用户名: 密码: 验证码:
Ni-Cr合金与陶瓷连接技术基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对Ni-Cr合金烤瓷修复体存在夹杂、缩孔、气孔和裂纹等缺陷,界面结合强度低及生物相容性等问题,通过对收集到的45个Ni-Cr合金烤瓷修复体临床失败病例进行分析,研究了烤瓷工艺参数对Ni-Cr合金与陶瓷界面组织和力学性能的影响。结果表明,当烤瓷温度T=990℃,烤瓷时间t=2.5min时,Ni-Cr合金与陶瓷界面结合致密,无裂纹、孔隙等缺陷,形成一连续反应层,此反应层具有金属与陶瓷的双重性,在Ni-Cr合金和陶瓷之间起到了过渡层的作用,减少了界面缺陷,提高了Ni-Cr合金与陶瓷的界面结合强度。通过调整烤瓷工艺参数不能从根本上解决界面结合强度低及生物相容性差等技术难题。综合考虑材料的热膨胀系数以及生物相容性等,在获得适当的烤瓷工艺参数烤瓷温度T=990℃,烤瓷时间t=2.5min的研究基础上,采用磁控溅射技术,在Ni-Cr合金表面分别溅射生物性良好的Ti、Zr、Au和TiN中间层,对Ni-Cr合金与陶瓷连接进行了系统的研究。结果表明,采用Ti中间层时,Ni-Cr/Ti/瓷界面结合致密,界面无裂纹、孔隙等缺陷。Ni-Cr/Ti/瓷界面反应非常复杂,界面形成的新物相有SnCr0.14OX、NiCr2O4、Cr2O3、TiO2和Ti2Ni等。当烤瓷温度T=990℃,烤瓷时间t=2.5min,Ti中间层厚度为3μm时,Ni-Cr/Ti/瓷界面结合强度可达到48.4MPa,与Ni-Cr/瓷界面的结合强度比较提高了20.4%。应用热力学和键参数理论,揭示了Ni-Cr/Ti/瓷界面的反应机制。高温烤瓷过程中,Ti与Ni以稳定的化合物Ti2Ni形式结合,同时Ti与陶瓷中Al2O3反应生成AlTi3化合物,与SnO2和SiO2发生置换反应生成TiO2,TiO2与陶瓷中氧化物结合,更好的实现了Ni-Cr合金与陶瓷的连接。Ni-Cr合金表面溅射Ti中间层后本身对离子析出具有一定的屏蔽作用;Ti与Ni形成稳定的化合物进一步阻碍离子析出;Ti与瓷界面反应生成的TiO2层具有较好的耐腐蚀性能,并且TiO2层破损后具有很好的自修复能力,对抑制Ni-Cr合金的离子析出具有持续性。采用大型有限元分析软件ALGOR建立三维有限元模型,分析了Ni-Cr合金与陶瓷界面连接残余应力的大小和分布,对修复体结构进一步优化。将上述研究融于一体,在提高金/瓷界面结合强度、降低界面残余应力和提高Ni-Cr合金的耐腐蚀性三个关键性的技术瓶颈实现了突破,为提高Ni-Cr合金烤瓷修复体质量提供了可靠而详实的试验依据。
Porcelain fused to metal restorations is sintered with dental porcelain material (mixing multiple porcelain into porcelain slurry) on the metal or alloy matrix under the vacuum condition. Virtually, it is a material bonded by metal and porcelain. Ni-Cr alloy can make the alloy crown thinner by its lower price, high elasticity and strength as well as reducing natural teeth abrasion when repairing absent or defect teeth. So Ni-Cr alloy is popular with doctors and sufferers and takes a main position in domestic metal of porcelain firing restorations. There are much difference in the performance parameters between Ni-Cr alloy and porcelain, these are: different chemical bond and it is difficult to bond better with metallurgy combination or bonding; Different thermal expansion coefficient and there are larger residual stress easily producing at the interface; Lower thermal shock resistance property of porcelain, etc. and these are taking more difficulties to making Ni-Cr alloy restorations. Therefore, it has a deeply theoretical value on discovering the mechanism of action between Ni-Cr alloy and the oxide of dental porcelain, studying the effects of interface products category, quantity and distribution on the bonding strength of metal/porcelain interface, lowing porcelain bursting and cracking due to the higher residual stress at the interface resulted in by the different thermal expansion coefficient between metal and porcelain, exploring the new restoration making technology and improving the development of crossing subjects.
     This article studies the critical desiderating problems to solve about the Ni-Cr alloy restorations which taking a main place in domestic dental repairing area through investigating the situations in several domestic dental hospitals and reading relating reference documents. Appearance characters, cause of formation and harm of the defects of Ni-Cr alloy restorations have been studied through analyzing the made Ni-Cr alloy restorations and the collected failed restorations from clinic. The defects, such as impurity, shrinkage cavity, pores, cracks, etc., generally exit in Ni-Cr alloy restorations, the processing measures have been put forward to reduce the defects inner Ni-Cr alloy restorations and offer the technical basis to improve the quality of Ni-Cr alloy restorations.
     Mechanical properties and changing rules of Ni-Cr/porcelain have been studied through changing processing parameters. The results show that the interface reaction is much complicated and the new generating phase at interface is SnCr0.14OX. In definite range, as the increasing of the firing temperature and extending of the firing time, the quantity of inter-dissolving and inter-diffusing between Ni-Cr alloy and porcelain increase and the reaction layer widens, the type of metal/porcelain interface changes from diffusing type to mixed type of diffusing and compounding which has an important effect on the bonding strength of metal/porcelain interface. When firing temperature is T=990℃and firing time is t=2.5min, the shear strength is 43.8 MPa of Ni-Cr/porcelain interface and the three point bending bonding strength is 40.2 MPa.
     Reaction mechanism of Ni-Cr/porcelain interface is discovered after thermal theoretical calculation as well as test results. The reaction at Ni-Cr/porcelain interface is a composite oxide producing course by NiO, Cr2O3, etc. produced from oxidizing reaction at Ni-Cr alloy surface and the oxides in porcelain. The composite oxide mainly is SnCr0.14OX in interfacial reaction layer. There is less difference between the electronegativity, so composite oxides SnCr0.14OX can be looked as an aggregation by two kinds of metallic ions and oxyanion and it qualifies with metallicity and porcelain character, which can react as a transition layer between Ni-Cr alloy and porcelain. The composite oxides mixing with other oxides at the interface forms a Ni-Cr/porcelain interface reaction layer and realize to bond Ni-Cr alloy with porcelain.
     Systemic study has been done on the influence of Ti, Zr, Au and TiN interlayer to the microstructure and property of Ni-Cr alloy/porcelain interface. The design for interlayer is extremely important. Under the effect of interlayer, the bonding of Ni-Cr /porcelain interface translates into the bonding of Ni-Cr/interlayer/porcelain interface. Selection of interlayer should consider the products formed from interaction between Ni-Cr alloy and porcelain to be good to interface bonding, improve anti-corrosion property of Ni-Cr alloy, adjust the thermal action of Ni-Cr alloy and porcelain, ensure the instant thermal stress and residual stress being lower and qualifying with suitable direction during the course of cooling and avoid immediate or overdue porcelain bursting and cracking.
     When using Ti interlayer, Ni-Cr/Ti/porcelain interface bond compactly without cracks and holes, etc.. The reaction is complicated at Ni-Cr/Ti/porcelain interface, and the new forming phases at interface are SnCr0.14OX, NiCr2O4, Cr2O3, TiO2, AlTi3 and Ti2Ni. When firing temperature is T=990℃, firing time is t=2.5min and thickness of Ti interlayer is 3μm, bonding strength of Ni-Cr/Ti/porcelain interface is 48.4 MPa, which is improved 20.4% compared with Ni-Cr/porcelain interface.
     Pores, cracks, etc. exit on near porcelain side of Ni-Cr/Zr/porcelain interface with Zr interlayer. Products of reaction at Ni-Cr/Zr/porcelain interface are SnCr0.14OX, ZrO2 and Al3Zr. When firing temperature is T=990℃, firing time is t=2.5min and thickness of Zr interlayer is 3μm, the bonding strength of Ni-Cr/Zr/porcelain interface is 41.5 MPa, so there is a little bonding strength improving with Zr interlayer.
     When using Au interlayer, Ni-Cr/Au/porcelain interface bond compactly, porcelain embeds in dimples on Ni-Cr matrix caused by sandblasting and both interlock together. Products of reaction at Ni-Cr/Au/porcelain interface are SnCr0.14OX and Cr2O3 and there is no Au compound being detected. When firing temperature is T=990℃, firing time is t=2.5min and thickness of Au interlayer is 1μm, the bonding strength of Ni-Cr/Au/porcelain reaches 51.1 MPa. The bonding strength increases 25.2% compared with Ni-Cr/porcelain interface.
     When using TiN interlayer, the Ni-Cr/TiN/porcelain is clear and bond compactly, and there are no defects of cracks, gaps, etc. and the N2/Ar flow ratio has less effect on interface microstructure. Products of reaction at Ni-Cr/TiN/porcelain interface are SnCr0.14OX, TiO2 and Cr2O3; Interface bonding strength is different with different N2/Ar flow ratio. When N2/Ar flow ratio is 1/3, the bonding strength of Ni-Cr/TiN/porcelain reaches 47.8 MPa. The bonding strength increases 18.9% compared with Ni-Cr/porcelain interface.
     The sequence of interface bonding strength from low to high is Zr     Reaction mechanism of Ni-Cr/Ti/porcelain interface is discovered applying thermodynamics and bond parameter theory. During the high temperature firing, stable Ti2Ni compound is the bond Ti and Ni and AlTi3 compound produced by the reaction between Ti and Al2O3 in porcelain, TiO2 produced by the displacement reaction between Ti and SnO2, SiO2, etc., then TiO2 reacts with the oxides in porcelain and exits with sosoloid mode. Ti interlayer reacts with porcelain as well as Ni-Cr alloy during high temperature firing after sputtering Ti interlayer on Ni-Cr alloy surface which can realize the bond Ni-Cr with porcelain.
     Residual stress and its distribution on Ni-Cr/porcelain bonding are simulated with finite element analysis method and larger residual stress value appears in a narrow area on the near porcelain side. Residual stress and distribution position of Ni-Cr/Ti/porcelain has been improved when using Ti interlayer comparing with the residual stress of Ni-Cr/porcelain interface and inner stress of Ni-Cr alloy and porcelain has been released and the residual stress is transferred to Ti interlayer; The thickness of Ti interlayer has effects on residual stress. As the thickness of Ti interlayer increasing, theσzof interface is increasing and shearing stressτzxis little different.
引文
[1] SPIROS Z, ATHENA T, TRIANTAFILLOS P. Thermal expansion and microstructural analysis of experimental metal-cermic titanium alloys [J]. The Journal of Prosthetic Dentistry, 2003, 90(4): 332-338.
    [2] HEGEDüS C, DARóCZI L, K?KéNYESI V, et al. Comparative microstructural study of the diffusion zone between Ni-Cr alloy and different dental ceramics [J]. Journal of Dental Research, 2002, 81(5): 334-337.
    [3] DENT R J, PRESTON J D, MOFFA J P, et al. Effect of oxidation on ceramometal bond strength [J]. The Journal of Prosthetic Dentistry, 1982, 47(1): 59-62.
    [4] KELLY J R, NISHIMURAL I, CAMPBELL S D. Ceramics Indentistry: Historical Roots and Current Perspectives [J]. The Journal of Prosthetic Dentistry, 1996, 75(1): 18-32.
    [5] ZHANG J X Z, CHANDEL R S, SEOW H P. Effects of chromium on the interface and bond strength of metal-ceramic joints [J]. Materials Chemistry and Physics, 2002, 75(1): 256-259.
    [6] SAADET A, SEMIH B. Bond strength of three porcelains to two forms of titanium using two firing atmospheres [J]. The Journal of Prosthetic Dentistry, 2000, 84 (5): 567-574.
    [7]刘会杰,冯吉才,李广,等.陶瓷与金属扩散连接的研究现状[J].焊接, 2000, 9: 7-12.
    [8] YILMAZ H, DINCER C. Comparison of the bond compatibility of titanium and an Ni-Cr alloy to dental porcelain [J]. Journal of Dentistry, 1999, 27(3): 215-222.
    [9] QUAAS A C, HEIDE S, FREITAG S, et al. Influence of metal cleaning methods on the resin bond strength to Ni-Cr alloy [J]. Dental Materials, 2005, 21(3): 192-200.
    [10]于思荣.金属系牙科材料的应用现状及部分元素的毒副作用[J].金属功能材料, 2000, 1(7): 1-6.
    [11]中华口腔医学会口腔修复学科专业委员会.98全国口腔烤瓷修复问题与对策专题研讨会纪要[J].中华口腔医学杂志, 1999, 35(5): 261-263.
    [12] BRECKER C S. Porcelain baked to gold: a new medium in prosthodontics [J]. The Journal of Prosthetic Dentistry, 1956, 6: 801-810.
    [13] KATZ S, WEISTEIN A B, WEISTEIN M. Fused Porcelain-to-metal Teeth [P]. USA Patent 3052983, 1962.
    [14]汪大林,江中明.牙科合金材料应用研究现状[J].特种铸造及有色合金, 1998, 3: 41-44.
    [15] MACKERT J R, JR, RINGLE R D, et al. High-temperature behavior of a Pd-Ag alloy for porcelain [J]. Journal of Dental Research, 1983, 62: 1229-1235.
    [16] HERO H, SYVERUD M. Carbon impurities and properties of some palladium alloys for ceramic veneering [J]. Dental Material, 1985, 1: 106-110.
    [17]丁弘仁.国产贵金属烤瓷合金的研制[D].西安:第四军医大学口腔医院, 2002.
    [18]徐恒昌.口腔材料学[M].北京:北京大学医学出版社, 2005: 131.
    [19]陈洁清.口腔材料学[M].北京:人民卫生出版社, 2001: 169.
    [20] MORRIS H F. Properties of Cobalt-Chromium metal ceramic alloys after heat treatment. The Journal of Prosthetic Dentistry, 1990, 63(4): 426-433.
    [21]杜传诗,魏治统,艾利朴,等. CW-PA型烤瓷Ni-Cr-Nb合金的研制及临床应用[J].华西口腔医学杂志, 1989, 7(3): 138-142.
    [22]汪大林,徐君伍.口腔医学中金属与合金材料的应用现状和存在的问题[J].生物医学工程学杂志, 1993, 10(4): 364-367.
    [23]邢惠周,徐君伍,王忠义,等. YKH-1型非贵金属与西德VITA VMK 68瓷粉制作修复体的临床应用和体会[J].实用口腔医用学杂志, 1990, 6(3): 163-166.
    [24] IDA K, TANI Y, TSUTSUMI S, et al. Clinical application of pure titanium crowns [J]. Dental Materials, 1985, 4: 191-195.
    [25] PRASAD, ARUN, CHESIRE C T. Titanium alloy dental restorations [P]. USA, 5091148, 1992.
    [26] HUSSAINI Al I, WAZZAN Al K. Effect of surface treatment on bond strength of low- fusing porcelain to commercially pure titanium [J]. The Journal of Prosthetic Dentistry, 2005, 94(4): 350-356.
    [27] SMELITSCH M, WEBER H, STREICHER R, et al. Joint replacement components made of hot-forged and surface-treated Ti-6Al-7Nb alloy [J]. Biomaterials, 1992, 13(11): 781-788.
    [28] TROIA M G, HENRIQUES G E, MESQUITA M F, et al. The effect of surface modifications on titanium to enable titanium-porcelain bonding [J]. Dental Materials, 2008, 24(1): 28-33.
    [29] K?N?NEN M, KIVILAHTI J. Fusing of dental ceramics to titanium [J]. Journal of Dental Research, 2001, 80(3): 848-854.
    [30] ADACHI M, MACKERT J R, PARRY E E, et al. Oxide Adherence and Procelain Bonding to Titanium and Ti-6Al-4V alloy [J]. Journal of Dental Research, 1990, 69(6): 1230-1235.
    [31] TANAKA Y. Titanium-oxide interface structure formed by degassing and anodiz-ation processes [J]. Journal of Materials Science, 2005(40): 3081-3090.
    [32] OSHIDA Y, HASHEM A. Titanium-procelian system. Part I: Oxidation kinetics of nitrided pure titanium, simulated to porcelain firing process [J]. BioMedical Materials and Engineering, 1993, 3(4): 185-198.
    [33] WANG R R, WELSCH G E, MONTEIR O. Silicon nitried coating on titanium to enable titanium-ceramic bonding [J]. Journal of Biomedical Materials Research, 1999, 46(2): 262-270.
    [34]浙江大学.硅酸盐物理化学[M].中国建筑工业出版社, 1980, 7: 242.
    [35] DUNWORTH F D. Porcelain fused to gold [J]. The Journal of Prosthetic Dentistry, 1958, 8(4): 635-640.
    [36] BLOOM J. An introduction to the history of dentistry [J]. Oral Surgery, Oral Medicine, Oral Pathology, 1950, 3(10): 1332.
    [37] JENKIN S. Porcelain enamel [J]. Journal of Dental Science, 1902, 45:941.
    [38] MARCKERT J R. The effect of low high leucite transformation on dental porcelain expansion [J]. Journal of Dental Research, 1985, 64: 246-251.
    [39] KON M, KAWANO F, HANANA T, et al. Effect of glass composition or strength of porcelain contention leucite [J]. Journal of Dental Research, 1995, 74: 489-493.
    [40] DEFREEST C F, SHEN C, ANUSAVIVE K J. Effect of coating on biaxial strength of a leucite reinforced porcelain [J]. Journal of Dental Research, 1995, 74: 38-43.
    [41] JENDRESEN M D, ALIEN E P, Bayne S C, et al. Annuel review of selected dental literature: Report of the committee on scientific investigation of the American academy of restorative dentistry [J]. The Journal of Prosthetic Dentistry, 1998, 80: 81.
    [42] HOFSTEDE T M. Influence of metal surface finishing on porcelain porosity and beam failure loads at the metal-ceramic interface [J]. The Journal of Prosthetic Dentistry, 2000, 84(3): 309-313.
    [43]孔新民,解耀邦,黄恬中,等.金属烤瓷修复体材料之一瓷粉[J].口腔医学, 1983, 3(2): 75-77.
    [44]邢惠周,徐君伍,艾蝇前,等.牙用KC-1烤瓷粉临床应用和研究[J].实用口腔医用学杂志, 1994, 10(1): 25-27.
    [45]王宁,李博文,翁润生.钾长石在金属烤瓷粉研制中的应用[J].矿物岩石, 2000, 20(4): 7-10.
    [46]卢晓英,宋君祥,江奇,等.牙用烤瓷熔附金属修复体遮色瓷的制备[J].四川大学学报, 2003, 35(3): 66-69.
    [47]隋丽娜,于立岩,秦晓梅,等.新型金属烤瓷材料-遮色瓷粉体的研究[J].机械工程材料, 2005, 29(8): 34-37.
    [48]何惠明,周忠慎,施长溪,等.钛材专用烤瓷粉的研制[J].实用口腔医学杂志,1996, 12(4): 275-277.
    [49]徐君伍.口腔修复学[M].北京:人民卫生出版社, 2001: 101.
    [50]巢永烈.口腔修复学[M].北京:人民卫生出版社, 2006: 60-61.
    [51] SHELL J S, NIELSEN J P. Study of the bond between gold alloys and porcelain [J]. Journal of Dental Research, 1962, 41(6): 14-24.
    [52] CASCONE P J, NABATRAN D. Determination of thermal expansion compatibility limits for porcelain-metal system [J]. Journal of Dental Research, 1982, 61: 330-333.
    [53] WALTON T R, O'Brien W J. Thermal stress failure of porcelain bonded to apalladium-silver alloy [J]. Journal of Dental Research, 1985, 64(3): 476-482.
    [54] O'CONNER R P, Market J R, Myers M L, et al. Castability, opaque masking, and porcelain bonding of 17 porcelain-fused-to-metal alloys [J]. The Journal of Prosthetic Dentistry, 1996, 75(4): 367-373.
    [55] WU Y, MOSER J B, JAMESON L M, et al. The effect of oxidation heat treatment on porcelain bond strength in selected base metal alloys [J]. The Journal of Prosthetic Dentistry, 1991, 66(4): 439-444.
    [56] ANUSAVICE K J, DEHOFF P H, CRAY A, et al. Delayed crack propagation inporcelain due to incompatibility stress [J]. Journal of Dental Research, 1986, 65-70.
    [57] HUANG H H, LIN M C, LEE H W, et al. Effect of chemical composition of Ni-Cr dental costing alloys on the bonding characterization between porcelain and metal [J]. Journal of Oral Rehabil, 2005, 32(2): 206-212.
    [58] WIGHT T A, BAUMAN J C, PELLEUJR G B. An evaluation of four variables affecting the bond strength of porcelain to nonprocious alloy [J]. The Journal of Prosthetic Dentistry, 1977, 37(5): 570-575.
    [59]刘梦桃,贾安琦,张庆鸿.金瓷混合涂层烧结温度对镍铬合金与瓷结合强度的影响[J].实用口腔医学杂志, 2005, 21(3): 412-414.
    [60] MENIS D L, RIJK W G, BUSBY R L. Variability of thermal expansion coeffcients with temperature for dental porcelains [J]. Journal of Dental Research, 1982, 61: 246-251.
    [61] MACKERT J R, WILLIAMS A L. Microcracks in dental porcelain and their behavior during multiple firing [J]. Journal of Dental Research, 1996, 75(7): 1484-1490.
    [62] STANNARD J G, MARKS L. Effect of multiple firing on the bond strength of selected matched porcelain-fused-to-metal combinations [J]. The Journal of Prosthetic Dentistry, 1990, 63(6): 627-633.
    [63]徐军,郭娟丽.烤瓷用镍铬合金金属氧化膜的研究[J].中华口腔医学杂志,1999, 34 (5): 264-266.
    [64]朱松,韩英杰.烤瓷烧结次数对镍铬合金表面氧化膜形成的影响[J].现代口腔医学杂志, 2000, 14(4): 268-269.
    [65] PANG L C, GIBERT J L. Bonding characteristics of low fusing porcelain bonded to titanium and palladium-copper alloy [J]. The Journal of Prosthetic Dentistry, 1995, 73: 17-25.
    [66] GEMALMAZ D, BORKSUN S, ALKUMRE H N. Thermal cycling distortion of porcelain fused to metal fixed partial dentures [J]. The Journal of Prosthetic Dentistry, 1998, 80: 654-660.
    [67] MACKERT J R, PARRY E E, FAIRHURST C W. Oxide adherence to a Ni-Cr-Mo ternary alloy [J]. Dental Materials, 1985, 1: 111-113.
    [68] STEINt R S, KUWATA M. A dentist and dental technologistanalyze current ceramo-metal procedures [J]. Dental clinics of North America, 1997, 21:729-749.
    [69]文志红,杜传诗,巢永烈.除气和预氧化对金-瓷结合强度的影响[J].中华西口腔医学杂志,1996, 4(1): 10-12.
    [70] LAVINE M H, CUSTER F.Variable affecting the strength of bond between porcelain and gold [J]. Journal of Dental Research, 1996, 45(1): 32-36.
    [71] PAPAZOGLOU E, BRANTLEY W A, CARR A B. Porcelain adherence to high-palladium alloys [J]. The Journal of Prosthetic Dentistry, 1993, 70: 386-394.
    [72] WAGNER W C, ASGAR K, BIGELOW W C, et al. Effect ofinterfacial variables on metal-porcelain bonding [J]. Journal of Biomedical Materials Research, 1993, 27: 531-537.
    [73]文志红,杜传诗,郑弟泽,等.不同喷砂粒度对金瓷结合强度的影响[J].中华口腔医学杂志, 1994, 29(4): 229-234.
    [74]木原龙三.陶瓷烧附用Ni-Cr合金[J].齿科技工, 1986, 13(2): 168.
    [75] OKAZAKI M, WANG X, TONGUCHI M S. Improvement of bond strength in metal-ceramic systems using a gold intermediate layer [J]. Dental Materials, 1998, 17 (3): 163-167.
    [76]王晟,王贻宁,王正.富含金的中间介质对Ni-Cr合金与瓷结合强度的影响[J].口腔医学研究, 2002, 18(3): 152-154.
    [77] DAFTARY F D, DONOVAN T. Effect of electrodeposition of gold on porcelain-to-metal bond strength [J]. The Journal of Prosthetic Dentistry, 1987, 57(1): 41-46.
    [78] BULLARD J T, DILL R E, MARKER V A, et al. Effect of sputtered metal oxide finds on the ceramics-to-methal bond [J]. The Journal of Prosthetic Dentistry, 1985, 54(6): 776-778.
    [79]宋君祥,冉均国,苏葆辉,等.纳米等离子处理对提高牙科合金金瓷结合性的研究[J].四川大学学报, 2004, 36(5): 74-77.
    [80] ATTA M O, SMITH B G, BROWN D A. Comparison of electrolytic and nonelectrolytic etching technigues for direct bonded bridge retainers [J]. Restoration Dental, 1978, 3(1): 11-17.
    [81]韩霖霏,李建,黄丽娟,等.深冷处理对钴铬合金烤瓷冠金瓷结合力的影响[J].口腔医学, 2008, 28(3): 136-138.
    [82]朱松,刘红,王景云,等.阳极钝化法对金瓷结合强度的影响[J].口腔医学研究, 2003, 19(4): 250-252.
    [83] SHELL J S, NIELSEN J P. Study of the bond between gold alloys and porcelain [J]. Journal of Dental Research, 1962, 41(5): 1425-1437.
    [84] ANTHONY D H, BUREETT A P, SMITH D L, et al. Shear test for measuring bonding incast gold alloy-porcelain composites [J]. Journal of Dental Research, 1973, 49(1): 27-33.
    [85] CIVIJAN S, HUGET E F, DESIMON L B, et al. Determination of apparent bond strength of alloy-porcelain systems [J]. Journal of Dental Research, 1974, 53(1): 240-241.
    [86] ANUSAVICE K J, DEHOFF P H, FAIRHURST C W. Comparative evaluation of ceramic-metal bond tests using finite element stress analysis [J]. Journal of Dental Research, 1980, 59: 608-613.
    [87] HERRMANN M, ROTTENEGGER R, TINSCHRT J, et al. The effect of corrosive environment on the porcelain-to-metal bond-A fracture mechanics investigation [J]. Dental Materials, 1992, 8: 2-6
    [88] MACKERT J R, RINGLE R D, PARTY E E, et al. The relationship between oxide adherence and porcelain-metal bonding [J]. Journal of Dental Research, 1998, 67(2): 474-480.
    [89] RINGLE P D, MACHERT J R, FAIRHURST C W. An X-ray spectrometric technique for measuring porcelain-metal adherence [J]. Journal of Dental Research, 1983, 62(5): 933-936.
    [90] PAPAZOGLOU E, BRANTLEY W A, CARR A B, et al. Porcelain adherence to high- palladium alloys [J]. The Journal of Prosthetic Dentistry, 1993, 70(4): 386-394.
    [91] LENZ J. SCHWARZ S, SCHWICKERATH H, et al. Ceramic systems in three-point flexure bondstrength of metal-hood test [J]. Journal of applied biomaterials, 1995, 6: 55-64.
    [92] JRANGA A, BLUM J Y, ESBER S, et al. A comparative study of four coronalobturation materials in endodantic treatment [J]. Journal of Endodontics, 1999, 25: 78-80.
    [93] LIU J, ATSUTA M, WATANABE. Bond strength of porcelain to deglassed cast titanium [J]. Int Chin Dent, 2002, 2: 67-74.
    [94] PAPAZOGLOU E, BRANTLEY W A. Porcelain adherence vs force to failure for palladium-gallium alloys: a critique of metal ceramic bond testing [J]. Dental Materials, 1998, 14(2): 112-119.
    [95] KALIN M, VIZINTIN J, VLEUGEL J, et al. Influence of mechanical pressure and temperature on the chemical interaction between steel and silicon nitride ceramic [J]. Journal of Materials Research, 2000, 15 (6): 1367-1376.
    [96] TINSLEY D N. The reduction of residual stress generated in metal-ceramic joining [J]. Materials and Manufacturing Process, 1998, 13 (4): 491-504.
    [97] MONAHAN R W, ZHANG B. Residual stress and damage effect on integrity of ground silicon nitride [J]. Journal of Materials Science, 2000, 35(5): 1155-1124.
    [98] KOVALEV, SERGUEI, MIRANZO, et al. Finite element simulation of thermal residual stress in joining ceramics with thin metal interlayer [J]. Journal of the American Ceramic Society, 1998, 81(9): 2342-2348.
    [99]何鹏,冯吉才,钱亿余.异种材料扩散连接接头残余应力的分布特征及中间层的作用[J].焊接学报, 2002, (1): 76-80.
    [100]宋敏霞,赵熹华,赵涣凌,等. TC4/QAl10-3-1.5扩散接头残余应力的有限元数值模拟[J].稀有金属材料与工程, 2007, 36(11): 1938-1941.
    [101] MUNZ D, SCKUHR M A, YANG Y Y. Thermal Stresses in Ceramic-Metal Joints with an Interlayer [J]. Journal of the American Ceramic Society, 1995, 78(2): 286-290.
    [102] KIMURA O, KAWASHIMA T. Effect of Interlayer Thickness on Residual Thermal Stresses in a Ceramic-to-Metal Cylindrical Joint [J]. Journal of the American Ceramic Society, 1993, 76(3): 757-759.
    [103] YU H Y, SANDAY S C, RATH B B. Residual Stresses in Ceramic-Interlayer-Metal Joints [J]. Journal of the American Ceramic Society, 1993, 76(7): 1661-1664.
    [104]楚建新,林晨光,孙序,等.精密陶瓷-金属连接中的残余应力[C].第九届全国钎焊与扩散焊技术交流会论文集,中国扬州, 1996: 59-68.
    [105] YAMADA T, YOKOI K, KOHNO A. Effect of residual stress on the Strength of Alumina-Steel Joint with Al-Si Interlayer [J]. Journal of Materials Science, 1990, 25: 2188-2192.
    [106] FRISCH A, KAYSSER W A, ZHANG W, et al. Stress Relaxation and Bonding in Si3N4/MA6000 Joints by Reactive Interlayers [J]. Acta Metallurgical Materials, 1992,40: 361-368.
    [107] LI J B, SUN L Z. Effect of low Temperature Treatment Regime on Residual stress State near Interface in Bonded SiC/6061Al Compounds [J]. Materials Science and Engineering A, 1996, 22: 179-186.
    [108] MA M C, SHAW, M Y, HE, et al. Stress Redistribution in Ceramic/Metal Multilayers Containing Cracks [J]. Acta Metallurgical Materials, 1995, 43(6): 2137-2142.
    [109] KOGUCHI T, HINO Y, KIKUCHI, et al. Residual Stress Analysis of Joints of Ceramics and Metals [J]. Experimental Mechanics, 1994, 6: 116-123.
    [110]杜正国,朱颖,曲平,等.陶瓷与金属焊接接头残余应力研究现状[C].第十六届全国钎焊及特种连接技术交流会论文集.中国南宁, 2009: 56-59.
    [111]辛海涛,马轩祥,李玉龙,等.金-瓷修复体粘弹性残余应力的有限元分析[J].华西口腔医学杂志, 2004, 22(6): 463-473.
    [112] ISO 9693:1999. Metal-ceramic dental restorative systems [S].
    [113] ISO TR10271 1993. Dentistry-Determination of tarnish and corrosion of metals and alloy [S].
    [114]张昕,邢军.金属烤瓷内冠铸造缩孔形成的原因探讨[J].天津医科大学学报,2003, 9(9):116-117.
    [115]白天玺.现代口腔烤瓷铸造支架修复学[M].北京:人民军医出版社, 2000: 430.
    [116] DEHOFF P H, ANUSAVICE K J. Shear stress relaxation of dental ceramics determined from creep behavior. Dental Materials [J]. 2004, 20: 717-725.
    [117]魏庆成.冶金热力学[M].重庆:重庆大学出版社, 1996: 194.
    [118]梁英教,车荫昌,刘晓霞,等.无机物热力学数据手册[M].沈阳:东北大学出版社, 1993: 16-486.
    [119]熊华平,程耀永,毛唯,等. Ni-Fe-Cr-Ti及Co-Ni-Fe-Cr-Ti(Si, B)系高温钎料对Si3N4陶瓷的润湿与界面连接[J].金属学报, 2000, 36(12): 1269-1274.
    [120] ITO A, OKAZAKI Y, TATEISHI T, et al. In vitro biocompabitibility, mechanical properties, and corrosion resistance of Ti-Zr-Nb-Ta-Pd and Ti-Sn-Nb-Ta-Pd alloys [J]. Journal of Biomed Materials Reserch, 1995, 29 (7): 893-900.
    [121]孙凤,钱端申,魏克力,等.金沉积基底烤瓷冠的临床研究[J].中华口腔医学杂志, 2000, 35 (6): 4472-4491
    [122]董正杰,徐侃.烤瓷冠修复后龈缘黑线产生的原因及防治[J].上海口腔医学, 2003, 12(6): 460-462.
    [123]李爱霞,解保生,朱慧兰.氮化钛及其在口腔医学中的研究和应用[J].国外口腔医学分册, 2004, 31(3): 232-234.
    [124] ENDO K, SACHDEVA R, ARAKI Y, et al. Effects of titanium nitride coatings onsurface and corrosion characteristics of Ni-Ti alloy [J]. Dental Material, 1994, 13(2): 228-239.
    [125] SUN S Y, ZHAO Y M, ZHANG Y M, et al. The research of using TiN nanometer film to improve the anticorrosive property of FeCrMo alloy [J]. Zhonghua Kou Qiang Yi Xue Za Zhi, 2003, 38(5): 387-389.
    [126] MICHAEL H. Electroforming in Dentistry-New Aspects and Trends [C]. Gold in Medical and Dental Applications, 2003, 10-15.
    [127] VENCE B S. Electroforming technology for galvanoceramic restorations [J]. Journal of Prosthetic Dentistry, 1997, 77(4): 444-453.
    [128]金磊,王忠义,李旬科,等.金沉积烤瓷冠金瓷界面的研究[J].实用口腔医学杂志, 2004, 20(1): 76-79.
    [129] PETTENO D, SCHIERAMO G, BASSI F, et al. Comparison of marginal fit of 3 different metal-ceramic systems: An in vitro study [J]. The Journal of Prosthetic Dentistry, 2000, 13: 405-413.
    [130]崔宏燕,胡秀莲,王涛,等.金沉积技术在种植固定修复中的临床应用效果观察[J].口腔颌面修复学杂志, 2006, 7(2): 138-141.
    [131] CAI Z, WATANABE I, MITCHELL J C, et al. X-ray diffraction characterization of dental gold alloy-ceramic interfaces [J]. Journal of Materials Science Materials in Medicine, 2001, 12(3): 215-223.
    [132]吕宏.金沉积烤瓷全冠[J].中华口腔医学杂志, 2000, 5(35): 395.
    [133]宗秀敏,许大庆. TiN涂层中的择尤取向及其对涂层性能的影响[J].机械材料工程, 2000, 24(1): 20-22.
    [134] LOGOTHETIDIS S, ALEXANDROU I, KOKOU S. Optimization of TiN thin films growth with situ monitoring: the effect of bias voltage and nitrogen flow rate [J]. Surface and Coatings Technology, 1996, 80: 66-71.
    [135]魏宝明.金属腐蚀理论及应用[M].北京:化学工业出版社, 1984: 141-145.
    [136]张宝宏,丛文博,杨萍.金属电化学腐蚀与防护[M].北京:化学工业出版社, 2005: 3.
    [137] KEDICI S P, AKSUT A A, KILICARSLAN M A, et al. Corrosion behavior of dental metals and alloys in different media [J]. Journal of Oral Rehabilitation, 1998, 25(10): 800-808.
    [138] HUANG H H. Effect of chemical composition on the corrosion behavior of Ni-Cr-Mo dental alloy casting alloys [J]. Journal of Biomed Material Research, 2002, 60(3): 458-465.
    [139] BUMGARDNER J D, LUCAS L C. Surface analysis of nickel-chromium dentalalloys [J]. Dental Material, 1993, 9(4): 252-259.
    [140]曹楚南.腐蚀电化学[M].北京:化学工业出版社, 1994: 9.
    [141] GEIS G J, SAUER K H, PASSLER K. Ion release from Ni-Cr-Mo and Co-Cr-Mo casting alloys [J]. International Journal of Prosthodontics, 1991, 4(2): 152-158.
    [142]陈念贻.键参数函数及其应用[M].北京:科学出版社, 1976: 15, 19.
    [143]葛志明.钛的二元相图[M].国防工业出版社, 1977: 21, 46.
    [144]何惠明,苗鸿雁,施长溪,等.钛材专用烤瓷粉的微观结构研究[J].实用口腔医学杂志, 1997, 13(1): 53-55.
    [145] DRORY M D, THOULESS M D, EVANS A G. On the decohesion of residually stressed thin films [J]. Acta Metallurgica Materialia, 1988, (36): 2019-2028.
    [146] SHAFIQUE M A, MARWAN K K. A new criterion for mixed mode fracture initiation based on the crack tip plastic coreregion [J]. International Journal of Plasticity, 2004, 20: 55-64.
    [147]陈泽宇,吕文阁,杜健辉.裂纹顶端塑性区内方向应变能的裂纹扩展准则[J].安徽工程科技学院学报, 2005, 20(4): 53-57.
    [148] RICE J R. Elastic fracture mechanics concepts for interfacial cracks [J]. Journal of Applied Mechanics, 1998, 55: 98-102.
    [149] MATOS P P L, McMeeking R M, Charalambides P G, et al. Amethod for calculating stress intensities in bimaterial fracture [J]. International Journal of Fracture, 1998, 40: 235-240.
    [150]米红林,方如华.金瓷修复体双材料界面断裂强度有限元分析[J].同济大学学报(自然科学版), 2005, 33(1): 99-103.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700