用户名: 密码: 验证码:
极化SAR影像特征分析与地物目标分类研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全极化SAR作为一种先进的对地观测系统,能够获取分辨单元任意极化态下的后向散射信息,图像分辨率高,表达地物细节能力强,能够为区分地物类型提供丰富的特征信息。论文从极化特征的获取展开讨论,分析特征与目标物理散射特性之间的联系,提取核方法映射的特征信息,在保持目标散射特性不变情况下,对地物进行分类。同时,根据极化特征与目标散射类别之间的约束关系,采用形式概念分析工具挖掘出地物识别的分类规则,为进一步研究极化散射特征、优化特征子集、分类识别地物等提供新的思路和方向。
     论文的主要工作包括:
     1.介绍了雷达极化的基础理论,包括极化波的表征、极化SAR数据的几种记录表达形式和典型地物目标的极化响应情况。然后分析了极化SAR图像的统计特性,阐明了直接从极化相干矩阵(或协方差矩阵)中计算统计特征识别地物目标的可行性。
     2.分析了两种主要的极化目标分解方法:一种是Cloude基于特征值分解获取散射熵和平均散射角的目标分解方法,一种是Freeman-Durden建立三种散射机制模型的分解方法。分别对两种分解方法的原理,计算过程和分类中的重要应用进行了阐述和分析。
     3.引入一种新的提取极化特征的方法:广义判别分析的方法,对极化相干矩阵等元素采用核函数映射的方式在高维空间中提取出新的极化特征,然后结合目标的物理散射机制模型特征,提出了一种新的保持极化散射特性的分类方法。
     4.将形式概念分析应用到极化SAR数据挖掘和规则提取中。在分析各类极化特征信息和目标之间的联系基础上,构建极化SAR分类形式背景下的概念格,利用生成的分类规则对地面目标进行分类研究。除此之外,应用提取的规则对分类效果评估等方面的作用进行了初步探讨。
Fully Polarimetric Synthetic Aperture Radar (SAR), a kind of advanced Earth observation instrument, can obtain scattering characteristics of each resolution cell under any polarization state. And its remote sensing techniques offer efficient and reliable means of collecting information required to extract biophysical and geophysical feature parameters about the earth’s surface. This dissertation discusses different ways of extracting Polarimetric scattering features, analyzes the inner relation between targets’classes and its scattering features, extractes kernel method mapped features and classifys earth's surface in the condition of no changes on the target's scattering characteristics. Meanwhile, the tool of formal concept analysis is introduced and employed to mine classification rules of object recognition based on the association between scattering features and targets’classes. And the method of mining classification rules provides a new idea and direction at Polarimetric scattering mechanisms further study, feature subsets optimization, targets classification and object recognition.
     The main work is listed as follows:
     1. Introduce the fundamental theory of electromagnetic wave polarizer, including the description of the EM wave’s polarization states, different kinds of the typical representation of Polarimetric SAR data and some elementary targets presenting canonical scattering mechanisms. And then, analyze the statistical properties of Polarimetric SAR images and validate the feasibility about using the statistical characteristics calculated directly from the Polarimetric coherency matrices (or covariance matrices) to classify and identify scattering targets.
     2. Analyze two main kinds of Polarimetric target decomposition theorems. One is the important class of target decomposition theorems based on Eigenvalues of the coherency matrix T3 (Cloude and Pottier), and the other one is based on a“model-based”decomposition of the covariance matrix C3 or the coherency matrix T3 (Freeman and Durden). And then analyze those target decomposition methods’s principles, calculation process and the importance in targets classification.
     3. Employ generalized discriminated analysisto extract Polarimetric characteristics. This new feature extraction method uses a kernel function mapping the coherency matrix to high-dimensional space to extract new Polarimetric features. Based on this, a new classification is proposed, which maintains Polarimetric scattering characteristics on the consideration of targets' physical scattering mechanisms.
     4. Formal concept analysis is employed in PolSAR data mining and rules extraction. After analyzing the link between Polarimetric characteristics information and the surface targets, this tool constructs the concept lattice of the Polarimetric classification formal content. And then, apply this mined classification rules in surface targets classification research. In addition, this thesis initially explores the application of classification rules in classification accuracy assessment, optimization features subset.
引文
[1]王超,张红,陈曦,刘智,闫冬梅.全极化合成孔径雷达图像处理.北京:科学出版社. 2007.
    [2] Jong sen Lee, Eric Pottier. "Polarimetric radar imagingz: from basics to applications". CRC press. 2009.
    [3] Huynen J R. "Phenomenological theory of radar targets". Electromagnetic Scattering Academic Press, 1978.
    [4] Brown L, Conway J A, Mackin J T."Polarimetric Synthetic Aperture Radar: Fundamental Concepts and Analysis Tools", Gec.Journal of Research,9(1):23-35. 1991.
    [5] Sinclair G. "The transmission and reception of elliptically polarized waves". Proc. IRE, 38(2): 148-151, 1950.
    [6] kennaugh E M. "Polarization properties of radar reflections. Master's thesis". Columbus, Ohio, USA: The Ohio State University, March 1952.
    [7] Huynen J R. "Measurment of the target scattering matrix". Proc. IEEE, 53(8): 936-946, 1965.
    [8] Huynen, J.R., "Phenomenological theory of radar targets, PhD dissertation". Drukkerij Bronder offset N.V., Rotterdam, 1970.
    [9] Touzi R. Boerner W M, Lee J S, et al. "A review of polarimetry in the context of synthetic aperture radar: concepts and information extraction". Canadian Journal of Remote Sensing 30(3): 380-407, 2004.
    [10]庄钊文.雷达极化信息处理与应用.国防工业出版社, 1999.
    [11]赵力文.基于目标分解理论的极化SAR图像分类方法研究.国防科学技术大学硕士学位论文. 2007.
    [12]江勇.基于极化SAR图像的非监督分类算法研究.电子科技大学硕士学位论文. 2007.
    [13]吴永辉.极化SAR图像分类方法研究.国防科学技术大学博士学位论文. 2007.
    [14] Van Zyl. J. "Unsupervised Classification of Scattering Behavior Using Radar Polarimetry Data. IEEE Transactions on Geoscience and Remote Sensing", 27(1):36-15, 1989.
    [15] Freeman, A. and Durden, S. L., "A three component scattering model to describe polarimetric SAR data", in Proceedings SPIE Conference on Radar Polarimetry, Vol. 1748, pp. 213-225, San Diego, CA, July 1992.
    [16] Freeman, A. and Durden, S. L., "A three component scattering model for polarimetric SAR data", IEEE Transaction on Geoscience and Remote Sensing, 36(3), pp. 963-973, May1998.
    [17] Yamaguchi, Y., Yajima, Y., and Yamada, H., "A four component decomposition of POLSAR images based on the coherency matrix", IEEE Geoscience on Remote Sensing Letters, 3(3), pp. 292-296, July 2006.
    [18] Cloude S.R. and Pottier E., "The concept of polarization entropy in optical scattering", Optical Engineering, 34(6), 1599-1610, 1995.
    [19] Cloude, S.R., "Group theory and polarization algebra", OPTIK, 75(1), 26-36, 1986.
    [20] Cloude, S.R. and Pottier, E., "A review of target decomposition theorems in radar polarimetry", IEEE Transa- ction on Geoscience and Remote Sensing, 34(2), pp. 498-518, March 1996.
    [21] Krogager, E., "A new decomposition of the radar target scattering matrix", Electronics Letter, 26(18), 1525-1526, 1990.
    [22] Krogager. E, Czyz Z. H.,"Properties of the sphere, diplane and helix decomposition", Proceedings 3rd International Workshop on Radar Polarimetry, Nantes, pp. 106-114, 1995.
    [23] Krogager. E, Dall J, and Madsen S N, "The sphere, diplane, helix decomposition recent results with polarimetric SAR data". Proc. Third International Workshop on Radar Polarimetry, March . 621-625, 1995.
    [24] Cameron, W.L. and Rais, H., "Conservative polarimetric scatterers and their role in incorrect extensions of the Cameron decomposition", IEEE Transaction on Geoscience Remote Sensing, 44(12), 3506-3516, December 2006.
    [25] Touzi, R. and Charbonneau, F., "Characterization of target symmetric scattering using polarimetric SAR", IEEE Transaction on Geoscience Remote Sensing, 40(11), 2507-2516, November 2002.
    [26]吴一戎,洪文,王彦平.极化干涉SAR的研究现状与启示[A].电子与信息学报. 2007.
    [27]付毓生,杨晓波,皮亦.王海江极化雷达图像增强理论,北京电子工业出版社. 2008.
    [28] Cloude, S.R., "Radar target decomposition theorems", Institute of Electrical Engineering and Electronics Letter, 21(1), 22-24, January 1985.
    [29] Cloude, S.R., "Lie groups in electromagnetic wave propagation and scattering", Journal of Electromechanic Waves Application, 6(8), 947 974, 1992.
    [30] Poelman A J and Guv J R F. "Polarization information utilization in primary radar: an introduction and update to activities at SHAPE technical centre". Mathematical and Physical Sciences. 143:521-572, 1985.
    [31] Kostinski A B and Boerner WM. "On foundations of radar polarimetry". IEEE Trans. on Antennas and Propagation, AP34(12):1395-1404, 1986.
    [32] Cloude, S.R. and Pottier, E., "Matrix difference operators as classifiers in polarimetric radar imaging", Journal L’Onde Electrique, 74(3), pp. 34-40, 1994.
    [33] F.T. Ulaby, T.F. Haddock, and R.T. Austin, "Fluctuation statistics of millimeter wave scattering from distributed targets".IEEE Transactions on Geoscience and Remote Sensing, 26(3), 268-281, May 1988.
    [34] Lee J S, Hoppel K W, Mango S A, et a1. "Intensity and phase statistics of multilook polarimetric and interferometric SAR imagery".IEEE Trans.On Geoscience and Remote Sensing. 32(5):1017-1028, 1994.
    [35] Chen C T.Chen K S.and Lee J S. "The use of full polarimetric information for the fuzzy neural classification of SAR images".IEEE Trans. on Geoscience and Remote Sensing, 41(9):2089-2100, 2003.
    [36] Yisok Oh, Geba Chang. "Classification of Polarimetric SAR images using the degree of polarization and the co-polarized phase difference". IEEE Trans. on Geoscience and Remote Sensing, 362-365, 2008.
    [37] Tony Freeman, Pascale Dubois-Fernandez, My-Linh Truong-Loi, "Compact Polarimetry at longer wavelengths - calibration". EUSAR 08, June 2-5, 2008 Friedrichshafen Germany, 2008.
    [38] Morio J., P. Refregier, F. Goudail, P. Dubois Fernandez, and X. Dupuis, "Application of information theory measures to polarimetric and interferometric SAR images". PSIP 2007, Mulhouse, France, 2007.
    [39] Lee J S, Grunes M R, Ainsworth T L, et al, "Unsupervised Classification Using Polarimetric SAR Images by applying target decomposition and complex wishart distribution". PIERS 1998, Nantes, France. 1998.
    [40] Lee J S, Grunes M R, Pottier E, el a1."Segmentation of polarimetric SAR images". Proc. International Geoscience and Remote Sensing Symposium. Sydney, Australia:414-416, July 2001.
    [41] Pottier E, Lee J S. "Application of the H/A/alpha Polarimetric decomposition theorem for unsupervised classification of full polarimetric SAR data based on the wishart distribution". In:Proc. Committee on Earth Observing Satellites SAR Workshop, Toulouse, France. 1999.
    [42] van Zyl, J.J., "Application of Cloude’s target decomposition theorem to polarimetric imaging radar data". in Proceedings SPIE Conference on Radar Polarimetry, San Diego, CA, Vol. 1748, pp. 184-212, July 1992.
    [43] Baudat G, Anouar F. "Generalized Discriminant Analysis using A Kernel Approach"[J]. Neural Computation, 12(10): 2385-2404, 2000.
    [44]杨国鹏.基于广义判别分析的高光谱影像特征提取.大连海事大学学报. 34(3):59-63, 2008.
    [45] http://www.kernel-machines.org/
    [46]王胜国.核函数的性质及其构造方法[J].计算机科学, 33(6): 172-178, 2006.
    [47] Lee J.S., D.L. Schuler, M.R. Grunes, E. Pottier, and L. Ferro Famil, "Scattering model based speckle filtering of polarimetric SAR data". IEEE Transactions on Geoscience and Remote Sensing, 44(1), 176-187, January 2006.
    [48]张文修,姚一豫,梁怡.粗糙集与概念格.西安.西安交通大学出版社. 2006.
    [49] Wille R. "Restructuring lattice theory: an approach based on hierarchies of concepts"[M]. In: Rival I. (ed.) Ordered sets. Dordrecht-Boston: Reidel, 445-470, 1982.
    [50] MAO Dian hui, Li Wen zhang ,Li Wei hua. "Remote sensing image classification based on formal cencept analysis. Journal of Remote Sensing"[A]. 14(1): 90-96, 2010.
    [51] Zhai Y H."Knowledge Representation and Knowledge Acquisition on Formal Concept Analysis". Shanxi. Shanxi University, 2006.
    [52] Han Jiawei, Kamber M.范明,孟小峰,译.数据挖掘:概念与技术[M].北京.机械工业出版社, 2001.
    [53]谢志鹏,刘宗田.概念格与关联规则发现[J].计算机研究与发展. 37(12):1415-1421, 2000.
    [54] Hua X, Pierce L E, Ulaby F T, "Statistical properties of logarithmically transformed speckle[J]. IEEE Transaction on Geoscience and Remote Sensing", 40(3):721-727, 2002.
    [55] Frery A C,Correia A H,and Freitas C C."Multifrequency full polarimetric SAR classification with multiple-sources of statistical evidence". Proc. International Geoscience and Remote Sensing Symposium, Denver, Colorado, USA.4195-4197. July 2006.
    [56] Souyfis J C,Henry C, "Adragna F on the use of complex SAR image spectral analysis for target detection:assessment of polarimetry"[J].IEEE Trans.on Geoscience and Remote Sensing(S0196-2892), 41(12):2725-2734. 2003.
    [57] Ferro-Famil L., "Reigber A., Pottier E.,Boertner W. M., Analysis of anisotropic scattering behavior using sub-aperture polarimetric Sar Data"[C]. IEEE Trans. on Geosci. Remote Sensing, 41(10):434-436. 2003.
    [58]姜峰,范玉顺.基于覆盖度函数的概念格约简.电子与信息学报[A]. 32(2):405-410. 2010.
    [59] Guissard A. "Mueller and Kennaugh Matrices in Radar Polarimetry". IEEE Transactions on Geoscience and Remote Sensing, 32(3): 590-597, 1994.
    [60] J. S. Lee, T. L. Ainsworth, D. L. Schuler, "Interpreting Off-Diagonal Terms in Polarimetric Coherency Matrix". IEEE, 913-915, 2001.
    [61] Reddy M P, Prasad B E, Reddy P G, et al. A method for Integration of Heterogeneous Databases[J]. IEEE Transactions on knowledge and Data Engineering, 6(6):920-933, 1994.
    [62]王文光,王俊,毛士艺.一种基于差异度的极化SAR图像迭代分类方法.电子与信息学报[A].28(11): 2007-2010, 2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700