用户名: 密码: 验证码:
siRNA靶向诱导肝素酶启动子甲基化对胃癌侵袭转移调控作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肝素酶(Heparanase,HPA)是肿瘤发生、浸润和转移过程中的关键酶之一,是裂解硫酸乙酰肝素蛋白多糖的惟一酶类,通过降解硫酸肝素,破坏细胞外基质和基底膜完整性而发挥作用,并参与肿瘤血管生成,与肿瘤的侵袭转移密切相关。启动子区域CpG岛甲基化状态的改变与癌症发生发展过程中相关基因的转录状态在表观遗传学上面密切相关。甲基化作为表观遗传学改变的分子标志可以为癌症的早期检测、预防和治疗起到重大作用。本实验研究目的是以肿瘤侵袭、转移相关性基因肝素酶为靶标,明确胃癌组织和胃癌细胞株中肝素酶启动子区域的甲基化状态,筛选出诱导肝素酶启动子甲基化的siRNA序列,并建立肿瘤特异性siRNA转导体系;在细胞和整体水平,明确靶向siRNA诱导肝素酶启动子甲基化及转录沉默对胃癌细胞侵袭、转移的调控作用,为运用表观遗传学方法调控胃癌的侵袭、转移提供全新的视野。本研究拟提取胃癌组织、细胞株的基因组DNA,经亚硫酸氢钠修饰,设计甲基化引物,运用PCR、克隆测序等分子生物学方法检测肝素酶启动子CpG岛甲基化状态,确定甲基化干扰位点。靶向诱导肝素酶启动子甲基化及转录沉默的siRNA筛选。设计特异性siRNA,转染肿瘤细胞,采用巢式甲基化特异性PCR、亚硫酸氢盐修饰DNA序列分析检测siRNA对肝素酶启动子甲基化的诱导作用,采用Western Blot、实时定量PCR检测肝素酶在siRNA干扰后转录水平基因沉默前后的变化情况。实验结果发现在胃癌组织和细胞系中肝素酶启动子区域呈现低甲基化状态,且随肿瘤细胞分化程度的降低呈现不同程度的去甲基化,而相应的肝素酶表达则随分化程度的降低而增多,两者之间有明显的相关性;在siRNA干扰后不同分化程度胃癌细胞系后,肝素酶启动子区域甲基化状态发生明显变化,在特定干扰位点发生甲基化,而相应肝素酶表达则明显降低,但与分化程度无明显相关性。本实验通过检测胃癌中肝素酶基因启动子区域甲基化状态,发现其与肿瘤发生发展密切相关,且与肿瘤分化程度具有一致性,而且肝素酶在肿瘤中的表达情况也随甲基化状态发生改变,这与肝素酶在不同分化程度的胃癌组织中的表达情况相一致,说明肝素酶基因启动子区域甲基化状态与肝素酶表达密切相关,而肝素酶的表达情况与胃癌组织的侵袭性和转移恶能也密切相关,通过siRNA靶向干扰肿瘤侵袭、转移相关性基因肝素酶的启动子区域促使其甲基化可以明显降低肝素酶的表达,从而可以有效的从表观遗传学角度降低肿瘤的侵袭和转移。这为肿瘤的早期发现和有效治疗及预防转移提供了新的理论依据和实践方案。
     第一部分
     肝素酶在胃癌中表达情况及临床意义的研究
     目的探讨肝素酶(heparanase)在胃癌组织和不同分化程度的胃癌细胞系中的表达情况,分析其表达情况的差异与胃癌临床病理特征的关系。
     方法收集72例胃癌手术后组织标本,采用免疫组织化学链霉亲和素-生物素-过氧化物酶复合物法(streptavidinbiotin peroxidase complex,SABC),免疫荧光方法(immunofluorescence,IF),逆转录-聚合酶链反应(RT-PCR)和免疫蛋白印记法(Western Blot)检测胃癌组织和细胞系中肝素酶mRNA和蛋白的表达,并结合临床病理资料进行回顾分析。
     结果72例胃癌组织中肝素酶的表达率为免疫组化77.8%(56/72)、RT-PCR 93.1%(67/72)和Western Blot 83.3%(60/72)。肝素酶蛋白表达与胃癌的肿瘤浸润深度、淋巴结转移、TNM分期相关(P<0.05)。而与患者年龄、性别、肿瘤部位及大小关系之间的差异无统计学意义(P>0.05)。RT-PCR与Western blot结果显示,肝素酶mRNA和蛋白在3株胃癌细胞株中均有表达,但表达水平有差异,其中以TMK-1中表达最强,SGC-7901次之,MKN-28表达最弱。
     结论胃癌中肝素酶mRNA和蛋白表达增多,其与胃癌淋巴结转移、TNM分期、分化程度等临床病理资料密切相关;肝素酶表达对对胃癌的预测和预后的判断有一定的参考价值,为其诊疗提供了相当明确的理论依据。
     第二部分
     肝素酶启动子区域在胃癌中甲基化情况的解析
     目的以肿瘤侵袭、转移相关性基因肝素酶为靶标,探讨并明确胃癌组织和胃癌细胞株中肝素酶启动子区域的甲基化状态。
     方法提取不同不同分化程度和病理类型胃癌组织及细胞株基因组DNA,经亚硫酸氢钠修饰,专业软件设计甲基化引物,运用甲基化PCR(MSP)、甲基化克隆测序(BSP)等分子生物学方法检测肝素酶基因启动子区域CpG岛甲基化状态,并初步确定甲基化预干扰位点。
     结果甲基化PCR检测肝素酶启动子区域发现在胃癌组织和细胞系中肝素酶启动子区域呈现低甲基化状态,且随肿瘤细胞分化程度的降低呈现不同程度的去甲基化,其中以TMK-1中表现非甲基化频率最强,SGC-7901次之,MKN-28最弱。亚硫酸氢盐修饰DNA序列(BSP)分析检测启动子区域14个CG位点的甲基化状态,不是所有的有非甲基化的组织中所出现甲基化的频率一致,且出现非甲基化的位点也并不固定。
     结论肝素酶基因启动子区域在肿瘤组织中较正常组织呈现低甲基化状态,在包含转录因子结合元件EGR1附近的14个CG位点的甲基化频率随肿瘤细胞分化程度的降低而呈现不同程度的降低,但其具体去甲基化位点分布不一致,且并不固定。不同分化程度的肿瘤细胞株中肝素酶基因启动子区域的甲基化检测结果与组织标本中的甲基化频率相一致,为进一步体外探讨肝素酶基因启动子区域甲基化对胃癌肿瘤生物学行为的作用奠定了研究基础。
     第三部分
     siRNA靶向干扰肝素酶启动子对胃癌中甲基化影响情况的研究
     目的研究siRNA干扰肝素酶启动子区域对胃癌中甲基化状态的影响情况,并筛选出诱导肝素酶启动子甲基化的siRNA序列,建立肿瘤特异性siRNA转导体系。
     方法构建靶向诱导肝素酶基因启动子区域甲基化及转录沉默的短发卡小干扰RNA(shRNA)表达质粒pGenesil-1,转染表达肝素酶的不同分化程度的胃癌细胞株MKN-28(高分化)、SGC-7901(中分化)、TMK-1(低分化),以实现对肝素酶表达的沉默,并对所设计不同位点序列siRNA进行筛选,为设计特异性siRNA转导体系和进一步探讨肝素酶在胃癌侵袭与转移中的作用打下坚实的基础。
     结果重组质粒测序结果与Genebank中的肝素酶基因cDNA序列相符,转染MKN-28、SGC-7901、TMK-1细胞后,荧光显微镜下可观察到绿色荧光蛋白的表达;转染后甲基化PCR检测检测肝素酶启动子区域甲基化状态显示在site1、site2转染序列组细胞中均出现甲基化趋势,而在对照组中检测甲基化未见明显变化。TMK-1和SGC-7901细胞在site1、site2转染序列组中均出现甲基化趋势,而MKN-28细胞则只在site2转染序列组中有甲基化趋势。而在其他转染序列组中均未见明显甲基化状态的改变。
     结论靶向肝素酶基因启动子区域诱导其甲基化shRNA表达载体构建无误,并针对不同甲基化位点筛选有效诱导肝素酶基因启动子区域甲基化的siRNA,随肿瘤细胞分化程度的降低,siRNA诱导其甲基化的频率升高,这为靶向特定性基因启动子区域CpG岛,而不是其编码区的siRNA能在人类细胞中诱导该基因DNA甲基化,并导致该基因在转录水平产生基因沉默提供了理论研究依据,为进一步阐明其作用机制建立了研究模型,并为将来高效精确靶向表观遗传调控基因表达奠定了一定的研究基础。
     第四部分
     靶向诱导肝素酶启动子甲基化对胃癌中肝素酶表达情况影响的研究
     目的探讨靶向siRNA诱导肝素酶启动子甲基化对肝素酶表达的影响及对胃癌细胞侵袭、转移的调控作用,并探讨及其作用机制。
     方法绘制转染前后各细胞组生长曲线,MTT法检测细胞增殖活力,通过Western Blot、实时定量PCR检测肝素酶在siRNA干扰前后转录水平基因沉默前后的变化情况,Transwell侵袭小室侵袭实验和黏附实验观察转染后各组细胞的侵袭能力的改变,评价siRNA诱导肝素酶启动子区域甲基化对肝素酶表达的表观遗传学调控作用及对胃癌侵袭转移的表观遗传调控作用。
     结果转染siRNA干扰各组细胞后RT-PCR和Western Blot检测肝素酶表达结果显示,site1、site2转染序列组干扰效果最强,但其相应的肝素酶表达并不随细胞分化程度的降低而降低,其与肝素酶启动子区域甲基化状态各组之间的变化情况呈同向的趋势,两者之间有明显的相关性,有统计学意义(P<0.01)。siRNA干扰后细胞生长周期检测细胞增殖情况结果显示各转染序列组中site1、site2转染序列组对细胞的增殖抑制作用最为明显,site3、site4组次之,而site5组作用最弱。细胞侵袭实验中site1、site2转染序列组穿膜细胞数显著低于空白对照组(48±4)(P<0.05),site3、site4组次之,而site5组作用最弱。细胞黏附实验中site1、site2转染序列组黏附细胞数显著低于空白对照组(48±4)(P<0.05),site3、site4组次之,而site5组作用最弱。
     结论肝素酶基因启动子区域siRNA干扰不同分化程度胃癌细胞系后,肝素酶表达发生明显的变化,但并不随分化程度降低而降低,与分化程度无明显相关性。肝素酶表达的变化趋势与其在不同分化程度的胃癌组织中的表达情况不相一致的结果显示通过诱导肝素酶基因启动子区域甲基化虽然能够降低肝素酶的表达,但是其与肝素酶基因启动子区域甲基化频率的相关性并不具有统计学意义。其具体原因可能与所诱导的甲基化位点本身的功能以及诱导的甲基化的频率变化幅度有关,这涉及到siRNA诱导基因DNA甲基化的具体作用机制,有待进一步研究来证实。通过siRNA靶向干扰肿瘤侵袭、转移相关性基因肝素酶的启动子区域促使其甲基化可以明显降低肝素酶的表达,从而可以有效的从表观遗传学角度降低肿瘤的侵袭和转移,这为肿瘤的早期发现和有效治疗及预防转移提供了新的理论依据和实践方案。
Heparanase plays a key role in promoting tumor angiogenesis,invasiveness andmetastasis.This predominant enzyme is primarily responsible for cleaving heparin sulphate,the main polysaccharide constituent of extracellular matrix and basement membrane,thushaving become a novel target of tumor therapy.The change of status of methylation in thepromoter CpG island epigenetic relates to the transcription condition of coherent gene inthe process of tumor angiogenesis and development.Methylation could play an importantrole in detecting the tumor at early stage,and preventing and treating the tumor as anepigenetic molecules marker.
     Heparanase is overexpressed in gastric carcinomas and significantly associated withthe tumor invasion and matsatasis.This study is to examine the expression of heparanase inthe gastric carcinomas specimens and diverse differential gastric celllines,and to explorethe status of methylation in the promoter CpG island,screen the siRNA sequence that couldinduce methylation of the promoter of heparanase,set up the tumor specific transduction system of siRNA mediated by tumor-specific promoter,identify the regulation effect totumor invasiveness and metastasis of siRNA inducing methylation targeting the promoterof heparanase in cell and integrity level,provide a new visual field to regulate tumorinvasiveness and metastasis by using epigenetic methods.
     The alteration of status of methylation in the promoter CpG island was detected bynMSP and BSP assays.The change of heparanase expression of gastric cancer cell linesafter siRNA interfere was investigated by Western Blot,real time PCR.The invasiveability was detected by Transwell assay,the adhesiveness ability was evaluated byadherence test.
     The expressions of heparanase mRNA and protein were significantly descend aftersiRNA interfering each group by pGenesil-1_site1,_site2,the other sites were notsignificantly descend meanwhile.The change tendency was not identical with thedifferentiation of the tumor cells,but was identical with the change of frequency ofmethylaiton in each group.The status of methylation in the promoter CpG island ofheparanase was hypomethylation,the frequence of methylation in the region of Thetranscription factor,early growth response 1 (EGR1)is associated with the inducibletranscription of the heparanase gene of diverse differentiation degree,however,the specificsite and the frequence of methylation was not identical.The frequence of methylation ingastric cancer cells lines were identical with the status of gastric tissues,so it was toestablish rationale to investigate the effects of methylation of promoter CpG island ofheparanase to gastric oncobiology.
     The status of methylation in heparanase gene promoter region was significantlycorrelated with expression of heparanase.It reveal that the the status of methylation play animportant role in tumor invasiveness and metastasis.By using siRNA,the invasive abilitywas weaken in each cell groups,and the adherence ability was also suppressed.Thisresearch demonstrate the methylation in heparanase gene promoter could depress theexpression of heparanase,thus,it could effectively inhibit the tumor invasiveness and metastasis and provide a novel rationale and strategy for tumor therapy and preventingmetastasis and detecting tumor in the early stage.
     PartⅠ
     Retrospective Study on Expression of Heparanase in Gastric Carcinomaand Clinical Significance
     Objective:To investigate the expressions of heparanase in the gastric carcinomasspecimens and diverse differential gastric cell lines,and to explore theircorrelation to clinical pathological features of gastric carcinoma.
     Methods:The expressions of heparanase proteins in 72 cases of gastric carcinoma anddiverse differential gastric cancer cell lines were detected by SABCimmunohistochemistry and immunofluorescence.Analyses the relationshipbetween the heparanase and gastric clinicpathological features,and evaluatethe effects of heparanase in tumor invasiveness and metastasis by concordanceat gene and protein level.
     Results:56 of the 72 colorectal carcinoma specimens (77.8%)were positive inheparanase by immunohistochemistry and 93.1% (67/72)by RT-PCR and83.3% (60/72)by Western Blot,the expression of heparanase was correlatedwith invasion depth and lymph node metastasis and TNM stage of gastriccarcinoma(P<0.05).Heparanase expression was detected significantly in all ofgastric cancer cell lines,the order of heparanase expression is TMK-1>SGC-7901>MKN-28(P<0.05).
     Conclusion:The expression of the heparanase in gastric carcinoma tissues and diversedifferential gastric cancer cell lines may be associated with its progression andmetastasis and differentiation degree and TNM stage but not with otherclinicpathological features.Molecular targets of heparanase may also beimportant factors in the metastasis of gastric cardinoma and it could provideidentifying evidence to gastric diagnose and treat.
     PartⅡ
     Analysis of the Status of Methylation in the Region of Heparanase Promoter inGastric Carcinoma
     Objective:To explore the status of methylation in the promoter CpG islands of heparanase,and to screen the CG sites for methylation.
     Methods:Extract the DNA of genome of gastric carcinoma and diverse differentialgastric cancer cell lines,hydrosulfite modify the nucleic acid,detect the statusof methylation in the promoter CpG island by MSP and BSP methods.
     Results:It was hypomethylation in the promoter CpG islands of heparanase by usingMSP detecting the region of the promoter,and significant relevance was foundbetween the status change and the differentiation degree.The order offrequency of methylaiton was TMK-1>SGC-7901>MKN-28(P<0.05).Theresults of DNA sequencing were identical with this tendency.The frequency ofmethylaiton was not at equal pace in the diverse differentiation tissues and thesite of methylaiton was neither fixed in one place.
     Conclusion:The status of methylation in the promoter CpG island of heparanase washypomethylation,the frequence of methylation in the region of Thetranscription factor,early growth response 1 (EGR1)is associated with theinducible transcription of the heparanase gene of diverse differentiation degree,however,the specific site and the frequence of methylation was not identical.The frequence of methylation in gastric cancer cells lines were identical withthe status of gastric tissues,so it was to establish rationale to investigate theeffects of methylation of promoter CpG island of heparanase to gastriconcobiology.
     PartⅢ
     The study of the effects of siRNA targeting heparanase gene promoter to methylationin gastric cancer cell lines
     Objective:To screen the siRNA sequence that could induce methylation of the promoter ofheparanase,set up the tumor specific transduction system of siRNA mediatedby tumor-specifi-promoter.
     Methods:The shRNA oligonucleotides targeting for heparanase gene promoter weresynthesized and cloned into pGenesil-1 to generate shRNA eukaryoticexpression vectors.The recombinant named as pGenesil-1_site1,_site2,_site3,_site4,and _site5.shRNA expression plasmids were identificated bysequencing.The eukaryotic expression vectors were transfected into diversedifferentiation cells:MKN-28(weI1)、SGC-7901(moderately)、TMK-1(poor).The green fluorescent protein (GFP)was detected by fluorescence microscope,and the silencing effects of the recombinant vectors were determined byRT-PCR.Screen the siRNA sequence sites for constructing the specifictransduction system and investigate the effects of heparanase in gastriccarcinoma subsequently.
     Results:The recombinant sequence identified by sequencing was the same as thetargeting one.In the MKN-28、SGC-7901、TMK-1 cells transfected with therecombinant vectors,the expression of green fluorescent protein (GFP)wasdetected,the silencing effect of pGenesil-1_site1,_site2 was more evident thanother recombinant vectors.The methylaiton status of promoter was changedsignificant in pGenesil-1_site1,_site2 at SGC-7901、TMK-1 cells groups,andMKN-28 cells group was only significant in pGenesil-1_site2,the other groupsand control group were not significant in the changes of methylaiton status ofpromoter.
     Conclusion:shRNA recombinant vector was established successfully by RNAi techniqueand effectively transfected into 3 diverse differentiation degree gastric cancercells lines.Screen the effectively siRNA sequence targeting differentmethylation sites to induce methylation of promoter.It provided the rationalefor siRNA effects of inducing methylation of DNA in gene promoter regionwhile not effects of the silencing gene expressing by targeting the encodingregion of DNA.
     PartⅣ
     The study of the effects of siRNA targeting heparanase gene promoter to theexpression of heparanase in gastric cancer cell lines
     Objective:To investigate the role of siRNA targeting heparanase gene promoter inregulating the expression of heparanase and the tumor invasion and matsatasis.
     Methods:The alteration of status of methylation in the promoter CpG islands wasdetected by nMSP and BSP assays.The change of heparanase expression ofgastric cancer cell lines after siRNA interfere was investigated by Western Blot,real time PCR.The invasive ability was detected by Transwell assay,theadhesiveness ability was evaluated by adherence test.
     Results:The cell growth curve show that the growth was inhibited by siRNA inpGenesil-1_site1,_site2 sequence in each cells groups,and the order of the cellgrowth was_site1,_site2>_site3,_site4>_site5,the control group.In cellsinvasive test,cells of _site1,_site2 groups migrated into the gap more thanother groups and control group at same time-points after inducing the lesion.The counts of parental cells penetrating through membrane were 113±7,significantly more than 48±4 in control group (P<0.05).The adherence cells of_site1,_site2 groups was 0.83±0.02,significantly higher than 0.38±0.01 incontrol group (P<0.05).
     Conclusion:siRNA suppress the expression of heparanase in the differentiation gastriccancer cells lines,and the change was not identical with the differentiation ofthe tumor cells,the research results show that inducing methylation of DNA inheparanase gene promoter region could suppress the expression of heparanase,but it was not significantly correlated with the frequency of methylation.Theactual reason need subsequently research to define.
引文
1. Vlodavsky I, Friedmann Y. Molecular properties and involvement of heparanase in cancer metastasis and angiogenesis. J Clin Invest, 2001, 108(3): 341-347.
    2. Shafat I, Barak AB, Postovsky S, et al. Heparanase levels are elevated in the plasma of pediatric cancer patients and correlate with response to anticancer treatment. Neoplasia, 2007,9:909-916.
    3. Vlodavsky I, Ilan N, Nadir Y, et al. Heparanase, heparin and the coagulation system in cancer progression. Thromb Res, 2007,120 Suppl 2: S112-120.
    4. Vlodavsky I, Ilan N, Naggi A, et al. Heparanase: structure, biological functions, and inhibition by heparin-derived mimetics of heparin sulfate. Curr Pharm Des, 2007, 13: 2057-2073.
    5. Simizu S, Suzuki T, Muroi M, et al. Involvement of disulfide bond formation in the activation of heparanase. Cancer Res, 2007, 67: 7841-7849.
    6. Cohen I, Maly B, Simon I, et al. Tamoxifen induces heparanase expression in estrogen receptor-positive breast cancer. Clin Cancer Res, 2007, 13: 4069-4077.
    7. Theodoro TR, de Matos LL, Sant Anna AV, et al. Heparanase expression in circulating lymphocytes of breast cancer patients depends on the presence of the primary tumor and/or systemic metastasis. Neoplasia, 2007, 9: 504-510.
    8. Doviner V, Maly B, Reinhartz T, et al. Heparanase expression: a potential ancillary diagnostic tool for distinguishing between malignant cells and reactive mesothelium in body cavity effusions. Cytopathology, 2007, 18: 13-19.
    9. Doweck I, Kaplan-Cohen V, Naroditsky I, et al. Heparanase localization and expression by head and neck cancer: correlation with tumor progression and patient survival. Neoplasia, 2006, 8: 1055-1061.
    10. Ru GQ, Zhao ZS, Tang QL, et al. mRNA expression of syndecan-1 and heparanase in relation to tumor progression and prognosis of gastric carcinoma. Zhonghua Wai Ke Za Zhi. 2006, 44: 1062-1064.
    11. van den Hoven MJ, Rops AL, Bakker MA, et al. Increased expression of heparanase in overt diabetic nephropathy. Kidney Int, 2006, 70: 2100-2108.
    12. Ben-Izhak O, Kaplan-Cohen V, Ilan N, et al. Heparanase expression in malignant salivary gland tumors inversely correlates with long-term survival. Neoplasia, 2006, 8: 879-884.
    13. Vlodavsky I, Eldor A, Haimovitz-Friedman A, et al. Expression of heparanase by platelets and circulating cells of the immune system: possible involvement in diapedesis and extravasation. Invasion Metastasis, 1992,12: 112-127.
    14. Dong J, Kukuka AK, Toyoshima M, et al. Genomic organization and chromosome localization of the newly identified human heparanase gene. Gene 2000; 253: 171-178.
    15. Hulett MD, Freeman C, Hamdorf BJ, et al. Cloning of mammalian heparanase, an important enzyme in tumor invasion and metastasis. Nat Med 1999; 5: 803-809.
    16. Levy-Adam F, Miao HQ, Heinrikson RL, et al. Heterodimer formation is essential for heparanase enzymatic activity. Bilchem Biophys Res Commun 2003; 308: 885-891.
    17. Escobar Galvis ML, Jia J, Zhang X, et al. Transgenic or tumor-induced expression of heparanase upregulates sulfation of heparin sulfate. Nat Chem Biol 2007; 3: 773-778.
    18. Bashenko Y, Ilan N, Krausz MM, et al. Heparanase pretreatment attenuates endotoxin-induced acute lung injury in rats. Shock 2007; 28: 207-212.
    19. D'Souza SS, Daikoku T, Farach-Carson MC, et al. Heparanase expression and function during early pregnancy in mice. Biol Reprod 2007; 77: 433-441.
    20. Nobuhisa T, Naomoto Y, Okawa T, et al. Translocation of heparanase into nucleus results in cell differentiation. Cancer Sci 2007; 98: 535-540.
    21.Simizu S,Suzuki T,Muroi M,et al.Involvement of disulfide bond formation in the activation of heparanase.Cancer Res 2007;67:7841-7849.
    22.Cohen I,Maly B,Simon I,et al.Tamoxifen induces heparanase expression in estrogen receptor-positive breast cancer.Clin Cancer Res 2007;13:4069-4077.
    23.Theodoro TR,de Matos LL,Sant Anna AV,et al.Heparanase expression in circulating lymphocytes of breast cancer patients depends on the presence of the primary tumor and/or systemic metastasis.Neoplasia 2007;9:504-510.
    24.Doviner V,Maly B,Reinhartz,et al.Heparanase expression:a potential ancillary diagnostic tool for distinguishing between malignant cells and reactive mesothelium in body cavity effusions.Cytopathology 2007;18:13-19.
    25.Doweck I,Kaplan-Cohen V,Naroditsky I,et al.Heparanase localization and expression by head and neck cancer:correlation with tumor progression and patient survival.Neoplasia 2006;8:1055-1061.
    26.Ru GO,Zhao ZS,Tang 0L,et al.mRNA expression of syndecan-1 and heparanase in relation to tumor progression and prognosis of gastric carcinoma.Zhonghua Wai Ke Za Zhi 2006;44:1062-1064.
    27.van den Hoven MJ,Rops AL,Bakker MA,et al.Increased expression of heparanase in overt diabetic nephropathy.Kidney Int 2006;70:2100-2108.
    28.Ben-Izhak O,Kaplan-Cohen V,Ilan N,et al.Heparanase expression in malignant salivary gland tumors inversely correlates with long-term survival.Neoplasia 2006;8:879-884.
    29.Takaoka M,Naomoto Y,Ohkawa T,et al.Heparanase expression correlates with invasion and poor prognosis in gastric cancers.Lab Invest 2003;83:613-622.
    30.Tang W,Nakamura Y,Tsujimoto M,et al.Heparanase:a key enzyme in invasion and metastasis of gastric carcinoma.Mod Pathol 2002;15:593-598.
    31.刘颖斌,陈晓鹏,彭淑牖等.肝细胞性肝癌中乙酰肝素酶与nm23-H1的表达及其临床意义.中华医学杂志2002;82:1553-1556.
    32. El-Assal ON, Yamanoi A, Ono T, Kohno H, et al. The clinicopathological significance of heparanase and basic fibroblast growth factor expressions in hepatocellular carcinoma. Clin Cancer Res 2001; 7: 1299-1305.
    33. Koliopanos A, Friess H, Kleeff J, et al. Heparanase expression in primary and metastatic pancreatic cancer. Cancer Res 2001; 61: 4655-4659.
    34. Rohloff J, Zinke J, Schoppmeyer K, et al. Heparanase expression is a prognostic indicator for postoperative survival in pancreatic adenocarcinoma. Br J Cancer 2002; 86: 1270-1275.
    35. Kim AW, Xu X, Hollinger EF, et al. Human heparanase-1 gene expression in pancreatic adenocarcinoma. J Gastrointest Surg 2002; 6: 167-172.
    36. Friedmann Y, Vlodavsky I, Aingorn H, et al. Expression of heparanase in normal, dysplastic, and neoplastic human colonic mucosa and stroma. Evidence for its role in colonic tumorigenesis. Am J Pathol 2000; 157: 1167-1175.
    37. Maxhimer JB, Quiros RM, Stewart R, et al. Heparanase-1 expression is associated with the metastatic potential of breast cancer. Surgery 2002; 132: 326-333.
    38. Ginath S, Menczer J, Friedmann Y, et al. Expression of heparanase, Mdm2, and erbB2 in ovarian cancer. Int J Oncol 2001; 18: 1133-1144.
    39. Kosir MA, Wang W, Zukowski KL, et al. Degradation of basement membrane by prostate tumor heparanase. J Surg Res 1999; 81: 42-47.
    40. Gohji K, Okamoto M, Kitazawa S, et al. Heparanase protein and gene expression in bladder cancer. J Urol 2001; 166:1286-1290.
    41. Bitan M, Polliack A, Zecchina G, et al. Heparanase expression in human leukemias is restricted to acute myeloid leukemias. Exp Hematol 2002; 30: 34-41.
    42. Pikas DS, Li JP, Vlodavsky I, et al. Substrate specificity of heparanases from human hepatoma and platelets. J Biol Chem 1998; 273: 18770-18777.
    43. Vlodavsky I, Fuks Z, Bar-Ner M, et al. Xymphoma cell-mediated degradation of sulfated proteoglycans in the subendothelial extracellular matrix: relationship to tumor cell metastasis. Cancer Res 1983; 43: 2704-2711.
    44. Quiros RM, Kim AW, Maxhimer J, et al. Differential heparanase-1 expression in malignant and benign pheochromocytomas. J Surg Res 2002; 108: 44-50.
    45. Rohloff J, Zinke J. Heparanase expression is a prognostic indicator for postoperative survival in pancreatic adenocarcinoma. Ann Oncol 2003, 14(10): 1505.
    46. Pillarisetti S, Paka L, Sasaki A, et al. Endothelial cell heparanase modulation of lipoprotein lipase activity. Evidence that heparin sulfate oligosaccharide is an extracellular chaperone. J Biol Chem 1997; 272:15753-15759.
    1.Shteper P J,Zcharia E,Ashhab Y,et al.Role of promoter methylation in regulation of the mammalian heparanase gene.Oncogene,2003,22(49):7737-7749.
    2.Ramsahoye BH,Biniszkiewicz D,Lyko F,et al.Non-CpG methylation is prevalent in embryonic stem cells and may be mediated by DNA methyltransferase 3a.Proc Natl Acad Sci USA,2000,97:5237-5242.
    3.Gohji K,Okamoto M,Kitazawa S,et al.Heparanase protein and gene expression in bladder cancer.J Urol 2001;166:1286-90.
    4.Kosir MA,Quinn CC,Zukowski KL,et al.Human prostate carcinoma cells produce extracellular heparanase.J Surg Res 1997;67:98-105.
    5. Jones PA, Takai D. The role of DNA methylation in mammalian epigenetics. Science 2001 ;293:1068- 70.
    6. Sato N, Maitra A, Fukushima N, et al. Frequent hypomethylation of multiple genes overexpressed in pancreatic ductal adenocarcinoma. Cancer Res 2003;63:4158-66.
    7. De Mestre AM, Khachigian LM, Santiago FS, et al. Regulation of inducible heparanase gene transcription in activated T cells by early growth response 1. J Biol Chem 2003; 278:50377 - 85.
    8. Hermanek P, Hunter RVP, Sobin LH, et al. Prostate. In: Hermanek P, Hutter RVP, Sobin LH, et al. Illustrated guide to the TNM/pTNM classification of malignant tumors, 4th ed. Heidelberg: Springer-Verlag, 1997:272-80.
    9. Ahrendt SA, Chow JT, Xu L-H, et al. Molecular detection of tumor cells in bronchoalveolar lavage fluid from patients with early stage lung cancer. J Natl Cancer Inst 1999;91:332-339.
    10. Olek A, Oswald J, Walter JA. A modified and improved method of bisulfite based cytosine methylation analysis. Nucleic Acids Res 1996;24:5064-6.
    11. Cairns P, Esteller M, Herman JG, et al. Detection of prostate cancer in urine by GSTP1 hypermethylation. Clin Cancer Res 2001;7:2727-0.
    12. Jer(?)nimo C, Usadel H, Henrique R, et al. Quantitation of GSTP1 methylation in non-neoplastic prostatic tissue and organ confined prostate adenocarcinoma. J Natl Cancer Inst 2001;93:1747-52.
    13. Pao MM, Tsutsumi M, Liang G, et al. The endothelin B receptor (EDNRB) promoter displays heterogeneous, site specific methylation patterns in normal and tumor cells. Hum Mol Genet 2001;10:903-10.
    14. Vlodavsky I, Michaeli RI, Bar-Ner M, et al. Involvement of heparanase in tumor metastasis and angiogenesis. Isr J Med Sci 1998; 24:464-70.
    15. Hulett MD, Freeman C, Hamdorf BJ, et al. Cloning of mammalian heparanase, an important enzyme in tumor invasion and metastasis. Nat Med 1999;5: 803 -9.
    16. Kosir MA, Quinn CC, Zukowski KL, et al. Human prostate carcinoma cells produce extracellular heparanase. J Surg Res 1997;67: 98- 105.
    17. Kosir MA, Wang W, Zukowski KL, et al. Degradation of basement membrane by prostate tumor heparanase. J Surg Res 1999;81:42 - 7. Clinical Cancer Research 1035
    18. Shteper PJ, Zcharia E, Ashhab Y, et al. Role of promoter methylation in regulation of the mammalian heparanase gene. Oncogene 2003;22:7737- 49.
    19. Nelson JB, Lee WH, Nguyen SH, et al. Methylation of the 5c CpG island of the endothelin B receptor gene is common in human prostate cancer. Cancer Res 1997;57:35-7.
    20. Herman JG, Graff JR, Myohanen S, et al. Methylation-specific PCR. A novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci U S A 1996;93:9821-6.
    21. Abdulkadir SA, Qu Z, Garabedian E, et al. Impaired prostate tumorigenesis in Egrl-deficient mice. Nat Med 2001;7:101-7.
    22. Lee W-H, Isaacs WB, Bova GS, et al. CG island methylation changes near the GSTP1 gene in prostatic carcinoma cells detected using the polymerase chain reaction: a new prostate cancer biomarker. Cancer Epidemiol Biomark Prev 1997;6:443-50.
    23. Adamson E, de Belle I, Mittal S, et al. Egrl signaling in prostate cancer. Cancer Biol Ther 2003;2:617 - 22.
    24. Yang SZ, Abdulkadir SA. Early growth response 1 modulate- androgen receptor signaling in prostate carcinoma cells. J Biol Chem 2003;278:39906-11.
    25. De Mestre AM, Khachigian LM, Santiago FS, et al. Regulation of inducible heparanase gene transcription in activated T cells by early growth response 1. J Biol Chem 2003; 278:50377 - 85.
    26. Gohji K, Okamoto M, Kitazawa S, et al. Heparanase protein and gene expression in bladder cancer. J Urol 2001;166:1286 - 90.
    1.Vlodavsky I,Friedmann Y.Molecular properties and involvement of heparanase in cancer metastasis and angiogenesis.J Clin Invest,2001,108(3):341-347.
    2.Shteper P J,Zcharia E,Ashhab Y,et al.Role of promoter methylation in regulation of the mammalian heparanase gene.Oncogene,2003,22(49):7737-7749.
    3. Ogishima T, Shiina H, Breault JE, et al. Increased heparanase expression is caused by promoter hypomethylation and up-regulation of transcriptional factor early growth response-1 in human prostate cancer. Clin Cancer Res, 2005, 11(3): 1028-1036.
    4. Ogishima T, Shiina H, Breault JE, et al. Promoter CpG hypomethylation and transcription factor EGR1 hyperactivate heparanase expression in bladder cancer. Oncogene, 2005, 24(45): 6765-6772.
    5. Kawasaki H, Taira K. Induction of DNA methylation and gene silencing by short .interfering RNAs in human cells. Nature, 2004, 305(5688): 1289-1292.
    6. Morris KV, Chan SW, Jacobsen SE, et al. Small interfering RNA-induced transcriptional gene silencing in human cells. Science, 2004, 305(5688): 1289-1292.
    7. Park CW, Chen Z, Kren BT, er al. Double-stranded siRNA targeted to the hunting gene does not induce DNA methylation. Biochem Biophys Res Commun, 2004, 323(1):275-280.
    8. Svoboda P, Stein P, Filipowicz W, et al. Lack of homologous sequence-specific DNA methylation in response to stable dsRNA expression in mouse oocytes. Nucleic Acids Res, 2004, 32(120): 3601-360.
    9. Bayne EH, Allshire RC. RNA-directed transcriptional gene silencing in mammals. Trends Genet, 2005, 21(7): 370-373.
    10. Huang SL, Wu Y, Yu H, et al. Inhibition of Bc1-2 expression by a novel tumor-specific RNA interference system increases chemosensitivity to 5-fluorouracil in Hela cells. Acta Pharmacol Sin, 2006, 27(2): 242-248.
    11. Chiu YL, Dinesh CU, Chu CY, et al. Dissecting RNA-interference pathway with small molecules. Chem Biol, 2005,12(6):643-648.
    12. Hutvagner G, Simard MJ, Mello CC, et al. Sequence-specific inhibition of small RNA function. PLoS Biol, 2004, 2(4): E98.
    13. Shafat I, Barak AB, Postovsky S, Elhasid R, Ilan N, Vlodavsky I, Arush MW: Heparanase levels are elevated in the plasma of pediatric cancer patients and correlate with response to anticancer treatment. Neoplasia, 2007, 9: 909-916.
    14. Vlodavsky I, Ilan N, Nadir Y, Brenner B, Katz BZ, Naggi A, Torri G, Casu B, Sasisekharan R. Heparanase, heparin and the coagulation system in cancer progression. Thromb Res, 2007,120 Suppl 2: S112-120.
    15. Vlodavsky I, Ilan N, Naggi A, Casu B. Heparanase: structure, biological functions, and inhibition by heparin-derived mimetics of heparin sulfate. Curr Pharm Des, 2007, 13: 2057-2073.
    16. Simizu S, Suzuki T, Muroi M, Lai NS, Takagi S, Dohmae N, Osada H. Involvement of disulfide bond formation in the activation of heparanase. Cancer Res, 2007, 67:7841-7849.
    17. Cohen I, Maly B, Simon I, Meirovitz A, Pikarsky E, Zcharia E, Peretz T, Vlodavsky I, Elkin M. Tamoxifen induces heparanase expression in estrogen receptor-positive breast cancer. Clin Cancer Res, 2007,13: 4069-4077.
    18. Theodoro TR, de Matos LL, Sant Anna AV, Fonseca FL, Semedo P, Martins LC, Nader HB, Del Giglio A, da Silva Pinhal MA. Heparanase expression in circulating lymphocytes of breast cancer patients depends on the presence of the primary tumor and/or systemic metastasis. Neoplasia, 2007, 9: 504-510.
    19. Doviner V, Maly B, Reinhartz T, Vlodavsky I, Sherman Y. Heparanase.. expression: a potential ancillary diagnostic tool for distinguishing between malignant cells and reactive mesothelium in body cavity effusions. Cytopathology, 2007,18: 13-19.
    20. Doweck I, Kaplan-Cohen V, Naroditsky I, Sabo E, Ilan N, Vlodavsky I. Heparanase localization and expression by head and neck cancer: correlation with tumor progression and patient survival. Neoplasia, 2006, 8: 1055-1061.
    21. Ru GQ, Zhao ZS, Tang QL, Xu WJ. mRNA expression of syndecan-1 and heparanase in relation to tumor progression and prognosis of gastric carcinoma. Zhonghua Wai Ke Za Zhi. 2006, 44: 1062-1064.
    22. van den Hoven MJ, Rops AL, Bakker MA, Aten J, Rutjes N, Roestenberg P, Goldschmeding R, Zcharia E, Vlodavsky I, van der Vlag J, Berden JH. Increased expression of heparanase in overt diabetic nephropathy. Kidney Int, 2006, 70:2100-2108.
    23. Ben-Izhak O, Kaplan-Cohen V, Ilan N, Gan S, Vlodavsky I, Nagler R. Heparanase expression in malignant salivary gland tumors inversely correlates with long-term survival. Neoplasia, 2006, 8: 879-884.
    24. Vlodavsky I, Eldor A, Haimovitz-Friedman A, Matzner Y, Ishai-Michaeli R, Lider O, Naparstek Y, Cohen IR, Fuks Z. Expression of heparanase by platelets and circulating cells of the immune system: possible involvement in diapedesis and extravasation. Invasion Metastasis, 1992,12: 112-127.
    25. Ramsahoye BH, Biniszkiewicz D, Lyko F, Clark V, Bird AP, Jaenisch R. Non-CpG methylation is prevalent in embryonic stem cells and may be mediated by DNA methyltransferase 3a. Proc Natl Acad Sci USA, 2000, 97: 5237-5242.
    26. Fire A, Xu S, Montgomery M K, et al. Potent and specific genetic interference by double-strand RNA in Caenorhabditis elegans. Nature, 1998, 391(6669): 806-811.
    27. Hannon G J. RNA interference. Nature, 2002, 418(6894): 244-251.
    28. Paddison P J, Caudy A A, Bernstein E, et al. Short hairpin RNAs(shRNAs) induce sequence -specific silencing in mammalian cells. Genes Dev, 2002,16(8): 948-958.
    29. Spankuclr Schmitt B, Bereiter-Hahn J, Kaufmann M, et al. Effect of RNA silencing of polo-like kinase-l(PLK1) on apoptosis and spindle formation in human cancer cells. J Natl Cancer Inst, 2002, 94(24): 1863-1877.
    30. Krichevsky A M, Kosik K S. RNAi functions in cultured mammalian neurons. Proc Natl Acad Sci USA, 2002, 99(18):11926-11929.
    31. Song E, Lee S K, Wang J, et al. RNA interference targeting Fas protects mice from fulminant hepatitis. Nat Med, 2003, 9(3): 347-351.
    32. Yin J Q, Wang Y. siRNA-mediated gene regulation system: now and the future. Int J Mol Med, 2002, 10(4): 355-365.
    33. Bachman K E, Park B H, Rhee I, et al. Histone modifications and silencing prior to DNA methylatiOn of a tumor suppressor gene. Cancer Cell, 2003, 3(1): 89-95.
    1.Cherubini A,Hofmann G,Pillozzi S,Guasti L,Crociani O,Cilia E,et al.Human ether-a-go-go-related gene 1 channels are physically linked to beta1 integrins and modulate adhesion-dependent signaling.Mol Biol Cell 2005;16(6):2972-2983.
    2.Crociani O,Guasti L,Balzi M,Becchetti A,Wanke E,Olivotto M,et al.Cell cycle-dependent expression of HERG1 and HERG1B isoforrns in tumor cells.J Biol Chem 2003;278(5):2947-2955.
    3.Masi A,Becchetti A,Restano-Cassulini R,Polvani S,Hofmann G,Buccoliero AM,et al.hERG1 channels are overexpressed in glioblastoma multiforme and modulate VEGF secretion in glioblastoma cell lines.Br J Cancer 2005;93:781-792.
    4.Roy J,Vantol B,Cowley EA,Blay J,Linsdell P.Paglierani M,Buccoliero AM,Fontana L,et al.Pharmacological separation of hEAG and hERG K+ channel function in the human mammary carcinoma cell line MCF-7.Oncol Rep 2008;19(6):1511-1516.
    5.Lastraioli E,Guasti L,Crociani O,Polvani S,Hofmann G,Witchel H,et al.hergl gene and HERG1 protein are overexpressed in colorectal cancers and regulate cellinvasion of tumor cells. Cancer Res 2004; 64: 606-611.
    6. Guasti L, Crociani O, Redaelli E, Pillozzi S, Polvani S, Masselli M, et al. Identification of a posttranslational mechanism for the regulation of hERG1 K+ channel expression and hERG1 current density in tumor cells. Mol Cell Biol 2008; 28(16): 5043-5060.
    7. Suzuki T, Takimoto K. Selective expression of HERG and Kv2 channels influences proliferation of uterine cancer cells. Int J Onco 2004; 25(1): 153-159.
    8. Smith G. A. M, Tsui H. W., Newell E. W., Jiang X., Zhu X. P., Tsui F. W., Schlichter L. C. Functional up regulation of HERG K+ channels in neoplastic hematopoietic cells. J Biol Chem 2002; 277:18528-18534.
    9. Chen SZ, Jiang M, Zhen YS. HERG K+ channel expression-related chemosensitivity in cancer cells Membrane potentials and sodium channels: hypoteses for growth regulation . and and its modulation by erythromycin. Cancer Chemother Pharmacol. 2005; 56(2):212-220.
    10. Pillozzi S., Brizzi M. F., Balzi M., Crociani O., Cherubini A., Guasti L., et al. HERG potassium channels are constitutively expressed in primary human acute myeloid leukemias and regulate cell proliferation of normal and leukemic hemopoietic progenitors. Leukemia (Baltimore) 2002; 16: 1791-1798.
    11. Ridley JM, Shuba YM, James AF, Hancox JC. Modulation by testosterone of an endogenous hERG potassium channel current. J Physiol Pharmacol 2008; 59(3):395-407.
    12. Chen SZ, Zhang SH, Gong JH, Zhen YS. Erythromycin inhibits the proliferation of HERG K+ channel highly expressing cancer cells and shows synergy with anticancer drugs. Zhonghua Yi Xue Za Zhi 2006; 86(47): 3353-3357.
    13. Mruk K, Kobertz WR. Discovery of a novel activator of KCNQ1-KCNE1 K channel complexes. PLoS ONE 2009; 4(1): e4236.
    14. McClelland, A , Kuhn, L.C. and Ruddle, F.H. The human Transferrin receptor gene: genomic organization and the complete primary structure of the receptor deduced from a cDNA sequence. Cell. 1984; 39: 267-274.
    15. Jemal A, Tiwari RC, Murray T, et al. Cancer statistics 2002 [J]. CA Cancer J Clin. 2004; 54:8-29.
    16. Meyerhardt JA, Mayer RJ. Systemic therapy for colorectal cancer [J]. N Engl J Med. 2005; 352(5):476-87.
    17. Yeatman TJ, Nicholson GL. Molecular basis of tumor progression: mechanisms of organ-specific tumor metastasis [J]. Semin Surg Oncol. 1993; 9(3):256-263.
    18. Radinsky R. Modulation of tumor cell gene expression and phenotype by the organ-specific metastatic environment [J]. Cancer Metastasis Rev. 1995; 14(4):323-338.
    19. Chambers AF, Groom AC, MacDonald IC. Dissemination and growth of cancer cells in metastatic sites [J]. Nat Rev Cancer. 2002; 2(8): 563-572.
    20. Fidler IJ. Seed and soil revisited: contribution of the organ microenvironment to cancer metastasis [J]. Surg Oncol Clin N Am. 2001; 10(2): 257- 269.
    21. Zlotnik A, Yoshie O. Chemokines: a new classification system and their role in immunity [J]. Immunity. 2000; 12(2):121-7.
    22. Chambers AF, Groom AC, MacDonald IC. Dissemination and growth of cancer cells in metastatic sites [J]. Nat Rev Cancer. 2002; 2(8):563-72.
    23. Luzzi KJ, MacDonald IC, Schmidt EE, et al. Multistep nature of metastatic inefficiency: dormancy of solitary cells after successful extravasation and limited survival of early micrometastases. [J] Am J Pathol. 1998; 153(3):865-873.
    24. Gutman M, Singh RK, Price JE, Fan D, Fidler IJ. Accelerated growth of human colon cancer cells in nude mice undergoing liver regeneration [J]. Invasion Metastasis. 1994-1995; 14(1-6):362-371.
    25. Markowitz SD, Molkentin K, Gerbic C, et al. Growth stimulation by coexpression of transforming growth factor-a and epidermal growth factor receptor in normal and adenomatous human colon epithelium [J]. J Clin Invest. 1990; 86(l):356-362.
    26. van Dale P, Galand P. Effect of partial hepatectomy on experimental liver invasion by intraportally injected colon carcinoma cells in rats[J]. Invasion Metastasis. 1988; 8(4):217-227.
    27. Scotton CJ, Wilson JL, Scott K, et al. Multiple actions of the chemokine CXCL12 on epithelial tumor cells in human ovarian cancer [J]. Cancer Res. 2002; 62(20):5930-8.
    28. Sun YX, Wang J, Shelburne CE, et al. Expression of CXCR4 and CXCL12 (SDF-1) in human prostate cancers (PCa) in vivo [J]. J Cell Biochem. 2003; 89(3):462-73.
    1.Westermarck J,Kahari VM.Regulation of matrix metalloproteinase expression in tumor invasion.FASEB J 1999;13:781-792.
    2.Eccles SA.Heparanase:breaking down barriers in tumors.Nat Med 1999;285:735-736.
    3.Finkel E.Protential target found for antimetastasis drugs.Science 1999;285:33-34
    4.Vlodavsky I,Friedmann Y,Elkin M,et al.Mammalian heparanase:gene cloning,expression and function in tumor progression and metastasis.Nat Med 1999;5:793-802.
    5.Watanabe M,Aoki Y,Kase H,et al.Heparanase expression and angiogenesis in endometrial cancer.Cynecol Obstet Invest 2003;56:77-82.
    6.Patel VN,Knox SM,Lika KM,et al.Heparanase cleavage of perlecan heparan sulfate modulates FGF10 activity during ex vivo submandibular gland branching morphogenesis.Development 2007;134:4177-4186.
    7.Bisio A,Mantegazza A,Urso E,et al.High-performance liquid chromatographic/mass spectrometric studies on the susceptibility of heparin species to cleavage by heparanse.Semin Thromb Hemost 2007;33:488-495.
    8.Dong J,Kukuka AK,Toyoshima M,et al.Genomic organization andchromosome localization of the newly identified human heparanase gene.Gene 2000;253:171-178.
    9. Hulett MD, Freeman C, Hamdorf BJ, et al. Cloning of mammalian heparanase, an important enzyme in tumor invasion and metastasis. Nat Med 1999;5: 803-809.
    10. Fairbanks MB, Mildner AM, Leone JW, et al. Processing of the human heparanase precursor and evidence that the active enzyme is a heterodimer. J Biol Chem 1999; 274: 29587-29590.
    11. Mckenzie E, Young K, Hircock M, et al. Biochemical characterization of the active heterodimer from of human heparanase(Hpal) protein expressed in insect cells. Biochem J 2003; 373(Pt 2):423-435.
    12. Vreys D, David G. Mammalian heparanase: what is the message? J Cell Mol Med 2007; 11:427-452.
    13. Wu WJ, Pan CE, Liu QG, et al. Expression of heparanase and nuclear factor kappa B in pancreatic adenocarcinoma. Nan Fang Yi Ke Da Xue Xue Bao 2007; 27: 1267-1270.
    14. Han J, Woytowich AE, Mandal AK, et al. Heparanase upregulation in high glucose-treated endothelial cells is prevented by insulin and heparin. Exp Biol Med(Maywood) 2007;232:927-934.
    15. Levy-Adam F, Miao HQ, Heinrikson RL, et al. Heterodimer formation is essential for heparanase enzymatic activity. Bilchem Biophys Res Commun 2003; 308: 885-891.
    16. Escobar Galvis ML, Jia J, Zhang X, et al. Transgenic or tumor-induced expression of heparanase upregulates sulfation of heparin sulfate. Nat Chem Biol 2007; 3: 773-778.
    17. Bashenko Y, Ilan N, Krausz MM, et al. Heparanase pretreatment attenuates endotoxin-induced acute lung injury in rats. Shock 2007; 28: 207-212.
    18. D'Souza SS, Daikoku T, Farach-Carson MC, et al. Heparanase expression and function during early pregnancy in mice. Biol Reprod 2007; 77: 433-441.
    19. Nobuhisa T, Naomoto Y, Okawa T, et al. Translocation of heparanase into nucleus results in cell differentiation. Cancer Sci 2007; 98: 535-540.
    20. Dempsey LA, Brunn GJ, Platt JL. Heparanase, a potential regulator of cell-matrix interactions. Trends Biochem Sic 2000; 25: 349-351.
    21. Parish CR, Freeman C, Hulett MD. Heparanase: a key enzyme involved in cell invasion. Biochim Biophys Acta 2001; 1471: M99-M108.
    22. Mckenzie E, Tyson K, Stamps A, et al. Cloning and expression profiling of Hpa2, a novel mammalian heparanase family member. Biochem Biophys Res Commun 2000; 276: 1170-1177.
    23. Bame KJ. Heparanases: endoglycosidases that degrade heparin sulfate proteoglycans. Glycobiology 2001; 11: 91R-98R.
    24. Van den Hoven MJ, Rops AL, Vlodavsky I, et al. Heparanase in glomerular diseases. Kidney Int 2007; 72: 543-548.
    25. Xu X, Ding J, Ding H, et al. Immunohistochemical detection of heparanase-1 expression in eutopic and ectopic endometrium from women with endometriosis. Fertil Steril 2007; 88: 1304-4310.
    26. Levidiotis V, Freeman C. Heparanase is involved in the pathogenesis of proteinuria as a result of glomerulonephritis. J Am Soc Nephrol 2004; 15(1): 68.
    27. Haimov-Kochman R, Friedmann Y. Localization of heparanase in normal and pathological human placenta. Mol Human Reproduction 2002;8(6): 566.
    28. Sasaki N. Cell surface localization of heparanase on macrophages regulates degradation of extracellular matrix heparin sulfate. J Immunol 2004; 172(6): 3830.
    29. Ihrcke NS, Parker W, Reissner KJ, et al. Regulation of platelet heparanase during inflammation: role of pH and proteinases. J Cell Physiol 1998; 175: 255-267.
    30. Bernfield M, Gotte M, Park PW, et al. Functions of cell surface heparin sulfate proteoglycans. Annu Rev Biochem 1999; 68: 729-777.
    31. Shafat I, Barak AB, Postovsky S, et al. Heparanase levels are elevated in the plasma of pediatric cancer patients and correlate with response to anticancer theatment. Neoplasia 2007; 9: 909-916.
    32. Vlodavsky I, Ilan N, Nadir Y, et al. Heparanase, heparin and the coagulation system in cancer progression. Thromb Res 2007; 120 Suppl 2: S112-S120.
    33. Vlodavsky I, Ilan N, Naggi A, et al. Heparanase: structure, biological functions, and inhibition by heparin-derived mimetics of heparin sulfate. Curr Pharm Des 2007; 13: 2057-2073.
    34. Simizu S, Suzuki T, Muroi M, et al. Involvement of disulfide bond formation in the activation of heparanase. Cancer Res 2007; 67: 7841-7849.
    35. Cohen I, Maly B, Simon I, et al. Tamoxifen induces heparanase expression in estrogen receptor-positive breast cancer. Clin Cancer Res 2007; 13: 4069-4077.
    36. Theodoro TR, de Matos LL, Sant Anna AV, et al. Heparanase expression in circulating lymphocytes of breast cancer patients depends on the presence of the primary tumor and/or systemic metastasis. Neoplasia 2007; 9: 504-510.
    37. Doviner V, Maly B, Reinhartz, et al. Heparanase expression: a potential ancillary diagnostic tool for distinguishing between malignant cells and reactive mesothelium in body cavity effusions. Cytopathology 2007; 18: 13-19.
    38. Doweck I, Kaplan-Cohen V, Naroditsky I, et al. Heparanase localization and expression by head and neck cancer: correlation with tumor progression and patient survival. Neoplasia 2006; 8: 1055-1061.
    39. Ru GQ, Zhao ZS, Tang QL, et al. mRNA expression of syndecan-1 and heparanase in - relation to tumor progression and prognosis of gastric carcinoma. Zhonghua Wai Ke Za Zhi 2006; 44: 1062-1064.
    40. van den Hoven MJ, Rops AL, Bakker MA, et al. Increased expression of heparanase in overt diabetic nephropathy. Kidney Int 2006; 70: 2100-2108.
    41. Ben-Izhak O, Kaplan-Cohen V, Ilan N, et al. Heparanase expression in malignant salivary gland tumors inversely correlates with long-term survival. Neoplasia 2006; 8: 879-884.
    42. Vlodavsky I, Eldor A, Haimovitz-Friedman A. et al. Expression of heparanase by platelets and circulating cells of the immune system: possible involvement in di(?)pedesis and extravasation. Invasion Metastasis 1992; 12: 112-127.
    43.Takaoka M,Naomoto Y,Ohkawa T,et al.Heparanase expression correlates with invasion and poor prognosis in gastric cancers.Lab Invest 2003;83:613-622.
    44.Tang W,Nakamura Y,Tsujimoto M,et al.Heparanase:a key enzyme in invasion and metastasis of gastric carcinoma.Mod Pathol 2002;15:593-598.
    45.刘颖斌,陈晓鹏,彭淑牖等.肝细胞性肝癌中乙酰肝素酶与nm23-H1的表达及其临床意义.中华医学杂志2002;82:1553-1556.
    46.El-Assal ON,Yamanoi A,Ono T,Kohno H,et al.The clinicopathological significance of heparanase and basic fibroblast growth factor expressions in hepatocellular carcinoma.Clin Cancer Res 2001;7:1299-1305.
    47.Koliopanos A,Friess H,Kleeff J,et al.Heparanase expression in primary and metastaticpancreatic cancer.Cancer Res 2001;61:4655-4659.
    48.Rohloff J,Zinke J,Schoppmeyer K,et al.Heparanase expression is a prognostic indicator for postoperative survival in pancreatic adenocarcinoma.Br J Cancer 2002;86:1270-1275.
    49.Kim AW,Xu X,Hollinger EF,et al.Human heparanase-1 gene expression in pancreatic adenocarcinoma.J Gastrointest Surg 2002;6:167-172.
    50.Friedmann Y,Vlodavsky I,Aingorn H,et al.Expression of heparanase in normal,dysplastic,and neoplastic human colonic mucosa and stroma.Evidence for its role in colonic tumorigenesis.Am J Pathol 2000;157:1167-1175.
    51.Maxhimer JB,Quiros RM,Stewart R,et al.Heparanase-1 expression is associated with the metastatic potential of breast cancer.Surgery 2002;132:326-333.
    52.Ginath S,Menczer J,Friedmann Y,et al.Expression of heparanase,Mdm2,and erbB2 in ovarian cancer.Int J Oncol 2001;18:1133-1144.
    53.Kosir MA,Wang W,Zukowski KL,et al.Degradation of basement membrane by prostate tumor heparanase.J Surg Res 1999;81:42-47.
    54.Gohji K,Okamoto M,Kitazawa S,et al.Heparanase protein and gene expression in bladder cancer.J Urol 2001;166:1286-1290.
    55. Gohji K, Hirano H, Okamoto M, et al. Expression of three extracellular matrix degradative enzymes in bladder cancer. Int J Cancer 2001; 95: 295-301.
    56. Bitan M, Polliack A, Zecchina G, et al. Heparanase expression in human leukemias is restricted to acute myeloid leukemias. Exp Hematol 2002; 30: 34-41.
    57. Pikas DS, Li JP, Vlodavsky I, et al. Substrate specificity of heparanases from human hepatoma and platelets. J Biol Chem 1998; 273:18770-18777.
    58. Vlodavsky I, Fuks Z, Bar-Ner M, et al. Lymphoma cell-mediated degradation of sulfated proteoglycans in the subendothelial extracellular matrix: relationship to tumor cell metastasis. Cancer Res 1983; 43: 2704-2711.
    59. Kurokawa H, Katsube K, Podyma KA, et al. Heparanase and tumor invasion patterns in human oral squamous cell carcinoma xenografts. Cancer Sci 2003; 94: 277-285.
    60. Quiros RM, Kim AW, Maxhimer J, et al. Differential heparanase-1 expression in malignant and benign pheochromocytomas. J Surg Res 2002; 108: 44-50.
    61. Rohloff J, Zinke J. Heparanase expression is a prognostic indicator for postoperative survival in pancreatic adenocarcinoma. Ann Oncol 2003, 14(10): 1505.
    62. Miao HQ, Elkin M, Aingorn, et al. Inhibition of heparanase activity and tumor metastasis by laminarin sulfate and synthetic phosphorothioate oligodeoxynucleotides. Int J Cancer 1999; 83: 424-431.
    63. Parish CR, Freeman C, Brown KJ, et al. Identification of sulfated oligosaccharide-based inhibitors of tumor growth and metastasis using novel in vitro assays for angiogenesis and heparanase activity. Cancer Res 1999; 59: 3433-3441.
    64. Bentolila A, Vlodavsky I, Ishai-Michaeli R, et al. Poly (N-acrylamino acids): a new class of biologically active polyanions. J Med Chem 2000; 43: 2591-2600.
    65. Marchetti D, Denkins Y. Brain-metastatic melanoma: a neurotrophic perspective. Pathol Oncol Res 2003; 9(3): 147.
    66. Sasaki M, Ito T. Erythromycin and clarithromycin modulation of growth factor-induced expression of heparanase mRNA on human lung cancer cells in vitro. Mediators Inflamm 2001; 10(5): 259.
    67. Marchetti D, Li J, Shen R. Astrocytes contribute to the Brain metasitatic specificity of melanoma cells by producing heparanase. Cancer Res 2000; 60: 4767-4770.
    68. Pillarisetti S, Paka L, Sasaki A, et al. Endothelial cell heparanase modulation of lipoprotein lipase activity. Evidence that heparin sulfate oligosaccharide is an extracellular chaperone. J Biol Chem 1997; 272:15753-15759.
    69. Gohji K, Katsuoka Y, Okamoto M, et al. Human heparanase: roles in invasion and metastasis of cancer. Hinyokika Kiyo 2000; 46: 757-762.
    70. Xu X, Rao G, Quiros RM, et al. In vivo and in vitro degradation of heparan sulfate (HS) proteoglycans by HPR1 in pancreatic adenocarcinomas. Loss of cell surface HS suppresses fibroblast growth factor 2-mediated cell signaling and proliferation. J Biol Chem 2007; 282: 2363-2373.
    71. Ohtawa Y, Naomoto Y, Shirakawa Y, et al. The close relationship between heparanase and cyclooxygenase-2 expressions in signet-ring cell carcinoma of the stomach. Hum Pathol 2006; 37: 1145-1152.
    72. Goldshmidt O, Zcharia E, Cohen M, et al. Heparanase mediates cll adhesion independent of its enzymatic activity. FASEB J 2003; 17: 1015-1025.
    73. Kuniyasu H, Chihara Y, Kubozoe T, et al. Co-expression of CD44v3 and heparanase is correlated with metastasis of human colon cancer. Int J Mol Med 2002; 10: 333-337.
    74. Zetser A, Bashenko Y, Edovitsky E, et al. Heparanase induces vascular endothelial growth factor expression: correlation with p38 phosphorylation levels and Src activation. Cancer Res 2006; 66: 1455-1463.
    75. Zhang Y, Wang Y, Fu Z, et al. Heparanase, a key target for gene therapy against human malignancies. Scientific World Journal 2007; 7: 1965-1967.
    76. Mckenzie EA. Heparanase: a target for drug discovery in cancer and inflammation. Br J Pharmacol 2007; 151: 1-14.
    77. Marchetti D, Reiland J.Inhibition of heparanase activity and heparanase-induced angiogenesis by suramin analogus. Int J Cancer 2003; 104(2): 167.
    78. Zhang Y, Li L, Wang Y. Downregulating the expression of heparanase inhibits the invasion, angiogenesis and metastasis of human hepatocellular carcinoma. Biochem Biophys Res Commun 2007; 358: 124-129.
    79. Jingting C, Yangde Z, Yi Z, et al. Heparanase expression correlates with metastatic capability in human choriocarcinoma. Gynecol Oncol 2007; 107: 22-29.
    80. Zammit SC, Ferro V, Hammond E, et al. Enantiospecific synthesis of the heparanase inhibitor(+)-trachyspic acid and stereoisomers from a common precursor. Org Biomol Chem 2007; 5: 2826-2834.
    81. Yang Y, Macleod V, Dai Y, et al. The syndecan-1 heparan sulfate proteoglycan is a viable target for myeloma therapy. Blood 2007; 110: 2041-2048.
    82. Miao HQ, Liu H, Navarro E, et al. Development of heparanase inhibitors for anticancer therapy. Curr Med Chem 2006; 13: 2101-2111.
    83. Ferro V, Dredge K, Liu L, et al. PI-88 and novel heparan sulfate mimetics inhibit angiogenesis. Semin Thromb Hemost 2007; 33: 557-568.
    84. Hostettler N, Naggi A, Torri G, et al. P-selectin-and heparanase-dependent antimetastatic activity of non-anticoagulant heparins. FASEB J 2007; 21: 3562-3572.
    85. Wu XZ, Chen D. Effects of sulfated polysaccharides on tumour biology. West Indian Med J 2006; 55: 270-273.
    86. Xu X, Ding J, Rao G, et al. Estradiol induces heparanase-1 expression and heparan sulphate proteoglycan degradation in human endometrium. Hum Reprod 2007; 22: 927-937.
    87. Piccolo P, Iqbal O, Demir M, et al. Global anticoagulant effects of a novel sulfated pentomanan oligosaccharide mixture. Clin Appl Thromb Hemost 2001; 7: 149-152.
    88. Khachigian LM, Parish CR. Phosphomannopentaose sulfate(PI-88): Heparan sulfate mimetic with clinical potential in multiple vascular pathologies. Cardiovasc Drug Rev 2004; 22(1): 1.
    89. Basche M, Gustafson DL, Holden SN, et al. A phase Ⅰ biological and pharmacologic study of the heparanase inhibitor PI-88 in patients with advanced solid tumors. Clin Cancer Res 2006; 12: 5471-5480.
    90. Zhao H, Liu H, Chen Y, et al. Oligomannurarate sulfate, a novel heparanase inhibtor simultaneously targeting basic fibroblast growth factor, combats tumor angiogenesis and metastasis. Cancer Res 2006; 66: 8779-8787.
    91. Saiki I, Murata J, Nakajima M, et al. Inhibition by sulfated chitin derivatives of invasion through extracellular matrix and enzymatic degradation by metastatic melanoma cells. Cancer Res 1990; 50: 3631-3637.
    92. Mishima T, Murata J, Toyoshima M, et al. Inhibition of tumor invasion and metastasis by calcium spirulan (Ca-SP), a novel sulfated polysaccharide derived from a blue-green alga, Spirulina platensis. Clin Exp Metastasis 1998; 16: 541-550.
    93. Rosenthal MA, Rischin D, McArthur G, et al. Treatment with the novel anti-angiogenic agent PI-88 is associated with immunemediated thrombocytopenia. Ann Oncol 2002;13:770-776.
    94. Liu XY, Fang H, Yang ZG. Construction of heparanase gene-targeted small interfering RNA and its gene silencing effect. Zhejiang Da Xue Xue Bao Yi Xue Ban 2007; 36: 581-587.
    95. Zhang Y, Wang ZN, Zhang X, et al. Inhibitory effect of siRNA on heparanase expression and invasion ability of gastric cancer cells: an vitro experiment. Zhonghua Yi Xue Za Zhi 2007; 87: 1717-1720.
    96. Zhang ZH, Chen Y, Zhao HJ, et al. Silencing of heparanase by siRNA inhibits tumor metastasis and angiogenesis of human breast cancer in vitro and in vivo. Cancer Biol Ther 2007; 6: 587-595.
    97. Uno F, Fujiwara T, Takata Y, et al. Antisense-mediated suppression of human heparanase gene expression inhibits pleural dissemination of human cancer cells. Cancer Res 2001; 61: 7855-7860.
    98.Edovitsky E,Elkin M,Zcharia E,et al.Heparanase gene silencing,tumor invasiveness,angiogenesis,and metastasis.J Natl Cancer Inst 2004;96:1219-1230.
    99.张友磊,傅志仁,张军等.乙酰肝素酶反义寡核苷酸对人乳腺癌细胞株MDA435侵袭力的抑制作用.中华医学杂志2003;83:204-207.
    100.Gingis-Velitski S,Ishai-Michaeli R,Vlodavsky I,et al.Anti-heparanase monoclonal antibody enhances heparanase enzymatic activity and facilitates wound healing.FASEB J 2007;21:3986-3993.
    101.Myler HA,Lipke EA,Rice EE,et al.Novel heparanase-inhibiting antibody reduces neointima formation.J Biochem 2006;139:339-345.
    102.Schirmacher V,F(o|¨)rg O,Dalemans W,et al.Intra-pinna antitumor vaccination with self-replicating infectious RNA or with DNA encoding a model tumor antigen and a cytokine.Gene Ther 2000;7:1137-1147.
    103.Cai YG,Fang DC,Chen L,et al.Immune response of heparanase gene modified dendritic cell-based vaccine on gastric cancer cells:Zhonghua Yi Xue Za Zhi 2006;86:3122-3127.
    104.Cai YG,Fang DC,Chen L,et al.Dendritic cells reconstituted with a human heparanase gene induce potent cytotoxic T-cell responses against gastric tumor cells in vitro.Tumour Biol 2007;28:238-246.
    105.Kussie PH,Hulmes JD,Ludwig DL,et al.Cloning and functional expression of a human heparanase gene.Biochem Biophys Res Commun 1999;261:183-187.
    106.赵坡,吕亚莉,钟梅等.结肠直肠癌端粒酶、肝素酶表达升高与预后的关系.癌症 2001:20:624-627.
    107.Shafat I,Zcharia E,Nisman B,et al.An ELISA method for the detection and quantification of human heparanase.Biochem Biophys Res Commun 2006;341:958-963.
    108.Pang RW,Poon RT.From molecular biology to targeted therapies for hepatocellular carcinoma:the future is now.Oncology 2007;72 Suppl 1:30-44.
    109. Irony-Tur-Sinai M, Vlodavsky I, Ben-Sasson SA, et al. A synthetic heparin-mimicking polyanionic compound inhibits central nervous system inflammation. J Neurol Sic 2003; 206: 49-57.
    110. Benezra M, Ishai-Michaeli R, Ben-Sasson SA, et al. Structure-activity relationships of heparin-mimicking compounds in induction of bFGF release from extracellular matrix and inhibition of smooth muscle cell proliferation and heparanase activity. J Cell Physiol 2002; 192: 276-285.
    111. Francis DJ, Parish CR, McGarry M, et al. Blockade of vascular smooth muscle cell proliferation and intimal thickening after balloon injury by the sulfated oligosaccharide PI-88: phosphomannopentaose sulfate directly binds FGF-2, blocks cellular signaling, and inhibits proliferation. Circ Res 2003; 92: e70-e77.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700