用户名: 密码: 验证码:
金属热变形及焊缝凝固过程的元胞自动机模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属材料性能很大程度上取决于其微观组织,因此控制材料微观组织演变对热加工过程的理论发展和技术优化有重要的意义。长期以来,对金属成型过程微观组织演变的研究主要建立在实验和半经验公式基础上,这种方法既增加了产品成本、延长了生产周期,又无法直接观察材料的微观组织演变过程。近年来,随着高性能计算设备和新的模拟技术的出现,计算机模拟成为研究热加工过程微观组织演变的重要手段。元胞自动机(CA)法是一种广泛应用的材料介观组织模拟方法,与传统的数值计算和模拟方法相比,它在物理系统的计算和模拟中的应用更为灵活。CA法的转变规则兼具确定性和随机性,可以很好的和材料加工理论模型结合在一起,因此适合于模拟晶粒形核与长大过程。本文采用CA方法分别对金属热变形和焊接凝固过程的微观组织演变进行了模拟,主要内容如下:
     (1)基于动态再结晶组织转变原理,建立了纯金属动态再结晶过程的二维CA模型。模型综合考虑了位错密度演变、动态再结晶形核及再结晶晶粒长大等一系列过程。在纯金属模型基础上,建立了包含粒子的合金动态再结晶CA模型。模型认为第二相粒子存在使粒子附近发生粒子激发形核,并且会增强位错累积和阻碍晶界迁移。模型分别被应用到纯铜和GCr15轴承钢单道次热压缩过程。模拟结果表明初始晶粒尺寸及热加工参数都对动态再结晶动力学有很大影响。将模拟结果和实验结果进行了对比,吻合较好。
     (2)建立了预测金属材料双道次热变形过程的二维CA模型。模型综合考虑了热变形涉及的动态再结晶、静态回复、静态再结晶、亚动态再结晶和晶粒长大等单个的物理现象。利用模型分别对纯铜和GCr15轴承钢双道次热压缩过程进行模拟来验证模型。探讨了道次间隔时间和第一道次变形量对微观组织演变、应力-应变曲线和再结晶动力学的影响。模拟结果和实验数据及理论模型基本一致。
     (3)在二维CA模型基础上,建立了动态再结晶过程的三维CA模型。三维模型采用了立方元胞单元和改进的Moore型邻居。将动态再结晶三维CA模型应用到纯铜和GCr15轴承钢单道次热压缩过程中,探讨了不同初始晶粒尺寸和热变形参数对动态再结晶过程的应力-应变曲线和再结晶动力学的影响。
     (4)将晶粒变形技术引入到动态再结晶过程的CA模型中,建立了准同步的耦合模型。基于元胞尺寸变化的均匀拓扑变形技术能有效的模拟晶粒形状的改变。模型被用来模拟纯铜和GCr15轴承钢单道次热压缩过程,讨论了热压缩过程晶粒变形对动态再结晶微观组织演变和再结晶动力学的影响。
     (5)通过耦合CA和蒙特卡罗(MC)方法,建立了熔焊焊缝凝固过程的二维模型。模型通过有限差分(FD)法求解热传导及溶质扩散过程,采用CA/MC法构建固相晶粒的形核和长大规则,通过凝固潜热处理及固/液界面前沿溶质再分配将CA/MC和FD方法结合在一起。将模型应用到17Cr-Ti-N不锈钢的焊缝凝固过程,预测了TiN作为形核孕育剂条件下焊缝凝固组织的柱状晶向等轴晶转变(CET)。模拟结果和实验结果基本一致。
The microstructure exerts a strong influence on the properties of metallic materials. Therefore,microstructural control during thermo-mechanical and subsequent process is an important and support factor in theoretical development and technology optimization.In the past decades,the studies of microstructural evolution are mainly based on a number of experiments and semi-empirical formulations.It can cause great expense of time and costs, and can not provide a direct view of microstructural development.Recently,with the advent of powerful computers and new simulated techniques,computer simulation has been playing an increasing important role in the studies on microstructural evolution during thermo-mechanical process.Cellular automaton(CA) is one of meso-scale simulated methods widely used in materials science.Compared with the traditional numerical methods,CA is relatively flexible in simulating different physical systems.It combines the utilities of both deterministic and stochastic transitional rules.Theoretical models of materials process can be readily incorporated into the CA simulation through appropriate transformation function to model nucleation and grain growth.In this paper,microstructural evolution of metal hot deformation and weld solidification are simulated by using CA method.The main contents are as follows:
     (1) Based on dynamic recrystallization(DRX) metallurgical principles,a dynamic recrystallization in pure metal two-dimensional(2-D) CA model is developed.The evolution of dislocation density,DRX nucleation and grain growth are under consideration.Then,a modified DRX 2-D CA model for particle-containing alloy is constructed.Particle stimulated nucleation(PSN) is incorporated into the CA model to determine the influence of second-phase particles on the nucleation of DRX.It is considered that dispersed second-phase particles enhance the accumulation of dislocation density and resist the movement of grain boundary.The models are applied to model single hit compression tests of pure copper and GCr15 bearing steel.It is observed that DRX kinetics depends on both thermo-mechanical parameters and initial grain sizes.The simulated results are compared with the experimental results and are found to be in good agreement.
     (2) A 2-D CA model is developed to predict the microstructural evolution during two-stage hot deformation of metallic materials.The physically-based model has integrated the effects of the individual metallurgical phenomena related with the hot deformation, including DRX,static recovery,static recrystallization(SRX),metadyanmic recrystallization (MDRX) and grain growth,etc.The model is validated by simulating double hit compression tests of pure copper and GCr15 beating steel.The effects of the interval and pre-strain on microstructural evoutions,stress-strain curves and recrystallization kinetics are investigated. The simulated results agree well with the experimental results and theoretical models.
     (3) The 2-D DRX CA model is extended to a three-dimensional(3=D) one.The simulation domain is subdivided into a regular lattice of cubic cells and the modified Moore's neighbour rule is introduced.The 3=D model is applied to simulate the microstructural evolution of pure copper and GCr15 bearing steel single hit compression tests.The effects of intial grain size and thermo-mechanical parameters on stress-strain curves and kinetics of DRX are discussed.
     (4) A quasi=synchronous integration model is constructed by coupling a CA model with a grain deformation model.The uniform topology deformation technique is introduced by changing the size of CA grid so as to keep the volume constant.The model is applied to simulate single hit compression process for pure copper and GCr15 bearing steel.The influences of grain deformation on microstructural evolution and the kinetics of recrystallization are investigated.
     (5) A 2-D welding solidification model is developed by coupling CA with monte carlo (MC) method.The finite difference(FD) method is introduced to calculate heat transfer and solute diffusion.The CA/MC model is used to construct the evolution rule of nucleation and growth of solid.The key problems of combination between CA/MC and FD method are solidification latent heat and solid/liquid interface solute partitioning.The model is introduced to simulate welding solidification process in 17Cr-Ti-N stainless steel.Based on the experimental results that titanium nitride(TiN) works as an inoculant of equiaxed grain formation,given number of TiN is allocated to CA cells randomly.The columnar-to-equiaxed transition of welding solidification microstructure is predicted.The simulated results agree well with experimental results.
引文
[1]陈舜麟.计算材料科学[M].北京:化学工业出版社,2005.
    [2]Rabbe D.计算材料学[M].项金钟,吴兴惠译.北京:化学工业出版社,2002.
    [3]李依依,李殿中,朱苗勇,等.金属材料制备工艺的计算机模拟[M].北京:科学出版社,2006.
    [4]熊守美.铸造过程模拟仿真技术[M].北京:机械工业出版社,2004.
    [5]Oldfield W A.Quatitative approach to casting solidification[J].Freezing of cast iron,ASM Trans.,1966,59:945-960.
    [6]Hunt J D.Steady state columnar and equiaxed growth of dendrites and eutectic[J].Mater Sci Eng,1984,65:75-83
    [7]Aderson M.Computer simulation of grain growth Ⅰ:Kinetics[J].Acta Metall,1984,32(5):783-791.
    [8]Aderson M P,Srovitz D J,Grest G S,et al.Computer simulation of grain growth Ⅰ.Influence of a particle dispersion[J].Acta Metall,1984,32(9):1429-1438.
    [9]Spittle J A,Browns G R.Computer simulation of the effects of alloy variables on the grain structures of castings[J].Acta Metall.,1989,37(7):1803-1810.
    [10]Spittle J A,Browns G R.A Computer simulation of the influence of processing conditions on as-cast grain structures[J].J Mater Sci,1989,23:1777-1781
    [11]Zhu P P,Smith R W.Dynamic simulation of crystal growth by monte carlo method Ⅰ,model description and kinetics[J].Acta metall.,1992,40(4):683-692.
    [12]Zhu P P,Smith R W.Dynamic simulation of crystal growth by monte carlo method Ⅱ ingot microstructures[J].Acta Metall.,1992,40(12):3369-3379.
    [13]Gao J,Thompson R G.Real time-temperature models for Monte Carlo simulations of normal grain growth[J].Acta Materialia,1996,44(11):4565-4570.
    [14]Yang Z,Sista S,Debroy T,et al.Three dimensional Monte Carlo simulation of grain growth during GTA welding of titanium[J].Acta Mater.,2000,48(8):4813-4825.
    [15]Sista S,Yang Z,Debroy T,et al.Three Dimensional Monte Carlo Simulation of Grain Growth in the HAZ of a 2.25Cr-1Mo Steel Weld[J].Metallurgical and Materials Transactions B,2000,31B:529-536.
    [16]Yang Z.,Debroy T.Modeling Macro-and Microstructures of Gas-metal-arc welded HSLA-100steel[J].Metallurgical and Materials Transaction B,1999,30B:483-493.
    [17]Mishra S.,Debory T.Measurement and monte carlo simulation of grain growth in the heat-affected zone of Ti-6Al-4V welds[J].Acta Materialia,2004,52:1183-1192.
    [18]Koseki T,Inoue H,Fukuda Y,et al.Numerical simulation of equiaxed grain formation in weld solidification[J].Science and Technoloy of Advanced Materials,2003,4:183-195.
    [19]莫春立,李殿中,钱百年,等.铁素体不锈钢焊接热影响区晶粒长大过程模拟[J].金属学报, 2001,37:307-310.
    [20]温俊芹,刘新田,莫春立,等.焊接热影响区晶粒长大过程的微观组织模拟[J].焊接学报,2003,24:48-51.
    [21]张世兴,刘新田.工业纯铝焊接热影响区微观组织模拟[J].电焊机,2004,34(8):24-26.
    [22]Chopard B,Droz M.Cellular Automaton modeling of physical systems[M].Cambridge:Cambridge University Press,1998.
    [23]Langer J S.Models of pattern formation in first-order phase transitions,in Directions in Condensed Matter Physics[M]edited by G.Grinstein and G.Mazenko.Singapore:World Scientific,1986.
    [24]Fix G J.Phase field models for free boundary problems,in "Free boundary problems:theory and applications[M].Vol.Ⅱ",A.Fasano and M.Primicerio eds.,pp.580-589,Pitman Res.Notes Math.Ser.79,London:Longman,1983.
    [25]Chen L Q,Yang W.Computer simulation of the domain dynamics of a quenched system with a large number of nonconserved order parameters:The grain-growth kinetics[J].Phys Rev B,1994,50:15752-15756.
    [26]Fan D,Chen L Q.Diffusion-controlled grain growth in two-phase solids[J].Acta mater,1997,45(8):3297-3310.
    [27]Zhu J Z.Phase-field modeling of microstructural evolution and preperties[D].Pennsylvania State University,2002.
    [28]Packard N.Theory and applications of Cellular Automata[M].Singapore:World Scientific,1986.
    [29]Spittle J A.,BrownS G R.Computer simulation of the effects of alloy variables on the grain structures of castings[J].Acta Metallurgica,1989,37(7):1803-1810.
    [30]BrownS G R,Spittle JR.Rule-based lattice computer models for simulating dendritic growth [J].Scripta Metallurgica Et Materialia,1992,27(11):1599-1603.
    [31]Rappaz M,Gandin C A.Probabilistic modelling of microstructure formation in solidification processes[J].Acta Metallurgica Et Materialia,1993,41(2):345-360.
    [32]Brown S G R,Williams T,and Spittle J A.A cellular automaton model of the steady-state "free" growth of a non-isothermal dendrite[J].Acta Metallurgica et Materialia,1994,42(8):2893-2898.
    [33]Spittle J A,Brown S G R.A 3D cellular automaton model of coupled growth in two component systems[J].Acta Metallurgica Et Materialia,1994,42(6):1811-1815.
    [34]Brown S G R,Bruce N B.A 3-dimensional cellular automaton model of free' dendritic growth [J].Scripta Metallurgica Et Materialia,1995,32(2):241-246.
    [35]Gandin C A,Rappaz M.A coupled finite element-cellular automaton model for the prediction of dendritic grain structures in solidification processes[J].Acta Metallurgica et Materialia,1994,42(7):2233-2246.
    [36]Gandin C A,Charbon C,Rappaz M.Stochastic modelling of solidification grain structures [J].ISIJ International,1995,35(6):651-657.
    [37]Rappaz M,Gandin C A,Desbiolles J L,et al.Prediction of grain structures in various solidification processes [J].Metallurgical and Materials Transactions A,1996,27A(3):695-705.
    [38]Gandin C A,Rappaz M.A 3D Cellular Automaton algorithm for the prediction of dendritic grain growth [J].Acta Materialia,1997,45(5):2187-2195.
    [39]Gandin C A,Desbioles J L,Rappaz M,et al.Three-dimensional cellular automaton-finite element model for the prediction of solidification grain structures [J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,1999,30A(12):3153-3165.
    [40]Kermanpur A.Varahram N,Davami P.Thermal and grain-structure simulation in a land-based turbine blade directionally solidified with the liquid metal cooling process [J].Metallurgical and Materials Transactions B,2000,31(6):1293-1304.
    [41]Nastac L,Stefanescu D M.Stochastic modelling of microstructure formation in solidification processes [J].Model.Simul.Mater.Sci.Eng.,1997,5:391—420.
    [42]Nastac L.Numerical modeling of solidification morphologies and segregation patterns in cast dendritic alloys [J].Acta Materialia,1999,47(17):4253-4262.
    [43]Cho I S,Hong C P.Modeling of microstructural evolution in squeeze casting of an Al-4.5mass%Cu alloy [J].ISIJ International,1997,37(11):1098-1106.
    [44]Lee P D,Atwood R C,Dashwood R J,et al.Modeling of porosity formation in direct chill cast aluminum-magnesium alloys [J].Materials Science and Engineering A,2002,328(1-2):213-222.
    [45]Wang W,Kermanpur A,Lee P D,et al.Simulation of dendritic growth in the platform region of single crystal superalloy turbine blades [J].Journal of Materials Science,2003,38(21):4385-4391.
    [46]Wang W,Lee P D,McLean M.A model of solidification microstructures in nickel-based superalloys:predicting primary dendrite spacing selection [J],Acta Materialia,2003,51(10):2971-2987.
    [47]Wang W,Lee P D,McLean M.Simulation of the history dependence of primary dendrtte spacing in directional solidification [C].Destin,FL,United States:Minerals,Metals and Materials Society,2003.
    [48]Atwood R C,Lee P D,Minisandram R S,et al.Multiscale modelling of microstructure formation during vacuum arc remelting of titanium 6-4 [J].Journal of Materials Science,2004,39(24):7193-7197.
    [49]Lee P D,Chirazi A,Atwood R C,et al.Multiscale modelling of solidification microstructures,including microsegregation and microporosity,in an Al-Si-Cu alloy[J].Materials Science and Engineering A,2004,365(1-2):57-65.
    [50]Dong H B,Lee P D.Simulation of the columnar-to-equiaxed transition in directionally solidified Al-Cu alloys[J].Acta Materialia,2005,53(3):659-668.
    [51]Beltran-Sanchez L,Stefanescu D M.A quantitative dendrite growth model and analysis of stability concepts[J].Metallurgicaland Materials Transactions A,2004,35(8):2471-2485.
    [52]Stefanescu D M.Solidification and modeling of cast iron-A short history of the defining moments[J].Materials Science and Engineering A,2005,413-414:322-333.
    [53]Jacot A,Rappaz M.A pseudo-front tracking technique for the modeling of solidification microstructures in mutli-component alloys[J].Acta Materialia,2002,50:1909-1926.
    [54]Guillemot G,Gandin C A,Combeau H,et al.A new cellular automaton - Finite element coupling scheme for alloy solidification[J].Modelling and Simulation in Materials Science and Engineering,2004,12(3):545-556.
    [55]Guillemot G.,Gandin C.A.,Combeau H.Modeling of macrosegregation and solidification grain structures with a coupled cellular automaton-Finite element model[J].ISIJ International,2006,46(6):880-895.
    [56]Martorano M A,Biscuola V B.Predicting the columnar-to-equiaxed transition for a distribution of nucleation undercoolings[J].Acta Materialia,2009,57(2):607-615.
    [57]李殿中,苏仕方,徐雪华.镍基合金叶片凝固过程微观组织模拟及工艺优化研究[J].铸造,1997,8:1-7.
    [58]魏秀琴,周浪,耿茂鹏.电渣熔铸中熔池深度及其控制的计算机模拟研究[J].南昌大学学报,1999,21(4):21-25.
    [59]张林,王元明,张彩碚.Ni基耐热合金凝固过程的元胞自动机方法模拟[J].金属学报,2001,37(8):882-888.
    [60]余亮,顾斌,李绍铭,等.枝晶生长的元胞自动机模拟[J].安徽工业大学学报,2002,19(1):10-12.
    [61]Xu Q Y,Liu B C.Modeling of As-cast microstructure of Al alloy with a modified cellular automaton method[J].Materials Transactions,2001,42(11):2316-2321.
    [62]Feng W M,Xu Q Y,Liu B C.Microstructure simulation of aluminum alloy using parallel computing technique[J].ISIJ International,2002,42(7):702-707.
    [63]Wang T M,Jin J Z,Zheng X S.A CA/MC model for the simulation of grain structures in solidification processes[J].Journal of Materials Science,2002,37(13):2645-2650.
    [64]王同敏.金属凝固过程微观模拟研究[D].大连:大连理工大学,2000.
    [65]李强,李殿中,钱百年.枝晶凝固过程中的溶质浓度分布模拟[J].金属学报,2004,40(11):1215-1220.
    [66]李强,李殿中,钱百年.元胞自动机方法模拟枝晶生长[J].物理学报,2004,53(10):3477-3481.
    [67]李强,马颖澈,刘奎,等.U-6%Nb二元合金凝固过程中显微组织与显微偏析的模拟.金属学报,2007,(2):217-224.
    [68]严卫东,刘汉武,杨爱民,等.非定向凝固高温合金叶片晶粒组织的二维模拟[J].材料导报,2002,(4):25-27.
    [69]严卫东,刘汉武,熊玉华,等.非定向熔模铸造过程中高温合金叶片晶粒组织的计算机模拟[J].材料工程,2002,(4):43-47.
    [70]丁恒敏,刘瑞祥,陈立亮,等.用Cellular automaton模型方法模拟二元合金多晶粒枝晶生长[J].特种铸造及有色合金,2005,(6):337-339.
    [71]戴挺,朱鸣芳,陈双林,等.铝基四元合金枝晶组织及微观偏析的数值模拟[J].金属学报,2008,(10):1175-1182.
    [72]朱鸣芳,戴挺,李成允,等.对流作用下枝晶生长行为的数值模拟[J].中国科学E 辑,2005,(7):673-688.
    [73]Zhu M F,Stefanescu D M.Virtual front tracking model for the quantitative modeling of dendritic growth in solidification of alloys[J].Acta Materialia,2007,55(5):1741-1755.
    [74]刘东戎,吴士平,郭景杰,等.考虑包晶反应的Ti-(45-48)Al合金锭凝固组织模拟[J].金属学报,2006,42(4):437-442.
    [75]Liu D R,Wu S P,Guo J J,et al.Modeling of solidification of Ti-45at%Al alloy ingot by the stochastic model[J].Journal of Materials Science,2005,40(23):6071-6077.
    [76]Liu D R,Guo J J,Wu S P,et al.Stochastic modeling of columnar-to-equiaxed transition in Ti-(45-48 at%)Al alloy ingots[J].Materials Science and Engineering A,2006,415(1-2):184-194.
    [77]Liu D R,Wu S P,Guo J J,et al.Numerical prediction for columnar to equiaxed transition in solidified Ti-Al intermetallic alloy ingots by stochastic model[J].Materials Science and Technology,2006,22(l):29-38.
    [78]Zhan X H,Wei Y H,Dong Z B.Cellular automaton simulation of grain growth with different orientation angles during solidification process[J].Journal of Materials Processing Technology,2008,208(1-3):1-8.
    [79]Nestler B,Pavlyk V,Ludwig A,et.al.Numerical simulation of microstructure formation during electron-beam surface remelting of an Al-Si alloy[C].Mathematical modeling of weld phenomena 4:332-351.
    [80]Pavlyk V.,Dilthey U.Simulation of weld solidification microstructure and its coupling to the macroscopic heat and fluid flow modeling[J].Modelling and simulation in materials science and engineering,2004,12:33-45.
    [81]黄安国,余圣甫,李志远.焊缝金属凝固组织元胞自动机模拟[J].焊接学报,2008,(4):45-48.
    [82]Wei Y H.,Zhan X H.,Dong Z B.,et al.Numerical simulation of columnar dendritic grain growth during weld solidification process[J].Science and Technology of welding and joining.2007,12(2):138-146.
    [83]Zhan X H,Wei Y H,Ma R,et al.Dendritic grain growth simulation in weld pool of nickel base alloy [J].China Welding (English Edition),2008,17(1):6-ll.
    [84]Zhan X H,Dong Z B,Wei Y H,et al.Dendritic grain growth simulation in weld molten pool based on CA-FD model [J].Crystal Research and Technology,2008,43(3):253-259.
    [85]Hesselbarth H W,Gobel I R.Simulation of recrystallization by cellular automata [J].Acta Metal lurgica et Material ia,1991,39(9)-.2135-2143.
    [86]Davies C H J.The effect of neighbourhood on the kinetics of a cellular automaton recrystallisation model [J].Scripta Metallurgica Et Materialia,1995,33(7):1139-1143.
    [87]Davies C H J.Growth of nuclei in a cellular automaton simulation of recrystallisation [J].Scripta Materialia,1997,36(1):35-40.
    [88]Davies C H J,Hong L.The cellular automaton simulation of static recrystallization in cold-rolled AA1050 [J].Scripta Materialia,1999,40(10):1145-1150.
    [89]Pezzee C F,Dunand D C.The impingement effect of an inert,immobile second phase on the recrystallization of amatrix [J].Acta Metallurgica Et Materialia,1994,42(5):1509-1524.
    [90]Shelton R K,Dunand D C.Computer modeling of particle pushing and clustering during matrix crystallization [J].Acta Materialia,1996,44(11):4571-4585.
    [91]Goetz R L,Seetharaman V.Static recrystallization kinetics with homogeneous and heterogeneous nucleation using a cellular automaton mode [J].Metall.Mater.Trans.A.1998,29:2307-2321.
    [92]Goetz R L,Seetharaman V.Modeling Dynamic Recrystallization Using Cellular Automata [J].Scripta Materialia,1998,38(3):405-413.
    [93]Marx V,GottsteinG.Simulation of the texture evolution of aluminum alloys during primary static recrystallization using a cellular automaton approach [C].San Francisco,CA,USA:MRS,Warrendale,PA,USA,1998.
    [94]Marx V,Reher F R,Gottstein G.Simulation of primary recrystallization using a modified three-dimensional cellular automaton [J].Acta Materialia,1999,47(4):1219-1230.
    [95]Raabe D.Introduction of a scalable three-dimensional cellular automaton with a probabilistic switching rule for the discrete mesoscale simulation of recrystallization phenomena [J].Philosophical Magazine A,1999,79(10):2339-2358.
    [96]Raabe D.Discrete mesoscale simulation of recrystallization microstructure and texture using a stochastic cellular automation approach [J].Materials Science Forum,1998,273-275:169-174.
    [97]Raabe D,Becker R C.Coupling of a crystal plasticity finite-element model with a probabilistic cellular automaton for simulating primary static recrystallization in aluminum [J].Modelling and Simulation in Materials Science and Engineering,2000,8(4):445-462.
    [98]Rollett A D,Raabe D.A hybrid model for mesoscopic simulation of recrystallization [J].Computational Materials Science,2001,21(1):69-78.
    [99]Raabe D,Hantcherli L.2D cellular automaton simulation of the recrystallization texture of an IF sheet steel under consideration of Zener pinning [J].Computational Materials Science,2005,34(4):299-313.
    [100]Kroc J.Application of Cellular Automata Simulations to Modelling of Dynamic Recrystallization [J].Lecture Notes in computer science,2002,2329:773-782.
    [101]Kroc J,Paidar V.Modeling of recrystallization and grain boundary migration by cellular automaton [J].Materials Science Forum,2003,426-432:3873-3878.
    [102]Ding R,Z X Guo.Coupled quantitative simulation of microstructural evolution and plastic flow during dynamic recrystallization [J].Acta Materialia,2001,49(16):3163-3175.
    [103]Ding R,Guo Z X.Microstructural modelling of dynamic recrystallisation using an extended cellular automaton approach [J].Computational Materials Science,2002,23(1-4):209-218.
    [104]Qian M,Guo Z X.Cellular automata simulation of microstructural evolution during dynamic recrystallization of an HY-100 steel [J].Materials Science and Engineering A,2004,365(1-2):180-185.
    [105]Janssens K G F.Random grid,three-dimensional,space-time coupled cellular automata for the simulation of recrystallization and grain growth [J].Modelling and Simulation in Materials Science and Engineering,2003,11(2):157-171.
    [106]KuglerG,TurkR.Modeling the dynamic recrystallization under multi-stage hot deformation [J].Acta Materialia,2004,52(15):4659-4668.
    [107]Kugler G,Turk R.Study of the influence of initial microstructure topology on the kinetics of static recrystallization using a cellular automata model [J].Computational Materials Science,2006,37(3):284-291.
    [108]Goetz R L.Particle stimulated nucleation during dynamic recrystallization using a cellular automata model [J].Scripta Materialia,2005,52(9):851-856.
    [109]Mukhopadhyay P,LoeckM,GottsteinG.A cellular operator model for the simulation of static recrystallization [J].Acta Materialia,2007,55(2):551-564.
    [110]Yazdipour N,Davies C H J,Hodgson P D.Microstructural modeling of dynamic recrystallization using irregular cellular automata [J].Computational Materials Science,2008,44(2):566-576.
    [111]Ghosh S,Gabane P,Bose A,et al.Modeling of recrystallization in cold rolled copper using inverse cellular automata and genetic algorithms [J].Computational Materials Science.2009,45(1):96-103.
    [112]Zhang L,Zhang C B,Liu X H,et al.Modeling recrystallization of austenite for C-Mn steels during hot deformation by cellular automaton [J].Journal of Materials Science and Technology,2002,18(2):163-166.
    [113]肖宏,柳本润.采用Cellular automaton法模拟动态再结晶过程的研究[J].机械工程学报,2005,(2):148-152.
    [114]肖宏,徐玉辰,闫艳红.考虑晶粒变形动态再结晶过程模拟的元胞自动机法[J].中国机械工程,2005,16(24):245-249.
    [115]郑成武,兰勇军,肖纳敏,等.热变形低碳钢中奥氏体静态再结晶介观尺度模拟[J].金属学报,2006,42(5):474-480.
    [116]Zheng C W,Xiao N M,Li D Z,et al.Microstructure prediction of the austenite recrystallization during multi-pass steel strip hot rolling:A cellular automaton modeling [J].Computational Materials Science,2008,44(2):507-514.
    [117]Xiao N M,Zheng C W.,Li D Z,et al.A simulation of dynamic recrystallization by coupling a cellular automaton method with a toplogy deformation technique[J].Computational Materials Science,2008,41(3):366-374.
    [118]何燕,张立文,牛静.CA法及其在材料介观模拟中的应用[J].金属热处理.2005,(5):72-77.
    [119]何燕,张立文,牛静,等.元胞自动机方法对动态再结晶过程的模拟[J].材料热处理学报.2005,(4):120-125.
    [120]卢瑜,张立文,邓小虎,等.纯铜动态再结晶过程的元胞自动机模拟[J].金属学报.2008,(3):292-296.
    [121]卢瑜,张立文,邓小虎,等.纯镍动态再结晶过程的元胞自动机模型[J].塑性工程学报.2008,(2):70-75.
    [122]Kinzel W.Phase transitions of cellular automaton[J].Z.Phys.B,1985,58:229-244.
    [123]Liu Y,Baudin T,Penelle R.Simulation of normal grain growth by cellular automata[J].Scripta Materialia,1996,34(11):1679-1683.
    [124]Young M J,Davies C H J.Cellular automaton modelling of precipitate coarsening[J].Scripta Mater.,1999,41(7):697-701.
    [125]Geiger J,Roosz A,Barkoczy.Simulation of grain coarsening in two dimensions by Cellular-Automaton[J].Acta Materialia,2001,49(4):623-629.
    [126]Raghavan S,Sahay S S.Modeling the grain growth kinetics by cellular automaton [J].Materials Science and Engineering A,2007,445-446:203-209.
    [127]Kumar M,Sasikumar R,Nair P K.Competition between nucleation and early growth of ferrite from austenite - studies using cellular automaton simulations[J].Acta Materialia,1998,46(17):6291-6303.
    [128]Kundu S,Mukhopadhyay A,Chatterjee S,et al.Prediction of phase transformation and microstructure in steel using cellular automaton technique[J].Scripta Materialia,2004,50(6):891-895.
    [129]Zhang L,Zhang C B,Liu X H,et al.Modeling recrystallization of austenite for C-Mn steels during hot deformation by cellular automaton[J].Journal of Materials Science and Technology,2002,18(2):163-166.
    [130]Zhang L,Zhang C B,Wang Y M,et al.A cellular automaton investigation of the transformation from austenite to ferrite during continuous cooling[J].Acta Materialia,2003,51(18):5519-5527.
    [131]Lan Y J,Li D Z,Huang C J,et al.A cellular automaton model for austenite to ferrite transformation in carbon steel under non-equilibrium interface conditions[J].Modelling and Simulation in Materials Science and Engineering,2004,12(4):719-729.
    [132]Lan Y J,Li D Z,Li Y Y.Modeling austenite-ferrite transformation in low carbon steel using the cellular automaton method[J].Journal of Materials Research,2004,19(10):2877-2886.
    [133]Lan Y J,Li D Z,Li Y Y.Modeling austenite decomposition into ferrite at different cooling rate in low-carbon steel with cellular automaton method[J].Acta Materialia,2004,52(6):1721-1729.
    [134]Lan Y J,Li D Z,Li Y Y.Mesoscale simulation of ferrite transformation from deformed austenite during continuous cooling in a C-Mn steel using a cellular automaton method [J].Computational Materials Science,2005,32(2):147-155.
    [135]Lan Y J,Xiao N M,Li D Z,et al.Mesoscale simulation of deformed austenite decomposition into ferrite by coupling a cellular automaton method with a crystal plasticity finite element model[J].Acta Materialia,2005,53(4):991-1003.
    [136]Lan Y J,Li D Z,Li Y Y.A mesoscale cellular automaton model for curvature-driven grain growth[J].Metallurgical and Materials Transactions B:Process Metallurgy and Materials Processing Science,2006,37(1):119-129.
    [137]He Y Z,Ding H L,kiu L F,et al.Computer simulation of 2D grain growth using a cellular automata model based on the lowest energy principle[J].Materials Science and Engineering A,2006,429(1-2):236-246.
    [138]Ding H L,He Y Z,Liu L F,et al.Cellular automaton simulation of grain growth in three dimensions based on the lowest-energy principle[J].Journal of Crystal Growth 2006,293:489-497.
    [139]Zheng C W,Li D Z,Lu S P,et al.On the ferrite refinement during the dynamic strain-induced transformation:A cellular automaton modeling[J].Scripta Materialia,2008,58(10):838-841.
    [140]麻晓飞,关小军,刘运腾,等.不同尺寸二相粒子材料晶粒长大的元胞自动机仿真[J].中国有色金属学报.2008,(7):1305-1310.
    [141]麻晓飞,关小军,刘运腾,等.基于改进转变规则的晶粒长大CA模型[J].中国有色金属学报.2008,(1):138-144.
    [142]刘全坤.材料成形基本原理[M].北京:机械工业出版社,2004.
    [143]董湘怀.材料加工理论与数值模拟[M].北京:高等教育出版社,2005.
    [144]刘宗昌.材料组织结构转变原理[M].北京:冶金工业出版社,2006.
    [145]Humphreys F J,Hatherly M.Recrystallization and Related Annealing Phenomena[M].Oxford:Pergamon Press,2002.
    [146]毛卫民,赵新兵.金属的再结晶与晶粒生长[J].北京:冶金工业出版社,1994.
    [147]Stuwe H P,Ortner B.Recrystallization in hot workingand creep[J].Metal Science,1974(6):161-167.
    [148]Petkovic R A,Luton,M J,Jonas J J.Recovery and recrystallization of carbon steel between intervals of hot working[J].Can,Metall.Q.1975,14:137.
    [149]Humphreys F J.The nucleation of recrystallization at second phase particles in deformed Aluminium[J].Acta Metall.,1977,25:1323-1344.
    [150]Humphreys F J.Recrystallization mechanism in two-phase a11oys[J].Metall Sci.,1979,13:136-145.
    [151]Chan M H,Humphreys H J.The recrystallization of aluminium-silicon alloys containing a bimodal particle dispersion[J].Acta Metal.,1984,32(2):235-243.
    [152]Gronostajski Z.Grain size evolution model of selected copper alloys bases on new methods of softening kinetics determination[J].Journal ofMaterials ProcessingTechnology,2000,106:243-249.
    [153]Sakai T.Dynamic recrystallization microstructures under hot working conditions [J].Journal of Materials Processing Technology,1995,53:349-361.
    [154]张文钺.金属熔焊原理及工艺[M].北京:机械工业出版社,1980.
    [155]陈铮,周飞,王国凡.材料连接原理[M].哈尔滨:哈尔滨工业大学出版社,2001.
    [156]Kou S.Welding metallurgy[M].Sec ed.Wiley-lnterscience publication,2003.
    [157]Messler R W.Principles of welding-processes,physics,chemistry,and metallurgy[M].Wiley-Interscience publication,1999.
    [158]Sundaresan S,Janaki Ram G D,Murugesan R,et al.Combined effect of inculation and magetic arc oscillation on the microstructureand tensile behaviour of type 2090 Al-Li alloy weld fusion zones[J].Sci.Technol.Weld.Join.,2000,5:257-264.
    [159]Villafuerte J C,Kerr H W.Electromagnetic stirring and grain refinement in stainless steel GTA welds[J].Weld.J.,1990,69(1):1-13.
    [160]Neumann J V.Theory of Self-reproducing Automata.[M].Champain:Univ of Illionis Press,1966.
    [161]Gardner M.Mathematical games[J].Scientific American,1971,244(2):112-116.
    [162]Wolfram S.Computation theory of Cellular Automata[J].Comu Math Physics,1983,55(3):601-644.
    [163]Wolfram S.Computation theory and applications of cellular automata.[M].Singapore:World Scientific,1986.
    [164]Frisch U,Hasslacer B,Pomeau Y.Lattice gas automata for the Navier-Stokes equation [J].Physical Review Letter,1986,56:1505-1508.
    [165]Chua L O,Yang L.Cellular neural networks:theory [J],IEEE Transaction Circular System,1988,35:1257-1272.
    [166]Chua L O,Yang L.Cellular neural networks:Applications [J].IEEE Transaction Circular System,1988,35:1273-1290.
    [167]Lemont B.K,Seybold P.G,Cheng C K.Cellular Automaton modeling of chemical systems [M].Springer,1998.
    [168]Culik K,Hurd L P,Yu S.Computation theoretic aspects of cellular automaton [J].Physic D,1990,45:357-378.
    [169]Hardy J,Pazzis O,Pomeau Y.Molecular dynamics of a classical lattice gas:Transport properties and time correlation functions [J].Phys.Rev.A,1976,13:1949-1941.
    [170]Janssens G F,Raabe D,Kozeschnik E,et al.Computational materials engineering —An introduction to microstructure evolution [M].Elsevier Academic Press,2006.
    [171]Luton M J,Sellars C M.Dynamic recrystallization in Ni and Fe-Ni alloys during high temperature deformation [J].Acta Metall.1969,17:1033-1043.
    [172]Sandstorm R,Lagneborg R.A model for hot working occurring by recrystallization [J].Acta.Metall.,1975,23(3):387-398.
    [173]Roberts W,Boden H,Ahlblom B.Dynamic recrystallization kinetics [J].Metal Sci.,1979,March-April:195-205.
    [174]Blaz L,Sakai T,Jonas J J.Effect of initial grain size on dynamic recrystallization of copper [J].Metal.Sci.,1983,17(12):609-616.
    [175]McQueen H J.Development of dynamic recrystallization theory [J].Mater.Sci.Eng.A.,2004,387-389:203-208.
    [176]Mecking H,Kocks U F.Kinetics of flow and strain-hardening [J].Acta metall,1981,29:1865-1875.
    [177]Estrin Y.Unified Constitutive Laws of Plastic Deformation [M].London:Academic press,1996.
    [178]Read W T,Shockley W.Dislocation models of crystal grain boundaries [J].Phys Rev,1950,78:275-289.
    [179]Estrin Y,Arndt S,Heilmaier M,et al.Deformation behaviour of particle-strengthened alloys:a voronoi mesh approach [J].Acta mater.,1999,47(2):595-606.
    [180]Estrin Y,Lebyodkin M A.The influence of dispersion particles on the portevin-Le chatelier effect:from average particle characteristics to particle arrangement [J].Materials science and engineering A,2004,387-389:195-198.
    [181]Prasad Y V R K,Rao K P.Processing maps and rate controlling mechanisms of hot deformation of electrolytic tough pitch copper in the temperature range 300-950℃ [J].Materials science and engineering A,2005,391:141-150.
    [182]Yue C X,Zhang L W,Liao S L,et al.Mathematical models for predicting the anstenite grain size in hot working of GCr15 steel[J].Computational Materials Science,2009(45):462-466.
    [183]Derby B.The dependence of grain size on stress during dynamic recrystallization[J].Acta Metal,1991,39(5):955-962.
    [184]Peczak P.A monte carlo study of influence of deformation temperature on dynamic recrystallization[J].Acta metall Mater,1995,43:1279-1291.
    [185]Ivasishin O M,Shevchenko S V,Vasiliev N L,et al.A 3-D Monte-Carlo(ports) model for recrystallizationand grain growth in polycrystalline materials[J].Mater.Sci.Eng A,2006,433:216-232.
    [186]Kremeyer K.Cellular automata investigation of binary solidification[J].J Comput Phys.,1998,142:243-262.
    [187]廖舒伦.GCr15轴承钢棒线材热连轧过程微观组织演化的数值模拟[D].大连:大连理工大学,2008.
    [188]黄安国,王永生,李志远,等.焊缝金属凝固元胞自动机模型的研究[J].焊接技术,2003,32(6):13-15.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700