scattering problems[D] California Institute of Technology, Pasadena, CA, Jan. 1986.
    [67] Lowenschuss O. Scattering Matrix Application[J]. Proc. of IEEE,1965(8):988~992
    [68] Bikel S H. Some Invariant Properties of the Polarization Scattering Matrix[J]. Proc. of IEEE,1965,53(8):1070~1072.
    [69] Kuhl F,Perrella A J. The Identification of Arbitrarily Shaped Targets with theScattering Matrix[J]. AD-712067,1970.
    [70] Graves C D. Radar Polarization Power Scattering Matrix[J]. Proc. of IRE,Part d,1965,44:248~252.
    [71]罗宏.动态雷达目标的建模与识别研究[D].航天工业总公司第二研究院,2000.
    [72]黄培康,殷红成,许小剑,雷达目标特性[M].电子工业出版社,北京:2005.
    [73]张居凤,冯德军,王雪松,陈志杰.雷达目标动态RCS仿真研究[J].系统仿真学报,2005,17(4):834~837.
    [74]施龙飞,李盾,王雪松,肖顺平.弹道导弹动态全极化一维像仿真研究[J].宇航学报,2005,26(3): 345~348.
    [75]金光虎.中段弹道目标ISAR成像及物理特性反演技术研究[D].湖南长沙:国防科技大学研究生院,2009: 14~31.
    [76]马梁,李永祯,等.空间微动目标动态全极化回波仿真技术研究[J].系统仿真学报,已录用.
    [77] D.Purik, L.P.Ligthart, V.A.Khlusov. Polarmetric SAR with Simultaneous Backscattering Matrix Estimation[C]. 2005 European microwave conference, 2005:2103~2106.
    [78] G.P.Barbur, L.P.Ligthart.Wideband Ambiguity Matrix of LFM-signals Used in Polarimetric Radar allowing Simultaneous Measurement of Scattering Matrix Elements[C]. Proceedings of the European Radar Conference, Amsterdam, Netherlands, 2008: 128~131.
    [79] Stephen D.Howard, A. Robert Calderbank, William Mortan. A Simple Signal Processing Architecture for Insntantaneous Radar Polarimetry[J]. IEEE Trans. on Information Theory, 2007, 53(4): 1282~1289.
    [80] A.R.Calderbank, S.D.Howard, W.Moran, et al. Instnataneous Radar Polarimetry with Multiple Dually-polarized Antennas[C]. Fortieth Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, 2006:757~761.
    [81] V.Santalla, Yahia M.M.Antar, A.G.Pino. Polarimetric Radar Covariance Matrix Algorithms and Applications to Meteorological Radar Data[J]. IEEE Trans. on GRS, 1999, 37(2): 1128~1137.
    [82]张毅等.弹道导弹弹道学[M].湖南长沙:国防科技大学出版社,2005.10.
    [83]刘秀清.全极化合成孔径雷达极化信息处理技术研究[D].北京:中国科学院电子学研究所,2004.
    [84]王超,张红,陈曦等.全极化合成孔径雷达图像处理[M].北京:科学出版社,2008.7.
    [85]孙即祥.现代模式识别[M].北京:高等教育出版社,2008.10.
    [86] Ma Liang, Cheng Xu, Li Yongzhen, Wang Xuesong. The Construction and Management of Real-time Radar Target Recognition System[C]. IEEE ICIME 2011,Zhengzhou, China:273~277.
    [87]刘进,冯德军,赵锋等.弹道中段雷达目标识别仿真系统的关键模型及实现[J], 系统仿真学报,2008,20(17):4588~4592.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700