用户名: 密码: 验证码:
螺杆泵的动力学机理和三维数值模拟技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为一种高效环保的新型举升工艺,在过去二十年中,螺杆泵采油技术在世界范围内的应用规模迅速扩大。但是,由于受到螺杆泵自身空间构造的复杂性、定子材料力学特征的高度非线性,以及对井下实际工况的敏感性等诸多因素的限制,如何清晰准确地表征和认识螺杆泵的工作机理(尤其是橡胶定子的力学行为)成为长期困扰采油工程师们的难题。
     随着计算机技术和数值模拟技术的发展,利用有限元分析技术进行螺杆泵工作机理的深入研究已经成为可能。目前这项工作开展了不到十个年头,现有的分析主要是建立在二维静力学模型的基础上,模型的结构形式和力学模型与实际工况存在较大差距;同时,由于对定子橡胶材料的超弹性力学特征认识不足,在分析由于温升导致的定子材料破坏问题时,难以建立有效的分析模型。针对以上问题,本文开展了螺杆泵三维动力学和温度场分析模型的研究。
     第二章从螺杆泵定子和转子的三维几何模型入手,建立了定子和转子的型线方程、啮合线方程;通过分析转子中心的运动规律、转子表面和啮合点的运动规律,建立了螺杆泵的运动学模型;从描述螺杆泵定子、转子和工作介质的相互作用关系入手,对螺杆泵部件的受力进行了分类,由液压力的分析模型中给出了液压轴向力、横向力、倾倒力,以及有功负载力矩、倾倒力矩的表征和计算方法,由此建立了完整的螺杆泵动力学模型。
     在第三章中,为了准确描述定子橡胶材料的宏观力学特征,利用解耦的方法,开展了橡胶材料超弹性本构模型研究。借鉴轮胎橡胶领域的研究成果,根据螺杆泵定子橡胶在实际工况中存在的大变形现象,选用YEOH模型作为定子橡胶的本构模型,并利用单向拉伸试验结果获得了定子橡胶的本构方程,同时还给出了利用ABAQUS软件优化橡胶本构方程的方法。
     在准确表达橡胶材料力学属性的基础上,建立定子和转子接触模型是开展螺杆泵三维有限元分析的另一个关键技术问题。在接触问题中,除了需要满足一般的控制方程外,还要考虑接触面上的动力学和运动学的条件,其中的关键是不可侵彻性条件。对接触模型的形式和边界条件也进行了详细的描述,同时给出了定子和转子的摩擦模型。
     第四章利用几个典型算例,讨论了运用有限元分析软件ABAQUS建立螺杆泵三维动力学模型的具体过程。其中,重点讨论了过盈接触引起的摩擦力以及液压力作用下的螺杆泵应力应变规律和相关力学特征。数值模拟表明,过盈参数的增加会导致摩擦扭矩增加,而偏心距的改变也会对摩擦扭矩产生直接影响,结构参数的优化组合有助于减小负载扭矩的大小和波动;数值模拟结果表明,定子材料的硬度也会对摩擦扭矩产生影响;另外,在橡胶材料的不可压缩特性作用下,定子的应力应变会更多集中到压力较高的泵上端,从而可能导致泵出口处定子橡胶的变形和磨损程度加剧。
     第五章探讨了单向解耦法获得了螺杆泵二维温度场分析模型的过程,橡胶的粘性特征是其生热的起因,在转子周期性载荷作用下,定子橡胶会产生粘性损耗,损耗能量转化为热能导致橡胶内部温升,损耗能量的计算是通过弹性应力应变分析获得的。计算获得了损耗热产生的不均匀温度场分布规律,也探讨了均匀温度和不均匀温度场对定子型线的影响。计算表明,损耗热引起的不均匀温度场对于型线的改变作用更大。
     第六章给出了螺杆泵有限元分析模型在两个工程上的应用实例。对于三元复合驱螺杆泵的负载波动现象,辅助表面改性技术,开展了过盈优化的有限元计算;对于深井螺杆泵的爬行现象,利用有限元法对温度场进行了分析,开展了过盈优化有限元计算。
As a new artificial lift technology with high efficiency and environmental advantages,progressing cavity pump(PCP) is regarded as one of the most INNOVATIVE techniques in the history of petroleum industry.In the past twenty years,the application of PCP increased remarkably in worldwide.However,due to the limitation in high complexity of its configuration,the elastomer's high nonlinearity in mechanic behavior and sensibility to applied operating conditions, how to precisely describe PCP's operating mechanism has been a bottleneck issue bothering production engineers for years.
     With the development of computer technique and numeric simulation technique, it is possible to describe PCP's performance quantitatively by means of finite element method(FEM).In the past ten years,the correlative studies mainly focused on two-dimension static-mechanic models which differed from real objective considerably.Studies indicated that,two-dimension static-mechanic models couldn't describe the complex dimensional shape of PCP correctly.Moreover,it might lead to the misunderstanding on PCP's mechanics behavior.In addition,the thermal destruction of elastomer was a severe issue in PCP application.And a proper thermal model is required to describe the status of temperature field.The present study attempts to develop an approach for dealing with the above issues.
     Chapter 2 begins from the introduction of 3-d geometric model of rotor and stator,including the equations of pump's mold line and line of action.The PCP's kinematics model is discussed consisting of rotor's kinematics principle,rotor's surface and line of action kinematics principle.Based on the describing the mechanic relationship among rotor,stator and operating fluid,the forces and torques produced in the process of PCP operation are classified and discussed in details.
     In the first section of chapter 3,elastomer's hyperelastic model is analyzed in order to get its marco-mechanic characteristics.Referring to the studies on tire mechanics,Yeoh model is adopted as the constitutive model of PCP elastomer.The coefficients in the constitutive equation were determined by experimental data.And the process in ABAQUS is introduced on optimizing the constitutive equation of elastomer.
     The creation of stator-rotor's contact model is another key question for PCP 3-D dynamic simulation model.In contact issue,despite of creating the general control formulations,the kinetic and dynamic conditions on contact surface must be considered as well.And the prime one is "unpenetration" condition.In the second section of chapter3,the form and boundary conditions of contact model are discussed in details.
     Chapter 4 presents the whole process of creating PCP 3-D dynamic model with FEM software in form of several typical cases.The effect of contact friction between rotor and stator are discussed in details.Simulation results indicate that,the increase of interference will result in the increase of friction considerably and the change of eccentricity will influence the friction as well.Simulation results also proved that elastomer's stiffness and imcompressable characteristics could influence the friction and stress distribution of the pump.
     PCP 2-D temperature field model is achieved by means of uncoupling method in chapter 5.Apart from environmental temperature influence,heat produced from elastomer is another important reason of thermal destruction.Due to the viscous-elastic characteristics,elastomer will have viscous loss under periodic load. And the viscous loss energy will mainly be transferred into heat.Simulation indicates that the non-uniform distributed temperature field resulted from heat loss effect has more negative effect on stator's mold line.
     Two case studies are presented in chapter 6,introducing the experiences in PCP optimal design with 3-D dynamic simulation model and temperature field analysis method in ASP flooding and deep wells.
引文
[1]B.Gaymard,E.Chanton,et al.:The Progressing Cavity Pump in Europe:Results and New Developments[M],OSEA88136,presented at the 7~(th) Offshore South East Asia Conference in Singapore,2-5February,1988.
    [2]James.M.Ravard:The Progressing Cavity Pump Handbook,Pennwell Pub.,1995
    [3]K.J.Saveth and S.T.Klein:The Progressing Cavity Pump:Principle and Capabilities[M],SPE 18873,presented at the 1989 SPE Production Operations Symposium,Oklahoma City,Oklahoma,March 13-14.
    [4]Sayeth,Kenneth J.,Klein,Steven T.,and Fisher,Kevin B.:"A Comparative Analysis of Efficiency and Horsepower Between Progressing Cavity Pumps and Plunger Pumps"[M],paper SPE 16194 presented at the 1987 Production Operations Symposium,Oklahoma City,Oklahoma,March 8-10.
    [5]张东海,熊立新,刘晏华:螺杆钻具的应用现状及发展方向[J],钻采工艺,1999年第6卷第4期,47-50.
    [6]万邦烈:单螺杆式水力机械,石油大学出版社,1993年.
    [7]张连山:国外螺杆泵采油系统的现状与发展[J],国外石油机械,1997年第8卷第1期,27-34.
    [8]韩修廷等:螺杆泵采油原理及应用,哈尔滨工程大学出版社,1998年.
    [9]齐振林,刘合,曹刚等:螺杆泵采油技术问答,石油工业出版社,2002年10月.
    [10]王世杰等:潜油螺杆泵采油技术,冶金工业出版社,2006年11月.
    [11]Todd Zahacy,et al.:C-FER Technologies Training Course-Progressing Cavity Pump System,March 13 2006.
    [12]Liu He,et al.:The Development of PCP Wells Troubleshooting Technique in Daqing Oilfield [M],SPE 113094,presented at the 2008 SPE Progressing Cavity Pump Conference held in Houston,Texas,U.S.A.,27-29 April 2008.
    [13]Liu He,Pei Xiaohan,et al.:The Mechanism of PCP Wells' Tubing and Rod Wear Issue in Polymer Flooding in Daqing Oil Field[M],SPE 113114,presented at the 2008 SPE Progressing Cavity Pump Conference held in Houston,Texas,U.S.A.,27-29 April 2008.
    [14]Cao Gang,Liu He,et al.:Technical Breakthrough in PCPs' Scaling Issue of ASP Flooding in Daqing Oilfield[J],SPE-109165,Journal of Petroleum Technology,Vol.60,No.1,January 2008,50-52.
    [15]DRAFT INTERNATIONAL STANDARD ISO/DIS 15136-1:2008,Downhole equipment for petroleum and natural gas industries—Progressing cavity pump systems for artificial lift—Part 1:Pumps.
    [16]ISO/CD 15136-2:2006,Petroleum and natural gas industries—Progressing cavity pumps systems for artificial lift—Part 2:Surface drive systems.
    [17]葛占玉,万邦烈:单头单螺杆式水力机械螺杆——衬套副的啮合理论及其作用[J],石油大学学报(自然科学版),1990年第14卷第5期,33-40.
    [18]葛占玉,万邦烈:单螺杆式水力机械螺杆——衬套副摩擦力矩的计算[J],石油大学学报(自然科学版),1992年第18卷第3期,46-52
    [19]师国臣,螺杆泵采油及其配套技术,哈尔滨工业大学博士论文,2002年.
    [20]Sandeep Solanki,et al.:PC Pumps for SAGD[M],2002 SPE Applied Technology Workshop-Progressing Cavity Pumping Systems.Calgary,Canada,16-17 September 2002.
    [21]PCM BROCHURE:PCM MOINEAU OIL FIELD.http://www.pcmpompes.com\
    [22]Bruce Weir:Uniform Thickness Rotors and Stators[M],2002 SPE Applied Technology Workshop-Progressing Cavity Pumping Systems.Calgary,Canada,16-17 September 2002.
    [23]Ryan Rowan,Insertable PC Pumping Systems:Design and Applications[M],presented at the 2002 SPE Applied Technology Workshop-Progressing Cavity Pumping Systems,Calgary,Canada 16-17 September 2002.
    [24]Jean-Louis Beauqin,Felix Ndinemenu,et al.:World's first Metal PCP SAGD Field Test Shows Promising Artificial Technology for Heavy-Oil Hot Production:Jolsyn Field Case[M],SPE 110479,presented at the 2007 SPE Annual Technical Conference and Exibihition,in Anaheim,California,U.S.A.,11-14 November 2007.
    [25]Cao Gang,Hollow Rotor Progressing Cavity Pump Technique for Oil Production,China oil&Gas,December 2002.
    [26]石油行业标准:SY5549-2002 单螺杆抽油泵,2002年。
    [27]G..Robello,and K.Saveth:Progressing Cavity Pump(PCP):New Perfornance Equations for Optimal Design[M],SPE 39786,presented at the 1998 SPE Permiian Basin Oil and Gas Recovery Conference,Midland,Texas.US.
    [28]魏纪德,师国臣.试验介质温度、黏度对螺杆泵容积效率的影响[J].石油机械,1993,(9):15-20.
    [29]师国臣,陈卓如,王劲松,等.螺杆泵结构参数误差对工作特性的影晌[J].石油机械,2001,(10):41-42.
    [30]R & M Energy Systems,a Unit of Robbins and Myers Inc.:Progressing Cavity(PC)Pump Design Optimization for Abrasive Applications[M],SPE 37455prepared for presentation at the 1997 SPE Production Operations Symposium,held in Oklahoma City,Oklahoma,9-11 March 1997.
    [31]Vetter,G.and Wirth:Understand Progressing Cavity Pumps Characteristics and Avoid Abrasive Wear[M],Proceedings of the 12~(th) International Pump Users Symposium.
    [32]Jolihtzahanna M(?)ndez,Pedro Gonzalez,et al.:Experimental study of the effect of fluid temperature and running time on performance of a Progressive Cavity Pump[M],presented at the 2002 SPE Applied Technology Workshop-Progressing Cavity Pumping Systems,Calgary,Canada 16-17 September 2002.
    [33]张劲,张士诚,师国臣:常规螺杆泵定子有限元分析[J],力学季刊,第24卷第4期,2003年12月,590-598
    [34]张劲,张士诚:常规螺杆泵定子有限元求解策略[J],机械工程学报,第40卷第5期2004年5月,189-193.
    [35]Daniel Dall'Acqua:Therrno-rnechanical Modelling of Progressing Cavity Pumps and Positive Displacement Motors,A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfilment of the requirements for the degree of Master of Science Department of Mechanical Engineering,University of Alberta,Edmonton,Alberta,Fall,2000.
    [36]Martin,A,Kenyery,F.and Tremante,A.(1999):Experimental Study of Two Phase Pumping in Progressive Cavity Pumps[M],SPE53967,presented at the 1999 SPELatin American snd Caribbean Petroleum Engineering Conference,Caracas,Venezuela,21-23 April.
    [37]Arelio.Olivet,Jose.Gamboa,et al:Experimental Study of Two-Phase Pumping in a Progressive Cavity Pump Metal to Metal[M],SPE 77730,presented at the SPE Annual Technical Conference and Exibition,San Antonio,U.S.A.,29 September-2 October,2002.
    [38]Gamboa,J.and Mendez,J.(2002):Experimental Study of the Effect of Fluid Temperature and Running Time on Performance of a Progressive Cavity Pump[M],presented at the 2002Progressing Cavity Pump Workshop.Calgary,Canada,16-17September.
    [39]Gamboa,J.,Olivet,A.,Gonz(?)lez,P.and Iglesias,J.(2002):Understanding the Perfomance of a Progressive Cavity Pump with a Metallic Stator[M],Proceedings of the 20th Interntional Pump Users Symposium.
    [40]Jose Gamboa,et al:New Approach for Modeling Progressive Cavity Pumps Performance[M],presented at the 2003 SPE.
    [41]C.Bratu:Progressive Cavity Pump(PCP) Behavior in Multiphase Conditions[M],SPE 95272,presented at the 2005 SPE Annual Technical Conference and Exibihition,in Dallas,U.S.A.,9-12October,2005.
    [42]C.Bratu,L.Science:New Progressing Cavity Pump(NPCP) for Multiphase and Viscious Liquid Production[M],SPE/PS-CIM/CHOA 97833,presented at the 2005 SPE Annual Technical Conference and Exibihition.in Dallas,U.S.A.,9-12 October.2005.
    [43]Emilio E.Paladino:Computational Modeling for the Three-Dimenional Flow in a Metalic Stator Progressing Cavity Pump[M],presented at the 2008 SPE Progressing Cavity Pump Conference,Houston,U.S.A,2008.
    [44]王庆楠,李增亮,涂继辉:单螺杆泵系统温度场数值模拟与分析[J],流体机械2007年第35卷第6期,24-27.
    [45]杨秀萍,郭津津:单螺杆泵定子橡胶温度场分析[J],润滑与密封,2008年7月第33卷第7期,53-55.
    [46]梁守智,钟延壤,张丹秋主编:橡胶工业手册(第四分册一轮胎).化学工业出版社,1989
    [47]邓本诚:橡胶并用与橡塑共混技术一性能、工艺与配方.化学工业出版社。1998
    [48]傅政:橡胶材料性能与设计应用.化学工业出版社,2003
    [49]E.M.Arruda and M.C.Boyce.A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials[J].Journal of the Mechanics and Physics of Solids,1993,Vol.41,389-412
    [50]L.R.G.Treloar.The physics of rubber elasticity(3rd edition).Clarendon Press,Oxford,1975
    [51]P.D.Wu and E.Van der Giessen.On improved network models for rubber elasticity and their applications to orientation hardening in glassy polymers[J].Journal of the Mechanics and physics of Solids,1993,Vol.41,427-456
    [52]O.H.Yeoh.Characterization of elastic properties of carbon-black-filled rubber vulcanizates[J],Rubber Chemistry and Technology,1990,Vol.63,792-805
    [53]A.N.Gent.A new constitutive relation for rubber[J].Rubber Chemistry and Technology,1996,Vol.69,59-61
    [54]Xia Yong,Li Wei,Xia Yuanming:Test and characterization for the incompressible hyperelastic properties of conditioned rubbers under moderate finite deformation[J].Acta Mechanica Solida Sinica,2004,Vol.17,307-314
    [55]Yong Xia,W Li and Yuanming Xia:Study on the compressible hyperelastic constitutive model of tire rubber compounds under moderate finite deformation[J].Rubber Chemistry and Technology,2004,Vol.77,230-241
    [56]夏勇:轮胎胶料在较大变形范围内准静态力学性能的研究——测试、表征以及细观数值本构模型,博士学位论文,中国科学技术大学,2004年;
    [57]李炜:子午线轮胎结构有限元分析和设计原理的若干问题研究,博士学位论文,中国科学技术大学,2003;
    [58]R.S.Rivlin.Large elastic deformations of isotropic materials Ⅳ[J].Further developments of the general theory.Philos.Trans.R.Soc.London,Ser.A,1948,Vol.241,379-397
    [59]A.N.Gent.Engineering with rubber-How to design rubber components(2nd Edition).Carl Hanser Verlag,Munich,2001
    [60]D.J.Seibert and N.Schoche:Direct comparison of some recent rubber elasticity models[J].Rubber Chemistry and Technology,2000,Vol.73,366-384
    [61]Ted Belytschko等著,庄茁 泽:连续体和结构的非线性有限元,消华大学出版社,2002,495-533;
    [62]王勖成,邵敏:有限单元基本原理和数值方法(第2版),清华大学出版社,1997年;
    [63]王秀喜,吴恒交:计算力学基础,中国科技大学出版社,2009年第一版:
    [64]Park H C,Youn S K,Song T S et al:Analysis of temperature distribution in a rolling tire due to strain energy dissipation[J].Tire science and technology,1997,85-105
    [65]Ebbott T G,Hohman R L,P.jeusette J,et al:Tire temperature and rolling resistance prediction with finite element analysis[J].Tire science and technology,1999,3-21
    [66]Shida Z,KoishiM,Kogue T,et al.A rolling resistance simulation of tires using static finite element analysis[J].Tire science and technology,1999,85-105
    [67]B.yavari,YworzydloW W,Bass J M.A:Thermomechanical model to predict the temperature distribution of steady state rolling tires[J].Tire science and technology,1999,27:163-178
    [68]Wei Y T,Tian Z H,Du X W:A Finite ElementModel for the Rolling loss Prediction andFracture Analysis of Radial Tires[J].Tire Science and Technology,1999,27(4):250-276
    [69]Mc Allen J,Cuitifio A M,Sernas V.:Numerical investigation of the deformation characteristics and heat generation in pneumatic aircraft tires Part Ⅱ[J].Thermal modeling.Finite element analysis and design,2000,265-290
    [70]Christian R Brackbill,et.al:Thermomechanical modeling of elastomeric materials[J].Smart Material Structure.Vol.5.(1996) 529-539.
    [71]王晓军,李炜,夏源明:基于实验的数值反演的滚动轮胎稳态温度场的有限元分析,实验力学,2005年3月第20卷第1期,1-9
    [72]Abaqus User Subroutines Reference Manual[M].Version 6.7.
    [73]Cao Gang,et al.:The Successful Application of PCP's Personal Design in Hailar Oilfield[M],SPE 113115,presented at the 2008 Progressing Cavity Pump Conference,Houston,Texas,U.S.A.,27-29 April 2008.
    [74]余俊:摩擦学,湖南科学技术出版社,1984年第1版:244-247.
    [75]Bowden,F P,Talor D,陈绍澄著,袁汉吕,丁雪加泽:固体的摩擦与润滑,北京机械工业出版社,1982.
    [76]Stolarski T A.:Analysis of the resistance to motion in a sliding contact[J].Wear,1994(171):203-209.
    [77]Mokhtar M O A,et al.:A Theoretical and Experimental Study on the Dynamics of Sliding Bodies with Dry Conformal Contact[J].Wear,1998(218):172-178
    [78]Giuseppe,et al.:Influence of the variation between static and kinetic friction on stick-slip instability[J].Wear,1993(161):121-126.
    [79]卢泽生,曹东海:爬行物理模型的建立与仿真分析[J],机械工程学报,第40卷第11期2004年11月,107-112.
    [80]任卫红:摩擦自激引起的液压爬行现霖分析[J],煤矿机械,2003年第10期,43-45.
    [81]朱伟,赵中敏:数控机床低速爬行分析及对策研究[J],制造业自动化,31卷第2期,105-107,117.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700