用户名: 密码: 验证码:
柱型苹果生长特性的细胞学与分子生物学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
树型改良是苹果分子育种的重要方向。苹果生长习性直接影响树型发育及开花结果能力。柱型苹果因其节间短,分枝少,萌芽率高的生长习性而成为超高密植栽培的重要资源。研究与柱型苹果生长习性有关的细胞学和分子生物学对于柱型苹果资源的开发和利用具有重要意义。本研究旨在揭示柱型苹果与普通型苹果在细胞学、对激素的敏感性及相关生理指标的差异,并通过RACE方法克隆赤霉素信号转导途径的DELLA蛋白基因,利用实时荧光定量PCR分析DELLA蛋白基因在柱型与普通型苹果生长发育中的表达模式。研究结果如下:
     1.对叶片结构和叶绿体超微结构观察发现,柱型苹果叶片栅栏组织每一层内的细胞大小不等,细胞排列相对杂乱,各层细胞之间相互交错,层与层之间分界线不明显;而普通型苹果叶片栅栏组织每一层内的细胞大小相对一致,细胞排列整齐紧密,各层之间分界线明显。柱型苹果的叶片总厚度、栅栏组织厚度和栅海比均显著高于普通型苹果。柱型苹果上表皮细胞表面的褶皱明显多于普通型苹果,表皮细胞隆起的高度较高。柱型苹果的气孔密度显著高于普通型。柱型苹果叶绿体内基粒或基质片层与叶绿体长轴方向不平行,基粒片层排列不规则,片层数相对较少;而普通型苹果叶绿体内的基粒或基质片层与叶绿体长轴方向平行排列,基粒片层排列整齐致密,片层数量相对较多。
     2.柱型苹果对GA3、BR和IAA三种激素的敏感性既不属于激素缺陷型也不属于激素不敏感型。柱型苹果在喷施GA3150mg/L时,新梢的敏感性最强。喷施不同浓度的BR在一定程度上能够促进柱型苹果新梢的增长,喷施不同浓度的IAA在一定程度上抑制了新梢的增长。在同一生长季节内,柱型苹果和普通型苹果之间的GA3、ZT、IAA和ABA四种激素的绝对含量差异不显著,两者之间的GA3/ABA、ZT/ABA、IAA/ABA比值差异也不显著。
     3.外源GA3能明显促进柱型苹果节间α淀粉酶和POD活性的提高,但抑制SOD活性。外源GA3处理初期,柱型苹果节间GA3、ZT和IAA含量呈现先降后升再降的趋势,而ABA含量变化规律为先升后降再升的趋势。外源GA3浓度为150mg/L或200mg/L时,GA3/ABA、ZT/ABA、IAA/ABA的比值相对较高,对新梢的生长促进作用较大。
     4.用RACE方法克隆得到柱型苹果“鲁加5号”的两个编码DELLA蛋白的基因MdGAI1和MdGAI2的cDNA全长。MdGAI1基因的cDNA全长序列为2489bp,编码635个氨基酸,蛋白质等电点为5.30,分子量为69734.6;MdGAI2基因的cDNA全长序列为2274bp,编码639个氨基酸,蛋白质等电点为5.26,分子量为70235.28。MdGAI1和MdGAI2基因的核酸序列和氨基酸序列均与其它植物具有较高的同源性,在N端具有保守氨基酸结构域DELLA和VHYNP,在C端存在保守的氨基酸结构域VHVID和SAW。
     5.实时荧光定量PCR分析结果表明,在春季、夏季和秋季三个新梢生长时期,无论是柱型还是普通型苹果,新梢顶端的MdGAI1基因均有一定量的表达。同一生长时期内,3个柱型苹果的MdGA1I基因相对表达量均高于3个普通型苹果。春季新梢生长初期,3个柱型苹果节间MdGAI1基因的相对表达量均高于3个普通型苹果。在“鲁加5号”苹果的种子、叶芽、花芽、花、茎尖、节间和幼果中,MdGAII基因均能表达,但不同器官中的表达量存在差异。MdGAI1基因在苹果果实发育初期表达量最高,相对表达量为1.55,是种子发芽后表达量0.61的两倍多。种子萌发后,MdGAI1基因的表达量明显下降;花朵开放后,MdGAI1基因的表达量也随之下降;在整个生长季节中,春梢、夏梢和秋梢中MdGAI1基因的表达量比较稳定。
The tree form improvement of apple is one of important targets of molecular breeding. The growing habit can directly affect the tree form, flowering and fruit-setting ability. Columnar apple is believed to be an ideal variety resource for high density planting due to its particular growing habit such as short internodes, few branching and high bud burst rate. In this paper, the anatomical structure and chloroplast ultra structure of columnar and standard apples were studied using paraffin section method, scanning electronic microscope and transmission electronic microscope. The sensitivity to different hormones and physiological differences between columnar and standard apples were also evaluated. The DELLA protein genes related to gibberellins signaling transduction pathway were cloned using RACE and the expression patterns were showed by real time PCR. The results were as follows:
     1. The size of palisade tissue cells within the same layer of columnar apple was different and its array was irregular. The cells of different layers were intervened each other, and the border of different layers was not clear. The size of palisade tissue cells within the same layer of standard apple was equal and its array was quite regular and close together. The border of different layers was obvious to distinguish. The leaf total thickness, palisade tissue thickness and the ratio of palisade tissue thickness and spongy tissue thickness of columnar apple were obviously higher than those of standard apple. There were more wrinkles on the surface of the upper epidermal cells of columnar apple and the bulges of epidermal cells were higher compared with standard apple. There were no obvious difference for the length of stomata between columnar apple and standard apple, but the stomata density of columnar apple was obviously higher and its stomata width was shorter than those of standard apple. The grana or stroma lamellae of chloroplast of columnar apple were not parallel to the long axis of the chloroplast, grana lamellae were arrayed irregularly and the number of chloroplast lamellae was small. Whereas grana or stroma lamellae of standard apple were parallel to the long axis of the chloroplast, grana lamellae were arrayed regular and closely and the number of chloroplast lamellae were relatively more than those of columnar apple.
     2. According to the sensitivity to GA3, BR and IA A, the columnar apple was neither hormone defective nor hormone insensitive type. The new shoots were mostly sensitive to the spray of GA3 at 150 mg/L. Spray of BR at different concentrations could promote shoot growth of columnar apple, whereas IAA could inhabit the growth of the new shoots. During the period of same growing season, there were no obviously differences of the absolute contents of GA3, ZT, IAA and ABA and the ratios of GA3/ABA, ZT/ABA, IAA/ABA between columnar and standard apples.
     3. Exogenous GA3 could promote the activities of a amylase and POD, and inhibit the activity of SOD in the internodes of columnar apple. After spraying GA3 at the early stage the contents of GA3, ZT and IAA in the internodes of columnar apple showed a changing tendency as being decreased firstly, being increased then and being decreased finally. But the changing tendency of ABA contents was different, that is, being increased firstly, being decreased then and being increased finally. Higher concentration of GA3 (150mg/L or 200mg/L) could obviously promote the lengthening of the new shoots and was associated with the higher ratios of GA3/ABA, ZT/ABA and IAA/ABA.
     4. Full-length sequences of two genes encoding DELLA proteins named MdGAI1 and MdGAI2 were obtained from columnar apple "Lujia No.5" by means of RACE. The full length sequence of MdGAI1 was 2489bp, encoding 635 amino acids, and the full length sequence of MdGAI2 was 2274bp, encoding 639 amino acids. Their nucleic acid sequences and amino acid sequences were highly homologous with those of other plants. Sequence analysis of the products of the MdGAI1 and MdGAI2 indicated that they shared a highly conserved N terminus that contained two recognizable motifs DELLA and VHYNP, and a highly conserved C terminus that contained two recognizable motifs VHVID and SAW.
     5. Real-time quantitative PCR analysis showed that MdGAIl was moderately expressed in shoot apices of columnar and standard apples during the spring, summer and autumn growing season. In the same season, the MdGAI1 of three cultivars of columnar apple were expressed at higher level than that of three cultivars of standard apple. In the early spring, the MdGAI1 are expressed at higher levels in internodes of three cultivars of columnar apple compared with that of standard apple. MdGAI1 was moderately expressed in different tissues and organs at various developmental stages of columnar apple "Lujia No.5", with highest level in early stage of fruit development, the relative expression was 1.55, twice more than that of germinating seeds (0.61). After seeds germination and flower blooming, the relative levels of MdGAI1 gene expression were significantly decreased. During the whole growing season, the MdGAI1 gene of shoot apices were expressed stably.
引文
蔡永萍,李玲,林毅,李合生,骆炳山.2004.霍山三种石斛的内源GA、 ABA含量对茎高生长的影响.激光生物学报,13(5):345-348
    蔡志全,齐欣,曹坤芳.2004.七种热带雨林树苗叶片气孔特征及其可塑性对不同光照强度的响应.应用生态学报,15,201-204
    初庆刚,曹玉芳,孙成虎,张秀芬.1995.矮樱桃茎叶矮化性状的解剖研究.莱阳农学院学报,12(4):237-241
    代庆海.2008.矮生西洋梨离体保存及矮化机理研究.青岛:青岛农业大学硕士论文
    戴洪义,沈德绪,林伯年.1987.“杭青”梨试管苗移栽前后叶片与根的形态结构之扫描电镜观察.莱阳农学院学报,2:38-41
    戴洪义,王彩虹,迟斌,祝军,王然,李贵学,庄丽丽.2003.柱型苹果品种选育研究.果树学报,20(2):79-83
    戴洪义,王善广,于士梅,王然,于秀敏.1998.柱型苹果引种研究.果树科学,15(1):13-19
    戴洪义,王善广,于士梅,王然.1994.柱型苹果的生物学特性.园艺学进展.北京:中国农业出版社
    郝再斌,苍静,徐超.2002.植物生理实验技术.哈尔滨:哈尔滨出版社
    何涛,吴学明,张改娜,王学仁,贾敬芬.2005.不同海拔火绒草叶绿体超微结构的比较.云南植物研究,27(6):639-643
    何祖华,李德葆.1994.不同生育期水稻株高基因对的敏感性及对内源激素含量的调节.植物生理学通讯,30:170-174
    李春雨.自然突变基因分离体系的初步建立与苹果柱型突变体类型的鉴定.北京:中国农业大学博士论文
    聂华堂,钟广炎.1991.叶片过氧化物酶活性作为柑桔短枝型品系预选指标初探.果树科学.8(1):46-48
    史宝胜,徐继忠,马宝熴,王立英,李明哲.1996.几种苹果矮化砧木枝条与叶片的解剖结构研究.河北林果研究,15(4):334-338
    宋平,曹显祖,吴永宏,朱晓红,梁建生.1996.赤霉素结合蛋白对水稻矮生性的调控.作物学报,22:652-656
    宋平,高红胜,曹显祖,谢迎兰.1998.不同釉稻品种的矮生性与内源水平及其结合蛋白的关系.西北植物学报,18:380-385
    谈心,杨宏,乔定君,马欣荣.2008.干扰烟草GA20-氧化酶siRNA植物表达载体的构建及矮化烟草的产生.应用与环境生物学报,14(1):48-52
    唐秀芝,张维强.1991.苹果种质资源矮生基因型的研究.核农学报,5(1):44-50
    田义轲.2004.苹果柱型基因作图及贝壳杉烯氧化酶基因cDNA片段克隆.陕西.西北农林科技大学博士学位论文
    王彩虹,田义轲,初庆刚,张晓芹,孙太娟.2005.柱型苹果叶片的解剖学研究.果树学报,22(4):311-314
    王彩虹,王倩,戴洪义,贾建航,王斌,束怀瑞.2001.与苹果柱型基因(co)相关的AFLP标记片段的克隆.果树学报,18(4):193-195
    王彩虹,王倩,戴洪义,田义轲,贾建航,束怀瑞,王斌.2002.苹果柱型基因Co的一个AFLP标 记的SCAR转换.园艺学报,29(2):100-104
    王茂兴.1994.芭蕾苹果超紧凑性状的激素机制研究.北京:北京农业大学硕士论文
    王绍辉,张福墁.2003.黄瓜叶表面特性与生态适应性.生态学报,23(1):199-204
    韦存虚,王建军,王建波,周卫东,孙国荣,梁建生.2006.Na2CO3胁迫对星星草叶肉细胞超微结构的影响.生态学报,26(1):108-114
    徐继忠,史宝胜,郭润芳,李晓东.苹果不同矮砧与其对应中间砧植株POD、IOD酶活性的研究.2002.中国农业科学,35(4):415-420
    杨传友,史金玉,杜欣阁,董会.1998.苹果叶片气孔的研究.山东农业大学学报,29(1):8-14
    虞慧芳,曹家树,王永勤.2002.植物矮化突变体的激素调控.生命科学,14(2):85-88
    战吉成,黄卫东,王秀芹,王利军.2005.弱光下生长的葡萄叶片蒸腾速率和气孔结构的变化.植物生态学报,29(1):26-31
    张勇,李光晨,李正应.1995.芭蕾苹果枝条和叶片特性研究.北京农业大学学报,21(3):275-279
    张上隆,陈昆松.1994.园艺学进展.北京:中国农业出版社
    张维强,唐秀芝.1987.矮生型苹果苗的预选指标.植物学报,29(4):377-400
    张文,朱元娣,王涛,胡建芳,李光晨.2007.芭蕾苹果新品种金蕾1号和金蕾2号的选育.中国果树,1:1-3
    张以顺,黄霞,陈云风.2009.植物生理学实验教程.北京:高等教育出版社
    张玉兰,杨焕芝.1999.枝、叶解剖构造、过氧化物酶活性与山楂属种、株型生长势的关系.内蒙古农牧学院学报,20(1):46-51
    张志华,刘新彩,王红霞,高仪,赵月平.核桃IOD和POD酶活性与生长势的关系.2006.园艺学报,33(2):229-232
    周蕴薇.2006.翠南报春叶片细胞超微结构对低温的适应性变化.园艺学报,33(6):1361-1364
    朱元娣,孙凌霞,李春雨,张文,王涛.2007.利用cDNA-AFLP技术研究苹果柱型与非柱型cDNA的差异表达.园艺学报,34(2):283-288
    朱元娣,袁丽慧,李光晨.1999.植物生长调节剂对芭蕾苹果组培苗内源激素含量的影响.园艺学报,26(4):259-260
    朱元娣.2008.柱型苹果异戊烯基转移酶ipt基因克隆与功能分析.北京.中国农业大学博士论文
    祝军,戴洪义.2005.拥有我国自主产权的6个苹果新品种.落叶果树,37,1:20-21
    祝军,李光晨,王涛,张文,赵玉军.2000.威赛克柱型苹果与旭的AFLP多态性研究.园艺学报,27(6):447-448
    Abbasi F, Onodera H, Toki S, Tanaka H, Komatsu S.2004. OsCDPK 13, a calcium-dependent protein kinase gene from rice, is induced by cold and gibberellin in rice leaf sheath. Plant Mol. Biol.55: 541-552
    Achard P, Baghour M, Chappie A, Hedden P, Van Der Straeten D, Genschik P, Moritz T, Harberd N P. 2007a. The plant stress hormone ethylene controls floral transition via DELLA-dependent regulation of floral meristem-identity genes. Proc Natl Acad Sci USA.104:6484-6489.
    Achard P, Liao L, Jiang C, Desnos T, Bartlett J, Fu X, Harberd N P.2007b. DELLAs contribute to plant photomorphogenesis. Plant Physiol,143:1163-1172.
    Achard P, Cheng H, De Grauwe L, Decat J, Schoutteten H, Moritz T, Van D, Straeten D, Peng J, Harberd N P.2006. Integration of plant responses to environmentally activated phytohormonal signals. Science 311:91-94
    Achard P, Vriezen W H, Van D, Straeten D, Harberd N P.2003. Ethylene regulates Arabidopsis development via the modulation of DELLA protein growth repressor function. Plant Cell,15: 2816-2825
    Aeschbacher R A, Hauser M T, Feldmann K A, Benfey P N.1995. The SABRE gene is required for normal cell expansion in Arabidopsis. Genes & Development,9:330-340
    Alabadi D, Gil J, Blazquez M, Garcia-Martinez J.2004. Gibberellins repress photomorphogenesis in darkness. Plant Physiol,134,1050-1057
    Alabadi D, Gallego-Bartolom'e J, Orlando L, Garc'ia-C'arcel L, Rubio V, Martinez C et al.2008. Gibberellins modulate light signaling pathways to prevent Arabidopsis seedling de-etiolation in darkness. Plant J.53,324-335
    Ashikari M, Sasaki A, Ueguehi-Tanaka M, Itoh H, Nishimura A, Datta S, Ishiyama K, Saito T, Kobayashi M, Khush G, Kitano H, Matsuoka M.2002. Loss-of-function of a rice gibberellin biosynthetic gene, GA20oxidase(GA20ox-2), led to the rice "Green Revolution". Breed Sci,52:143-150
    Ashikari M, Wu J Z, Yano M, Sasaki T, Yoshimura A.1999. Rice gibberellin-insensitive dwarf mutant gene Dwarf1 encode the alpha-subunit of GTP-binding protein. Proc Natl Acad Sci USA,96,18: 10284-10289
    Blazek J.1992. Segregation and general evaluation of spur type or compact growth habits in apple. Acta Horticulture,317:71-75
    Bolle C, Koncz C, Chua N-H.2000. PAT1, a new member of the GRAS family, is involved in phytochrome A signal transduction.Genes Dev.,14:1269-1278
    Boss P K, Thomas M R.2002. Association of dwarfism and floral induction with a grape "green revolution" mutation. Nature,1416:847-850
    Bouvier F, Harlingue D, Suire A, Backhaus C, Camara RA.1998. Dedicated roles of Plastid transketolases during the early onset of isopreneoid biogenesiss in peppers fruits. Plant Physiol,117:1423-1431
    Braniste N, Militaru M, Budan S.2008. Two scab resistant columnar apple cultivars. Acta Horticulturae, 767:351-354
    Bulley S M, Wilson F M, Hedden P, Phillips A L, Croker S J, James D J.2005. Modification of gibberellin biosynthesis in the grafted apple scion allows control of tree height independent of the rootstock. Plant BiotechnolJ.3(2):215-223
    Callis J, Ho T H D.1983. Multiple molecular forms of the gibberellin-induced a-amylase from the aleurone layers of barley seeds. Archives of Biochemistry and Biophysics,224:224-234
    Campa A.1991. Biological roles of plant peroxidases, known and potential function, in:25-50 In:J. Everse, K.E. Everse, and M. B. Grisham(editors). Peroxidases in chemistry and biology. Vol.11.CRC Press, Boca Raton, Florida, USA.
    Cao J S,Yu H F,Ye W Z,Yu X L, Liu L C,Wang Y Q, Xiang X.2005. Identification and characterization of a gibberellin-relateddwarf mutant in pumpkin(Cucurbita moschata). Journal of Horticultural Science and Biotechnology,80:29-31
    Carrera E, Bou J, Garcia-Martinez JL, Prat S.2000. Changes in GA20-oxidase gene expression strongly affect stem length, tuber induction and tuber yield of potato plants. Plant J,22:247-256
    Carrera E, Jackson S D, Prat S.1999. Feedback control and diurnal regulation of gibberellin 2o-oxidase transcript levels in potato. Plant Physiol,119:765-773
    Chandler P M, Marion-poll A, Ellis M, Gubler F.2002. Mutants at the slender locus of barley cv Himalaya:molecular and physiological characterization. Plant Physiol,129:181-190
    Come D, Thevenot C.1982. Environmental control of embryo dormancy and germination. In:Khan AA(ed) The physiology and biochemistry of seed development, dormancy and germination. Elsevier, Amsterdam,271-279
    Dai M, Zhao Y, Ma Q, Hu Y, Hedden P, Zhang Q, Zhou D.2007. The rice YAB1 gene is involved in the feedback regulation of gibberellin metabolism. Plant Physiol,144:380-390
    Dathan N, Zaccaro L, Esposito S, Isernia C, Omicihnski J G, Riccio A, Pedone C, Blasio B D, Fattorusso R, Pedone P V.2002. The Arabidopsis SUPERMAN protein is able to specifically bind DNA through its single cys2-his2 zinc finger motif. Nucleic Acids Research,30:4945-4951
    De Lucas M, Davi'ere JM, Rodr'iguez-Falcon M, Pontin M, Iglesias-Pedraz JM, Lorrain S et al.2008. A molecular framework for light and gibberellin control of cell elongation. Nature,451:480-484
    Dharmasiri N, Dharmasiri S, Estelle M.2005. The F-box protein TIR1 is an auxin receptor. Nature,435: 441-445
    Di Laurenzio L, Wysocka-Diller J, Malamy J E, Pysh L, Helariutta Y, Freshour G, Hahn M G, Feldmann K A, Benfey P N.1996. The SCARE-CROW gene regulates an asymmetric cell division that is essential for generating the radial organization of the Arabidopsis root. Cell,86:423-433
    Dill A, Jung H S, Sun T P.2001a. The DELLA motif is essential for gibberellin-induced degradation of RGA. Proc Natl Acad Sci USA,98:14162-14167
    Dill A, Sun T P.2001b. Synergistic de-repression of gibberellin signaling by removing RGA and GAI function in Arabidopsis thaliana. Genetics,159:777-785
    Dill A, Thomas S G, Hu J H, Steber C M, Sun T P.2004. The Arabidopsis F-box protein SLEEPY1 targets gibberellin signaling repressorsforgibberellin-induceddegradation. Plant ell,16:1392-1405
    Fagoaga C, Tadeo F R, Iglesias D J, Huerta L, Lliso 1, Vidal A M, Talon M, Navarro L, Garcia-Martinez J L, Pena L.2007. Engineering of gibberellin levels in citrus by sense and antisense overexpression of a GA 20-oxidase gene modifies plant architecture. J Exp Bol,58:1407-1420
    Fath A, Bethke P C, Jones R L.2001. Enzymes that scanvenge reactive oxygen species are down regulated prior to gibberellic acid-induced programmed cell death in barley aleurone. Plant Physiol,126:156-166
    Feng S, Martinez C, Gusmaroli G, Wang Y, Zhou J, Wang F et al.2008. Coordinated regulation of Arabidopsis thaliana development by light and gibberellins. Nature,451:475-479
    Fisher D V.1970. Spur strains of'Mclntosh'discovered in British Colombia. Fruit Var. Hort. Dig,24: 27-32
    Fleck B, Hardberd N P.2002. Evidence that the Arabidopsis nuclear gibberellin signaling protein GAI is not destabilised by gibberellin. Plant J,32:935-947
    Fleet C M, SUN T P.2005. A DELLA cate balance:the role of gibberellin in plant morphogenesis. Curr Opin Plant Biol,8:77-85
    Foster T, Kirk C, Jones W T, Allan A C, Espley R, Karunairetnam S, Rakonjac J.2007. Characterisation of the DELLA subfamily in apple(Malus×domestica Borkh). Tree Genet Genomes,3:187-197
    Fukazawa J, Sakai T, Ishida S,Yamaguchi I, Kamiya Y, Takahashi Y.2000. Repression of shoot growth, a bZIP transcriptional activator, regulates cell elongation by controlling the level of gibberellins. Plant Cell,12:901-915
    Fu X D, Harberd N P.2003. Auxin promotes arabidopsis root growth by modulating gibberellin response. Nature,.421:740-743
    Fu X., Richards D E, Fleck B, Xie D, Burton N, Harberd N P.2004. The Arabidopsis mutant sleepylgar2-1 protein, promotes plant growthby increasing the affinity of the SCFSLY1 E3 ubiquitin ligase for DELLA protein substrates. Plant Cell,16:1406-1418
    Fu X D, Sudhakar D, Peng J R, Richards D E, Christou P, Harberd N P.2001. Expression of Arabidopsis GAI in transgenic rice represses multiple gibberellin responses. The Plant Cell,13,1791-1802
    Gaspar T, Kevers C, Penel C, Greppin H, Reid D, Thorpe T.1996. Plant hormones and plant growth regulators in plant tissue culture,32:272-289
    Gomi K, Matsuoka M.2003. Gibberellin signalling pathway. Curr Opin Plant Biol,6:489-493
    Gomi K, Sasaki A, Itoh H, Ueguchi-Tanaka M, Ashikari M, KitanoH, Matsuoka M.2004. GID2, an F-box subunit of the SCF E3 complex, specifically interacts with phosphorylated SLR1 protein and regulates the gibberellin-dependent degradation of SLR1 in rice. Plant J,37:626-634
    Griffiths J, Murase K, Rieu I, Zentella R, Zhang Z L, Powers S J, Gong F, Phillips A L, Hedden P, Sun T P, Thomas S G.2006. Genetic characterization and functional analysis of the GID1 gibberellin receptors in Arabidopsis. Plant Cell,18:3399-3414
    Gubler F, Chandler P M, White R G, Llewellyn D J, Jacobsen J V.2002. GA signaling in barley aleurone cells:control of SLN1 and GAMYB expression. Plant Physiol,129:191-200
    Hartweck L M, Olszewski N E.2006. Rice GIBBERELLIN INSENSITIVE WARF1 is a gibberellin receptor that illuminates nd raises questions about GA signaling. Plant Cell,18(2):278-282
    Hedden P, Phillips A L.2000. Gibberellin metabolism:new insights revealed by the genes. Trends in Plant Science,5:523-530
    Hentrich W, Bergner C, Sembdner G.1985. Characterization of a gibberellin sensitive dwarf mutant of barly. Plant Growth Regulation,3:103-110
    Huang S S, Raman A S, Ream J E, Fujiwara H, Cerny R E, Brown S M.1998. Overexpression of 20-oxidase confers a gibberellin-overproduction phenotype in Arabidopsis. Plant Physiol,118:773-781.
    Hussain A, Cao D, Cheng H, Wen Z, Peng J.2005. Identification of the conserved serine/threonine residues important for gibberellin-sensitivity of Arabidopsis RGL2 protein. Plant J,44 (1):88-99
    Ikase L, Dumbravs R.2004. Breeding of columnar apple-trees in Latvia. Biologija,2:8-10
    Ikeda A, Ueguchi-Tanaka M, Sonoda Y, Kitano H, Koshioka M, FutsuharaY, MatsuokaM, Yamaguchi J. 2001. Slender Rice, a constitutive gibberellin response mutant, is caused by a null mutation of the SLRl gene, an ortholog of the height-regulating gene GAI/RGA/RHT/D8. Plant Cell,13:999-1010
    Itoh H, Ueguchi-Tanaka M, SatoY, Ashikari M, Matsuoka M.2002. The gibberllin signaling pathway is regulated by the appearance and disappearance of SLENDER RICE1 in nuclei. Plant Cell,14:57-70
    Itoh H, Sasaki A, Ueguchi-Tanaka M, Ishiyama K, Kobayashi M, Hasegawa Y, Minami E, Ashikari M, Matsuoka M.2005a. Dissection of the phosphorylation of rice DELLA protein, SLENDER RICE1. Plant Cell Physiol,46 (8):1392-1399
    Itoh H, Shimada A, Ueguchi-Tanaka M, Kamiya N, Hasegawa Y, Ashikari M, Matsuoka M.2005b. Over expression of a GRAS protein lacking the DELLA domain confers altered gibberellin responses in rice. Plant J,44 (4):669-679
    Iuchi S, Suzuki H, Kim YC, Iuchi A, Kuromori T, Ueguchi-Tanaka M, Asami T, Yamaguchi I, Matsuoka M, Kobayashi M, Nakajima M.2007. Multiple loss-of-function of Arabidopsis gibberellin receptor AtGID1s completely shuts down a gibberellin signal. Plant J.50,958-966
    Jasinski S, Piazza P, Craft J, Hay A, Woolley L, Rieu I, Phillips A, Hedden P, Tsiantis M.2005. KNOX action in Arabidopsis is mediated by coordinate regulation of cytokinin and gibberellin activities. Curr Biol,15:1560-1565
    Jiang C, Gao X, Liao L, Harberd N P, Fu X.2007. Phosphate starvation root architecture and anthocyanin accumulation responses are modulated by the gibberellin-DELLA signaling pathway in Arabidopsis.Plant Physiol,145:1460-1470.
    Kesley D F, Brown S K.1992.'McIntosh Wijicik'a columnar mutation of'Mclntosh'apple proving useful in physiology and breeding research. Fruit Varieties Journal 46(2):83-87
    Kenis K, Keulemans J.2007. Study of tree architecture of apple (Malusxdomestica Borkh.) by QTL analysis of growth traits. Molecular Breeding,19(3):193-208
    Kenis K, Keulemans J.2004. QTLs analysis of growth characteristics in apple. Acta Horticulturae,663: 369-374
    Keinski S, Leyser O.2005. The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature,435: 446-451
    King K, Moritz T, Harberd N.2001. Gibberellins are not required for normal stem growth in Arabidopsis thaliana in the absence of GAI and RGA. Genetics,159:767-776
    King RW, Mander LN, Asp.T, MacMillan CP, Blundell CA, Evans LT.2008. Selective deactivation of gibberellins below the shoot apex is critical to Xowering but not to stem elongation of Lolium. Mol Plant,1:295-307
    Ko J H, Yang S H, Han KH.2006. Upregulation of an Arabidopsis RINGH2 gene, XERICO, confers drought tolerance through increased abscisic acid biosynthesis. Plant J,47:343-355.
    Kurosawa E.1926. Experimental studies on the nature of the substance secreted by the "bakanae" fungus. Nat Hist Soc Formos,16:213-227
    Lane W D, Loohey Ne.1982. A selective medium for growth of compact (dwarf) mutants of apple. Theor Appl Genet,61:219-223
    Lapins K O.1976. Inheritance of compact growth type in apple. J Amer Soc Hort Sci,101:133-135
    Lawson D M, Hemmat M, Weeden N F.1995. The use of molecular markers to analyze the inheritance of morphological and developmental traits in apple. Journal of the American Society for Horticultural Science,120:532-537
    Lee S C, Cheng H, King K E, Wang W F, He Y W, Hussain A, Lo J, Harberd N P, Peng J R.2002. Gibberellin regulates Arabidopsis seed germination via RGL2, a GAI/RGA-like gene whose expression is up-regulated following imbibition. Genes Dev,16:646-658
    Li X, Qian Q, Fu Z M, Wang Y, Xiong G, Zeng D L, Wang X Q, Liu X F, Teng S, Hiroshi F, Yuan M, Luo D, Han B, Li J Y.2003. Control of tilling in rice. Nature,422:618-621
    Looney N E, Taylor J S, Pharis R P.1988. Relantionship of endogenous gibberellin and cytokinin levels in shoot tips to apical form in four strains of Mclntosh apple. Journal of American Society for Horticultural Science,113:395-398
    Ma L, Zhao H, Deng X W.2003. Analysis of the mutational effects of the COP/DET/FUS loci on genome expression profiles reveals their overlapping yet not identical roles in regulating Arabidopsis seedling development. Development,130:969-981
    MacMillan J.1987. Gibberellin-deficient mutans of maize and pea and the molecular action of gibberellins. In Hormone Action in Plant Development,73-87. Butterworths, London. ISBN 0-408-00796-6
    Magome H, Yamaguchi S, Hanada A, Kamiya Y, Oda K.2004. Dwarf and delayed-flowering 1, a novel Arabidopsis mutant deficient in gibberellin biosynthesis because of overexpression of a putative AP2 transcription factor. The Plant Journal,37:720-729
    Manuel R C, Narciso C, Luisa M L, Maldonado C, Hoeffler J F, Grosdemange C, Rohmer M, Boronat A. 2000. Genetic evidence of branching in the isoprenoid pathway for the production of isopentenyl diphosphate and dimethylallyl diphosphate in Escherichia coli. FEBs Letters,473:328-532
    Marin J A, Jones O P, Hadlow W C.1993. Micropropagation of columnar apple trees. Journal of Horticultural Science,68(2):289-297
    Matsushita A, Furumoto T, Ishida S, Takahashi Y.2007. AGF1, an AT-Hook protein, is necessary for the negative feedback of AtGA 3ox1 encoding GA 3-oxidase. Plant Physiol,143:1152-1162
    McSteen P, Leyser O.2005. Shoot branching. Annual Review of Plant Biology,56:353-374
    Meulenbroek B, Verhaegh J, Janse J.1999. Inhereitance studies with columnar type trees. Acta Horticulture,484:255-259
    Mori M, Nomura T, Ooka H, Ishizaka M,Yokota T, Sugimoto K, Okabe K, Kajiwara H, Satoh K,Yamamoto K, Hirochika H, Kikuchi S.2002. Isolation and characterization of a rice dwarf mutant with a defect in brassinosteroid biosynthesis. Plant Physiology,130:1152-1161
    Muangprom A, Thomas S G., Sun T P, Osborn T C.2005. A novel dwarfing mutation in a green revolution gene from Brassica rapa. Plant physiology,137:931-938
    Nakajima M, Shimada A, Takashi Y, Kim YC, Park S H, Ueguchi-Tanaka M, Suzuki H, Katoh E, Iuchi S, Kobayashi M, Maeda T, Matsuoka M, Yamaguchi I.2006. Identification and characterization of Arabidopsis gibberellin receptors. Plant J.46,880-889
    Oh E, Yamaguchi S, Hu J, Yusuke J, Jung B, Paik I et al.2007. PIL5, a Phytochrome-interacting bHLH protein, regulates gibberellin responsiveness by binding directly to the GAI and RGA promoters in Arabidopsis seeds. Plant Cell,19:1192-1208
    Olszewski N, Sun T P, Gubler F.2002. Gibberellin signaling:biosynthesis, catabolism and response pathways. Plant Cell,14:61-80
    Ongaro V, Leyser O.2008. Hormonal control of shoot branching. Journal of Experimental Botany,59(1): 67-74
    Peng J, Carol P, Richards D E, King K E, Cowling R J, Murphy G P, Harberd N P.1997. The Arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses. Genes Dev,11: 3194-3205
    Peng J, Richards D E, Hartley N M, Murphy G P, Devos K M, Flintham J E, Beales J.1999. Green revolution genes encode mutant gibberellin response modulators. Nature,400,256-261
    Phillips A L, Ward D A, Uknes S, Appleford N E J, Lange T, Kuttly A K, Gaskin P, Graebe J E, Hedden P. 1995. Isolation and expression of three gibberellin 20-oxidase cDNA clones from Arabidopsis. Plant Physiology,108:1049-1057
    Potter L, Fry S C.1993. Xyloglucan endotransglyeosylase activity in pea internodes. Plant Physiol,103: 235-241
    Qiao F, Yang Q, Wang C L, Fan Y L, Wu X F, Zhao K J.2007. Modification of plant height via RNAi suppression of OsGA20ox2 gene in rice. Euphytica,158:35-45
    Reid J B, Potts W C.1986. Internode length in Pisum. Two further mutants, lh and ls, with reduced gibberellin synthesis, and a gibberellin insensitive mutant lk.Physiologia Plantarum,66:417-426
    Rodri guez A A, Grunberg K A, Taleisnik E L.2002. Reactive oxygen species in the elongation zone of maize leaves are necessary for leaf extension. Plant Physiology,129:1627-1632
    Sakamoto T, Kamiya N, Ueguchi-Tanaka M, Iwahori S, Matsuoka M.2001. KNOX homeodomain protein directly suppresses the expression of a gibberellin biosynthetic gene in the tobacco shoot apical meristem. Genes Dev,15:581-590
    Schmitz G, Theres K.2005. Shoot and inflorescence branching. Current Opinion in Plant Biology,8: 506-511
    Schopfer P.2001. Hydroxyl radical-induced cell wall loosening in vitro and in vivo:implications for the control of enlongation growth. The Plant Journal,28:679-688
    Schumacher K, Schmitt T, Rossberg M, Schmitz G, Theres K.1999. The Lateral Suppressor (Ls) gene of tomato encodes a new member of the VHIID protein family.Proc. Natl. Acad. Sci. USA,96:290-295
    Seo M, Hanada A, Kuwahara A, Endo A, Okamoto M, Yamauchi Y et al.2006. Regulation of hormone metabolism in Arabidopsis seeds:phytochrome regulation of abscisic acid metabolism and abscisic acid regulation of gibberellin metabolism. Plant J,48:354-366
    Shim S W, Hahn E J, Paek K Y.2003. In vitro and ex vitro growth of grapevine rootstock'5BB'as influenced by number of air exchanges and the presence or absence of sucrose in culture media. Plant Cell Tissue and Organ Culture,75:57-62
    Shinnosuke K, Masashi F, Chikako H, Yamaguchi I, Sakamoto T, Kano-Murakami Y.1997. Decreased GA, content caused by the overexpression of OSH1 is accompanied by suppression of GA 20-oxidase gene expression. Plant Physiol,117:1179-1184
    Shinozaki K, Yamaguchi-Shinozaki K, Seki M.2003. Regulatory network of gene expression in the drought and cold stress responses. Curr.Opin. Plant. Biol,6:410-417
    Silverstone A L, Ciampaglio C N, Sun T P.1998. The Arabidopsis RGA gene encodes a transcriptional regulator repressing the gibberellin signal transduction. The Plant Cell,10:155-170
    Silverstone A L, Jung H S, Dill A, Kawaide H, Kamiya Y J, Sun T P.2001. Repressing a repressor: gibberellin-induced rapid reduction of the RGA protein in Arabidopsis. Plant Cell,13:1555-1566
    Steffens B, Wang J, SauLer M.2006. Interactions between ethylene, gibberellin and abscisic acid regulate emergence and growth rate of adventitious roots in deepwater rice. Planta.223:604-612
    Stoddart J L.1987. Genetic and hormonal regulation of stature. In Developmental Mutants in Higher Plants,155-180. Cambridge Univ. Press, Cambridge. ISBN 0-521-32844-6
    Stuurman J, Jaggi F, Kuhlemeier C.2002. Shoot meristem maintenance is controlled by a GRAS-gene mediated signal from differentiating cells. Genes Dev.,16:2213-2218
    Sun T P, Gubler F.2004. Molecular mechanism of gibberellin signaling in plants. Annu Rev Plant Biol,55: 197-223
    Takahashi T, Gasch A, Nishizawa N, Chun N H.1995. The DIMINUTO gene of Arabidopsis is involved in regulating cell elongation. Genes & Development,9:97-107
    The Arabidopsis Genome Initiative.2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature,408:796-815
    Thomas S G Sun T P.2004. Update on gibberellin signaling. A tale of the tall and the short. Plant Physiol, 135,668-676
    Tian Y K. Wang C H, Zhang J S, James C, Dai H Y.2005. Mapping Co, a gene controlling columnar phenotype of apple tree, with molecular markers. Euphytica,145:181-188
    Tobutt K R.1985. Breeding columnar apple at East Malling.-Acta Horticulturae,159:63-68
    Tyler L, Thomas S G Hu J H, Dill A, Alonso J M, Echer J R, Sun T P.2004. DELLA proteins and gibberellin-regulated seed germination and floral development in Arabidopsis. Plant Physiol,135: 1008-1019
    Ueguchi-Tanaka M., Ashikari M., Nakajima. M., Itoh H., Katoh E., Kobayashi M., Chow T Y, HsingY I., Kitano H., Yamaguchi I., and M a t s u o k a M.2005. GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin. Nature:437,693-698
    Ueguchi-Tanaka M, Nakajima M, Katoh E, Ohmiya H, Asano K, Ashikari M, Kitano H, Yamaguchi I, Matsuoka M.2007. Molecular interactions of a soluble gibberellin receptor, GID1, with a rice DELLA protein, SLR 1, and gibberellin. Plant Cell,19:2140-2155
    Varbanova A, Yamaguchi S, Yang Y, McKelvey K, Hanada A, Borochov R, Yu F, Jikumaru Y, Ross J, Cortes D et al.2007. Methylation of Gibberellins by Arabidopsis GAMT1 and GAMT2. Plant Cell,19: 32-45
    Veins M A.1987. Hormone receptor sites and the study of plant development. Hormone action in:Plant Hormones Receptors,53-61
    Vidal A M, Ben-Cheikh W, Talo'n M, Garcra-Martrnez J L.2003. Regulation of gibberellin 20-oxidase gene expression and gibberellin content in citrus by temperature and citrus exocortis viroid. Planta,217: 442-448
    Von Maltzahn K E.1957. Study of size differences in two strains of Cucurbita pepo L. Canadian Journal of Botany,35:809-843
    Vriezen W H, Achard P, Harberd N P, Van Der Straeten D.2004. Ethylene mediated enhancement of apical hook formation in etiolated Arabidopsis thaliana seedlings is gibberellin dependent. Plant J,37: 505-516
    Wang Y H, Li J Y.2006. Gene controlling plant architecture. Current Opinion in Biotechnology,17:1-7
    Watanabe M, Suzuki A, Komori S, Bessho H.2006. Effects of heading back pruning on shoot growth and IAA and cytokinins concentrations at bud burst of columnar-type apple trees. Journal of the Japanese Society for Horticultural Science,75:224-230
    Weeden N F-Hemmat M, Lawson D M.1994,-Development and application of molecular markders linkage maps in woody fruit crops. Euphytica,77:71-75
    Wen C K, Chang C.2002. Arabidopsis RGL1 encodes a negative regulator of gibberellin responses. Plant Cell,14:87-100
    Weston D E, Elliott R C, Lester D R, Ramean C, Reid JB, Murfet LC, Ross J J.2008. The pea DELLA proteins LA and CRY are important regulators of gibberellin synthesis and root growth. Plant Physiol, 147:199-205
    Willige B C, Ghosh S, Nill C, ZourelidouM, Dohmann E M N, Maier A, Schwechheimer C.2007. The DELLA domain of GA INSENSITIVE mediates the interaction with the GA INSENSITIVE DWARFIA gibberellin receptor of Arabidopsis. Plant Cell,19:1209-1220
    Wilson R N, Somerville CR.1995. Phenotypic suppression of the gibberellin-insensitive mutant (gai)of Arabidopsis. Plant Physiol,108:495-502
    Winkler R G, Freeling M.1994. Analysis of the autonomy of maize dwarf1 action in genetic mosaics. The Journal of Heredity,85(5):377-380
    Xiao J, Li H, Zhang J, Chen R, Zhang Y, Quyang B, Wang T, Ye Z.2006. Dissection of GA 20-oxidase members affecting tomato morphology by RNAi-mediated silencing. Plant Growth Regul,50:179-189
    Yamaguchi S.2008. Gibberellin metabolism and its regulation. Annu Rev Plant Biol,59:225-259
    Zhao X, Yu X, Foo E, Symons GM, Lopez J, Bendehakkalu KT et al.2007. A study of gibberellin homeostasis and cryptochromemediated blue light inhibition of hypocotyl elongation. Plant Physiol, 145,106-118
    Zentella R, Zhang ZL, Park M, Thomas SG, Endo A, Murase K et al.2007. Global analysis of DELLA direct targets in early gibberellin signaling in Arabidopsis. Plant Cell,19:3037-3057

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700