用户名: 密码: 验证码:
农药合理设计的分子基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
农业在我国的国民经济中占有很大的比重,而农药是保障农业生产的重要“武器”,然而越来越普遍的抗性问题使农药陷入一种十分不利的境地。如何对付已经出现的抗性问题,又如何进行反抗性农药分子设计将是一项非常艰巨的任务,农药分子合理设计是解决以上问题的有效方法之一。然而合理设计是一项系统工程,其中包括多个环节,比如类农药性研究、农药分了作用机制研究、农药抗性预测研究和新型农药分子设计等。如何针对以上的诸多环节,采用有效的方法,并最终发现潜在的新型农药分子先导化合物是合理设计的关键和目标。因为提高新型先导化合物的发现效率,一方面可以极大地缩短农药研发的周期;另一方面可以免受现有抗性机制的困扰。随着结构生物学及计算化学等学科的不断发展,计算模拟的方法在农药分子合理设计中具有无可比拟的优势,并与实验科学形成很好的互补,在新农药的创制过程中扮演着越来越重要的角色。
     本论文采用计算模拟的方法围绕“农药合理设计的分子基础”这一关键的科学问题,系统地研究农药合理设计过程中的各个主要环节,其中包括类农药性研究、代表性农药分子的作用机制研究、农药抗性预测方法研究以及基于碎片的农药分子设计研究。提出了类农药性的规则;闸明了农药中多个重要靶标的分子作用机制;发展和完善了一些与农药分子合理设计相关的计算方法;并成功发现了一些全新结构的高活性分子。
     首先,以商品化农药分子为基础开展类农药性研究。对788个商品化农药分子的物理化学性质进行系统性地分析,重点考察了分子量(MW)、脂水分配系数(CLogP)、氢键供体数目(HBA)、氢键给体数目(HBD)、可旋转键数目(ROB)以及芳香键数目(ARB)的分布情况,本文首次将光稳定性引入到类农药性研究中;找出区分不同种类农药分子的关键物理化学参数,并考察了不同时期上市农药品种的物理化学性质随着年代的变化情况。在此基础上提出了类农药性规则,即:MW<435 Da,CLogP<6,HBA<6,HBD<2,ROB<9,ARB<17。
     其次,以农药上最新最重要的发现之一(生长素及赤霉素受体的发现)为基础,综合运用计算模拟的方法系统研究了生长素和赤霉素与各自受体相互作用的分子机制。在生长素受体TIR1蛋白中,辅因子InsP6扮演了“构象稳定剂”的角色,生长素及其类似物不仅发挥了“分子胶水”的作用,同时还可以诱导Phe82侧链发生构象变化以适应底物Aux/IAA蛋白的结合,并且Phe351的侧链构象变化对TIR1蛋白识别底物也起到了非常重要的作用。此外,在赤霉素受体GID1蛋白中,我们发现了赤霉素进出受体的新通道,并从理论上对赤霉素介导GID1氮端α螺旋变构的调节机制进行了驳斥,证明了赤霉素在通过新通道时并不介导GID1氮端α螺旋变构,而是通过稳定GID1与DELLA蛋白之间的氢键来起到调节作用的。这是关于赤霉素与受体相互作用的一种全新机制。这些研究为将来开展新型人工植物激素的合理设计奠定良好基础,同时对其它农药的作用机制研究具有借鉴意义。
     再次,针对农药分子抗性发展新型的抗性预测方法。首先通过多种分子模拟方法对近来出现的一例奇特抗性—水麻Gly210缺失导致的PPO酶除草剂的广谱抗性进行抗性机制研究,发现Gly210与Ser424之间重要氢键的丢火可以引起活性腔的局部结构发生微妙的变化,从而导致PPO酶除草剂与Arg128之间的氢键变弱是产生抗性的原因。此外,针对所用到的预测方法的弊端,发展了一种全新的抗性预测方法—计算突变扫描(Computational Mutation Scanning,CMS),实现了在野生型复合物动力学轨迹基础上对氨基酸侧链的任意变换从而提高了预测的效率;相对于计算丙氨酸扫描(Computational Alanine Scanning, CAS)而言,由于引入了快速熵变计算,所以大大地提高了结合自由能计算的精度;在对模板体系的测试中,该方法的预测准确率达到了80%左右,是一种快速而有效的抗性预测计算工具。并且我们利用该方法对一些PPO酶商品化除草剂进行了抗性预测,并发现了一些潜在的抗性突变体。这些研究为今后其它农药分子的抗性预测提供了理论基础。
     最后,本文针对两个农药体系(以细胞色素bcl复合物为靶标的杀菌剂和以PPO酶为靶标的除草剂)自身的特点发展了新的基于碎片的农药分子设计策略。首先将商品化农药分子按照碎片筛选规则进行切割,并建立适于农药分子设计的碎片库;然后在细胞色素bcl复合物体系中固定现有抑制剂的药效团结构,采用碎片生长方法来优化其与Phe128及Phe274之间的疏水相互作用,成功发现了多个不同结构类型的高活性抑制剂(活性最高达到几十pM级别);此外我们通过减少抑制剂与抗性位点之间的相互作用、同时引入与靶标内不可变位点(PPO酶辅因子FAD)的相互作用、并筛选与底物作用模式类似的碎片等反抗性策略,成功发现了新型作用模式的PPO酶高活性抑制剂(活性达到几十nM级别)。这些研究策略也可以为其它体系的新型农药分子设计提供理论方法上的借鉴。
Agriculture accounts for a great proportion in the national economy of our country and the pesticide is an important "weapon" to ensure its production. However, resistance is increasingly popular, which may bring the pesticide to disadvantage. It is an arduous task how to antagonize resistance and how to do anti-resistance pesticide design. Rational design of pesticide molecule is a way to solve the problem. However, rational design is a systematic work, which includes many components, for example, pesticide likeness, molecular mechanism of pesticide, pesticide resistance prediction, novel pesticide design, and so on. The key of rational design is how to select effective methods based on the above components to finally discover potentially novel lead compound. Improving the lead compound discovering rate can reduce the period of pesticide discovering and render free of the resistance mechanism. With the development of structural biology and computational chemistry, computational simulation, complementary to other experimental methods, plays more and more important role in the process of new pesticide discovery and development.
     In this thesis, computational simulation method was used to explain "the molecular basis of pesticide rational design". We systematically studied several important components in the process of pesticide rational design, including pesticide likeness, the molecular mechanism of representative pesticide, the methodology of pesticide resistance prediction, and fragment based pesticide design. The rule of pesticide likeness was raised, the molecular mechanisms of several important targets in pesticide were understood, some new computational methods for pesticide rational design were developed, and some high bioactivity molecules were discovered.
     First of all, the pesticide likeness study was based on the marketed pesticides. We systematically analyzed the distribution of physiochemical properties of 788 marketed pesticides:molecular weight (MW), CLogP, hydrogen bond acceptor (HBA), hydrogen bond donor (HBD), rotational bond (ROB), and aromatic bond (ARB). For the first time, the index of photostability (aromatic bond (ARB)) was introduced to explain pesticide likeness. We found the key physiochemical properties to differentiate different kinds of pesticide and analyzed the variability of physiochemical properties along with the market time. Based on the above, the rule for pesticide likeness was that "molecular weight≤435 Da, ClogP≤6, H-bond acceptor≤6, H-bond donor≤2, the number of rotatable bond≤9, and the number of aromatic bond≤17".
     Secondly, we explored the molecular interaction mechanism by following one of the most important discoveries in the area of pesticide—the receptors of auxin and gibberellin. In the auxin receptor (TIR1 protein), the co-factor InsP6 acted as a'conformational stabilizer'; auxin and its analogs not only played a role of "molecular glue", but also induced the sidechain of Phe82 to undergo a conformational change in order to accommodate the subsequent binding of the substrate Aux/IAA. The change of the sidechain of Phe351 was also important for the recognition of Aux/IAA. Besides, in the gibberellin receptor (GED1 protein), we discovered a new channel for the entering and leaving of gibberellin, which theoretically refuted the gibberellin induced allosteric transformation mechanism. We proved that the regulation of gibberellin was not by inducing the allosteric transformation of N-terminal a-helix, but by stabilizing the hydrogen bonding interaction between GID1 and DELLA protein. This is a new mechanism of the interaction between gibberellin and its receptor. The research in this chapter provides a good foundation for the rational design of novel phytohormone and can be useful for other pesticide mechanism studies.
     Thirdly, as for the pesticide resistance, novel prediction method was developed. At first, multiple molecular modeling methods were used to uncover the mechanism of a peculiar mutation (Gly210 deletion in A. tuberculatus PPO) which is able to induce broad-spectrum resistance. This was due to the weakness of the hydrogen bonds between PPO herbicides and Arg128, which was caused by a subtle change of the local structure of the active site because of the loss of a key hydrogen bond between Gly210 and Ser424. Moreover, a new resistance prediction method—Computational Mutation Scanning (CMS) was developed to offset disadvantages of the current method, in which the computational mutation was realized on a wild-type complex MD trajectory to improve the prediction rate. Compared with the traditional method—Computational Alanine Scanning (CAS), the calculation accuracy of the binding free energy was improved by introducing a rapid entropy calculation. In the testing system, the prediction accuracy rate of CMS was about 80%, so it could be used as a quick and effective computational tool for resistance prediction. It is worth pointing out that we found some resistance mutations in PPO system based on the CMS results for some marketed PPO herbicides. All of these can supply the theoretical basis for the resistance prediction in other pesticide system.
     Finally, we developed novel fragment based pesticide design strategies based on the characteristics of two pesticide systems (i.e., fungicide targeted to cytochrome bcl complex and herbicide targeted to PPO enzyme). In the first place, pesticide fragment library was constructed by decomposing the structures of marketed pesticides according to the fragment rules. Then, in the system of cytochrome bcl complex, common pharmacophore structure of the current inhibitors was fixed and fragments were grafted on it to optimize the hydrophobic interaction with Phe128 and Phe274. Based on this strategy, we successfully discovered several inhibitors with potent bioactivity (the highest bioactivity was in double pM level). At the same time, we also successfully discovered new PPO inhibitors (the bioactivity was in double nM level) with novel binding mode and potential anti-resistance ability by using several anti-resistance strategies, such as reducing the interaction between the inhibitor and resistance position, introducing the interaction with the unchanged position of the target (the cofactor FAD in PPO), and focusing to screen fragments that have similar binding mode with the substrate. These strategies can provide theoretical references for the novel pesticide design in other systems.
引文
1. Evenson, R.E.; Gollin, D. Assessing the impact of the Green Revolution,1960 to 2000. Science 2003,300,758-762.
    2. Ramesh, C.; Birthal, P.S. Pesticide use in Indian agriculture in relation to growth in area and production and technological change. Indian J. Agric. Econ.1997,52,488-498.
    3.庾莉萍 我国农药市场发展综述.吉林农业 2007,4,27-27.
    4. Denholm, I.; Rowland, M.W. Tactics for Managing Pesticide Resistance in Arthropods-Theory and Practice. Annu. Rev. Entomol.1992,37,91-112.
    5. Jutsum, A.R.; Heaney, S.P.; Perrin, B.M., et al. Pesticide resistance:Assessment of risk and the development and implementation of effective management strategies. Pestic. Sci. 1998,54,435-446.
    6. Dover, M.J.; Croft, B.A. Pesticide Resistance and Public-Policy. Bioscience 1986,36, 78-85.
    7. http://www.weedscience.org/In.asp.
    8. Pang, S.S.; Guddat, L.W.; Duggleby, R.G. Molecular basis of sulfonylurea herbicide inhibition of acetohydroxyacid synthase. J. Biol. Chem.2003,278,7639-7644.
    9. Tranel, P.J.; Wright, T.R. Resistance of weeds to ALS-inhibiting herbicides:what have we learned? Weed Sci.2002,50,700-712.
    10. Green, J.M. Review of glyphosate and ALS-inhibiting herbicide crop resistance and resistant weed management. Weed Technol.2007,21,547-558.
    11. Bock, R. Plastid biotechnology:prospects for herbicide and insect resistance, metabolic engineering and molecular farming. Curr. Opin. Biotechnol.2007,18,100-106.
    12. http://www.who.int/world-health-day/en/.
    13.高希武 我国害虫化学防治现状与发展策略.植物保护 2010,36,19-22.
    14. Matolcsy, G.; Nadasy, M.; Andriska, V., Pesticide Chemistry.1989:Elsevier Science Pub. Co.
    15. Teixeira, M.C.; Duque, P.; Sa-Correia, I. Environmental genomics:mechanistic insights into toxicity of and resistance to the herbicide 2,4-D. Trends Biotechnol.2007,25, 363-370.
    16. Pfister, K.; Radosevich, S.R.; Arntzen, C.J. Modification of Herbicide Binding to Photosystem-Ii in 2 Biotypes of Senecio-Vulgaris L. Plant Physiol. 1979,64,995-999.
    17. Ryan, G.F. Resistance of Common Groundsel to Simazine and Atrazine. Weed Sci.1970, 18,614-&.
    18. Bandeen, J.D.; McLaren, R.D. Resistance of Chenopodium Album to Triazine Herbicides. Can. J. Plant Sci.1976,56,411-412.
    19. Sutton, D.L.; Durham, D.A.; Bingham, S.W., et al. Influence of Simazine on Apparent Photosynthesis of Aquatic Plants and Herbicide Residue Removal from Water. Weed Sci. 1969,77,56-59.
    20. Brown, A.E.; Gilbert, C.W.; Guy, R., et al. Triazine Herbicide Resistance in the Photosynthetic Bacterium Rhodopseudomonas-Sphaeroides. Proc. Natl. Acad. Sci. U. S. A.1984,57,6310-6314.
    21. Fuerst, E.P.; Arntzen, C.J.; Pfister, K., et al. Herbicide Cross-Resistance in Triazine-Resistant Biotypes of 4 Species. Weed Sci.1986,34,344-353.
    22. Arntzen, C.J.; Pfister, K.; Steinback, K.E., The mechanism of chloroplast triazine resistance:alternations in the site of herbicide action. In herbicide resistant in plants (H. M. LeBaron and J. Gressel, Eds.).1982:John Wiley and Sons, New York,. pp.185-214.
    23. Hall, J.C.; Donnelly-Vanderloo, M.J.; Hume, D.J., Triazine-resistant crops:The agronomic impact and physiological consequences of chloroplast mutation, in Herbicide-resistant crops:Agricultural, environmental, economic, regulatory, and technical aspects.1996, CRC Press, Inc.; CRC Press, p.107-126.
    24. Ahrens, W.H.; Arntzen, C.J.; Stoller, E.W. Chlorophyll Fluorescence Assay for the Determination of Triazine Resistance. Weed Sci.1981,29,316-322.
    25. Burnet, M.W.M.; Hilderbrand, O.B.; Holtum, J.A.M., et al. Amitrole, Triazine, Substituted Urea, and Metribuzin Resistance in a Biotype of Rigid Ryegrass (Lolium-Rigidum). Weed Sci.1991,39,317-323.
    26. http://hracglobal.com/Default.aspx?base.
    27. Powles, S.B.; Preston, C; Bryan, I.B., et al., Herbicide resistance:Impact and management, in Advances in Agronomy, Vol 58.1997, Academic Press Inc:San Diego. p. 57-93.
    28. Werck-Reichhart, D.; Hehn, A.; Didierjean, L. Cytochromes P450 for engineering herbicide tolerance. Trends Plant Sci.2000,5,116-123.
    29. Jasieniuk, M.; BruleBabel, A.L.; Morrison, I.N. The evolution and genetics of herbicide resistance in weeds. Weed Sci.1996,44,176-193.
    30. Hatzios, K.K.; Burgos, N. Metabolism-based herbicide resistance:regulation by safeners. Weed Sci.2004,52,454-467.
    31. Yuan, J.S.; Trancl, P.J.; Stewart, C.N. Non-target-site herbicide resistance:a family business. Trends Plant Sci.2007,12,6-13.
    32. Gressel, J. Crops with target-site herbicide resistance for Orobanche and Striga control. Pest Manag. Sci.2009,65,560-565.
    33. Holt, J.S.; Powles, S.B.; Holtum, J.A.M. Mechanisms and Agronomic Aspects of Herbicide Resistance. Annu. Rev. Plant Physiol. Plant Mol. Biol.1993,44,203-229.
    34. Beckie, H.J.; Heap, I.M.; Smeda, R.J., et al. Screening for herbicide resistance in weeds. Weed Technol.2000,14,428-445.
    35. Gressel, J.; Segel, L.A. Herbicide Rotations and Mixtures-Effective Strategies to Delay Resistance. ACS Symp. Ser. 1990,421,430-458.
    36. Powles, S.B.; Holtum, J.A.M.; Matthews, J.M., et al. Herbicide Cross-Resistance in Annual Ryegrass (Lolium-Rigidum Gaud)-the Search for a Mechanism. ACS Symp. Ser. 1990,421,394-406.
    37. Lewis, F.H.; Hickey, K.D. Fungicide Usage on Deciduous Fruit Trees. Annu. Rev. Phytopathol.1972,10,399-&.
    38. Russell, P.E. A century of fungicide evolution. J. Agric. Sci.2005,143,11-25.
    39. Sisler, H.D.; Ragsdale, N.N. Molecular Design and Target Site Analysis in Fungicide Development. ACS Symp. Ser.1989,413,198-214.
    40. Staub, T.; Sozzi, D. Fungicide Resistance-a Continuing Challenge. Plant Dis.1984,68, 1026-1031.
    41. Staub, T. Fungicide Resistance-Practical Experience with Antiresistance Strategies and the Role of Integrated Use. Annu. Rev. Phytopathol.1991,29,421-442.
    42. http://www.frac.info/frac/index.htm.
    43. Harrison, C.M. Ddt-Resistance and Its Inheritance in the House Fly. J. Econ. Entomol. 1953,46,528-530.
    44. Georghiou, G.P. Overview of Insecticide Resistance. ACS Symp. Ser.1990,421,18-41.
    45. ffrench-Constant, R.H.; Daborn, P.J.; Le Goff, G. The genetics and genomics of insecticide resistance. Trends Genet.2004,20,163-170.
    46. http://www.irac-online.org/.
    47. Orzech, K.M.; Nichter, M. From Resilience to Resistance:Political Ecological Lessons from Antibiotic and Pesticide Resistance. Annu. Rev. Anthropol.2008,37,267-282.
    48. Kniskern, J.M.; Rausher, M.D. Natural selection on a polymorphic disease-resistance locus in Ipomoea purpurea. Evolution 2007,61,377-387.
    49. Schliekelman, P.; Garner, C.; Slatkin, M. Natural selection and resistance to HIV. Nature 2001,411,545-546.
    50. Coelho, S. AGRICULTURE European Pesticide Rules Promote Resistance, Researchers Warn. Science 2009,323,450-450.
    51. Bosmann, H.B. Mechanism of cellular drug resistance. Nature 1971,233,566-569.
    52. Borst, P. Genetic mechanisms of drug resistance. A review. Acta Oncol 1991,30,87-105.
    53. Longley, D.B.; Johnston, P.G. Molecular mechanisms of drug resistance. J. Pathol.2005, 205,275-292.
    54. Ren, J.; Stammers, D.K. Structural basis for drug resistance mechanisms for non-nucleoside inhibitors of HIV reverse transcriptase. Virus Res.2008,134,157-170.
    55. O'Connor, R. A review of mechanisms of circumvention and modulation of chemotherapeutic drug resistance. Curr. Cancer Drug Targets 2009,9,273-280.
    56. Brown, T.M. Molecular genetics and evolution of pesticide resistance, in Molecular genetics and evolution of pesticide resistance.1996:American Chemical Society.
    57. Aminetzach, Y.T.; Macpherson, J.M.; Petrov, D.A. Pesticide resistance via transposition-mediated adaptive gene truncation in Drosophila. Science 2005,309, 764-767.
    58. Van Eerd, L.L.; Hoagland, R.E.; Zablotowicz, R.M., et al. Pesticide metabolism in plants and microorganisms. Weed Sci.2003,57,472-495.
    59. Foley, M.; Tilley, L. Quinoline antimalarials:mechanisms of action and resistance and prospects for new agents. Pharmacol. Ther.1998,79,55-87.
    60. Gottesman, M.M. Mechanisms of cancer drug resistance. Annu. Rev. Med.2002,55, 615-627.
    61. Coffin, J.M. HIV population dynamics in vivo:implications for genetic variation, pathogenesis, and therapy. Science 1995,267,483-489.
    62. Kuzuya, Y.; Adachi, T.; Hara, H., et al. Induction of drug-metabolizing enzymes and transporters in human bronchial epithelial cells by beclomethasone dipropionate. IUBMB Life 2004,56,355-359.
    63. Klumpen, H.J.; Liddle, C; Gurney, H. Transporter pumps and imatinib:a cause of pharmacokinetic resistance? Cancer Biol. Ther.2008,7,416-418.
    64. Merrell, M.D.; Augustine, L.M.; Slitt, A.L., et al. Induction of drug metabolism enzymes and transporters by oltipraz in rats. J. Biochem. Mol. Toxicol.2008,22,128-135.
    65. Matringe, M.; Camadro, J.M.; Labbe, P., et al. Protoporphyrinogen Oxidase as a Molecular Target for Diphenyl Ether Herbicides. Biochem. J.1989,260,231-235.
    66. Unwin, N. Acetylcholine-Receptor Channel Imaged in the Open State. Nature 1995,373, 37-43.
    67. Miyazawa, A.; Fujiyoshi, Y.; Unwin, N. Structure and gating mechanism of the acetylcholine receptor pore. Nature 2003,423,949-955.
    68. Cao, Z.W.; Han, L.Y.; Zheng, C.J., et al. Computer prediction of drug resistance mutations in proteins. Drug Discov. Today 2005,10,521-529.
    69. Chen, Y.Z.; Gu, X.L.; Cao, Z.W. Can an optimization/scoring procedure in ligand-Protein docking be employed to probe drug-resistant mutations in proteins? J. Mol. Graph. Model.2001,19,560-570.
    70. Schaffer, L.; Verkhivker, G.M. Predicting structural effects in HIV-1 protease mutant complexes with flexible ligand docking and protein side-chain optimization. Proteins 1998,33,295-310.
    71. Jenwitheesuk, E.; Samudrala, R. Prediction of HIV-1 protease inhibitor resistance using a protein-inhibitor flexible docking approach. Antivir. Ther.2005,10,157-166.
    72. Ala, P.J.; Huston, E.E.; Klabe, R.M., et al. Molecular basis of HIV-1 protease drug resistance:structural analysis of mutant proteases complexed with cyclic urea inhibitors. Biochemistry 1997,36,1573-1580.
    73. Clackson, T.; Ultsch, M.H.; Wells, J.A., et al. Structural and functional analysis of the 1:1 growth hormone:receptor complex reveals the molecular basis for receptor affinity. J. Mol. Biol.1998,277,1111-1128.
    74. Erickson, J.W.; Burt, S.K. Structural mechanisms of HIV drug resistance. Annu. Rev. Pharmacol. Toxicol.1996,36,545-571.
    75. Joseph-McCarthy, D.; Thomas, B.E.t.; Belmarsh, M., et al. Pharmacophore-based molecular docking to account for ligand flexibility. Proteins 2003,51,172-188.
    76. Pepe, G.; Courcambeck, J.; Perbost, R., et al. Prediction of HIV-1 protease inhibitor resistance by Molecular Modeling Protocols (MMPs) using GenMol software. Eur. J. Med. Chem.2008,43,2518-2534.
    77. Ode, H.; Neya, S.; Hata, M., et al. Computational simulations of HIV-1 proteases--multi-drug resistance due to nonactive site mutation L90M. J. Am. Chem. Soc. 2006,128,7887-7895.
    78. Chang, C.E.; Shen, T.; Trylska, J., et al. Gated binding of ligands to HIV-1 protease: Brownian dynamics simulations in a coarse-grained model. Biophys. J.2006,90, 3880-3885.
    79. Ode, H.; Matsuyama, S.; Hata, M., et al. Mechanism of drug resistance due to N88S in CRF01_AE HIV-1 protease, analyzed by molecular dynamics simulations. J. Med. Chem. 2007,50,1768-1777.
    80. Hou, T.; Yu, R. Molecular dynamics and free energy studies on the wild-type and double mutant HIV-1 protease complexed with amprenavir and two amprenavir-related inhibitors:mechanism for binding and drug resistance. J. Med. Chem.2007,50, 1177-1188.
    81. Layten, M.; Hornak, V.; Simmerling, C. The open structure of a multi-drug-resistant HIV-1 protease is stabilized by crystal packing contacts. J. Am. Chem. Soc.2006,128, 13360-13361.
    82. Stoica, I.; Sadiq, S.K.; Coveney, P.V. Rapid and accurate prediction of binding free energies for saquinavir-bound HIV-Ⅰ proteases. J. Am. Chem. Soc.2008,130, 2639-2648.
    83. Ode, H.; Ota, M.; Neya, S., et al. Resistant mechanism against nelfinavir of human immunodeficiency virus type 1 proteases. J. Phys. Chem. B 2005,109,565-574.
    84. Hao, G.F.; Zhu, X.L.; Ji, F.Q., et al. Understanding the mechanism of drug resistance due to a codon deletion in protoporphyrinogen oxidase through computational modeling. J. Phys. Chem. B 2009,113,4865-4875.
    85. Moreira, I.S.; Fernandes, P.A.; Ramos, M.J. Computational alanine scanning mutagenesis--an improved methodological approach. J. Comput. Chem.2007,28, 644-654.
    86. Huo, S.; Massova, I.; Kollman, P.A. Computational alanine scanning of the 1:1 human growth hormone-receptor complex. J. Comput. Chem.2002,23,15-27.
    87. Massova, I.; Kollman, P.A. Computational Alanine Scanning To Probe Protein-Protein Interactions:A Novel Approach To Evaluate Binding Free Energies. J. Am. Chem. Soc. 1999,121,8133-8143.
    88. http://hivdb.stanford.edu/.
    89. Wang, D.; Larder, B. Enhanced prediction of lopinavir resistance from genotype by use of artificial neural networks.J. Infect. Dis.2003,188,653-660.
    90. Sun, H. A naive bayes classifier for prediction of multidrug resistance reversal activity on the basis of atom typing. J. Med. Chem.2005,48,4031-4039.
    91. Draghici, S.; Potter, R.B. Predicting HIV drug resistance with neural networks. Bioinformatics 2003,19,98-107.
    92. Beerenwinkel, N.; Daumer, M.; Oette, M., et al. Geno2pheno:Estimating phenotypic drug resistance from HIV-1 genotypes. Nucleic Acids Res.2003,31,3850-3855.
    93. Cai, C.Z.; Han, L.Y.; Ji, Z.L., et al. SVM-Prot:Web-based support vector machine software for functional classification of a protein from its primary sequence. Nucleic Acids Res.2003,31,3692-3697.
    94. Beerenwinkel, N.; Schmidt, B.; Walter, H., et al. Diversity and complexity of HIV-1 drug resistance:a bioinformatics approach to predicting phenotype from genotype. Proc. Natl. Acad. Sci. U. S. A.2002,99,8271-8276.
    95. Murray, C.W.; Rees, D.C. The rise of fragment-based drug discovery. Nat. Chem.2009,/, 187-192.
    96. Fattori, D. Molecular recognition:the fragment approach in lead generation. Drug Discov. Today 2004,9,229-238.
    97. Congreve, M.; Chessari, G.; Tisi, D., et al. Recent developments in fragment-based drug discovery. J. Med. Chem.2008,57,3661-3680.
    98. Erlanson, D.A.; McDowell, R.S.; O'Brien, T. Fragment-based drug discovery. J. Med. Chem.2004,47,3463-3482.
    99. Erlanson, D.A.; Wells, J.A.; Braisted, A.C. Tethering:fragment-based drug discovery. Annu. Rev. Biophys. Biomol. Struct.2004,33,199-223.
    100. Rees, D.C; Congreve, M.; Murray, C.W., et al. Fragment-based lead discovery. Nat. Rev. Drug Discov.2004,3,660-672.
    1. Kubinyi, H. Strategies and recent technologies in drug discovery. Pharmazie 1995,50,647-662.
    2. Patel, D.V.; Gordon, E.M. Applications of small molecule combinatorial chemistry to drug discovery. Drug Discov. Today 1996,1,134-144.
    3. Seneci, P.; Miertus, S. Combinatorial chemistry and high-throughput screening in drug discovery: Different strategies and formats. Mol. Divers.2000,5,75-89.
    4. Diller, D.J. The synergy between combinatorial chemistry and high-throughput screening. Curr. Opin. Drug Discov. Devel.2008,11,346-355.
    5. Lipinski, C.A.; Lombardo, F.; Dominy, B.W., et al. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Delivery Rev.2001,46,3-26.
    6. Lipinski, C.A. Drug-like properties and the causes of poor solubility and poor permeability. J. Pharmacol. Toxicol. Methods 2000,44,235-249.
    7. van De Waterbeemd, H.; Smith, D.A.; Beaumont, K., et al. Property-based design:optimization of drug absorption and pharmacokinetics. J. Med. Chem.2001,44,1313-1333.
    8. Brustle, M.; Beck, B.; Schindler, T., et al. Descriptors, physical properties, and drug-likeness. J. Med. Chem.2002,45,3345-3355.
    9. Walters, W.P.; Murcko, M.A. Prediction of 'drug-likeness'. Adv. Drug Delivery Rev.2002,54, 255-271.
    10. Blake, J.F. Examination of the computed molecular properties of compounds selected for clinical development. BioTechniques 2003, Suppl,16-20.
    11. Muegge, I. Selection criteria for drug-like compounds. Med. Res. Rev.2003,23,302-321.
    12. Wenlock, M.C.; Austin, R.P.; Barton, P., et al. A comparison of physiochemical property profiles of development and marketed oral drugs. J. Med. Chem.2003,46,1250-1256.
    13. Leeson, P.D.; Davis, A.M. Time-related differences in the physical property profiles of oral drugs. J. Med. Chem.2004,47,6338-6348.
    14. Leeson, P.D.; Davis, A.M.; Steele, J. Drug-like properties:guiding principles for design-or chemical prejudice? Drug Discov. Today:Technol.2004,1,189-195.
    15. Lipinski, C.A. Lead- and drug-like compounds:the rule-of-five revolution. Drug Discov. Today: Technol.2004,1,337-341.
    16. Vieth, M.; Siegel, M.G.; Higgs, R.E., et al. Characteristic physical properties and structural fragments of marketed oral drugs. J. Med. Chem.2004,47,224-232.
    17. Morphy, R. The influence of target family and functional activity on the physicochemical properties of pre-clinical compounds. J. Med. Chem.2006,49,2969-2978.
    18. Vieth, M.; Sutherland, J.J. Dependence of molecular properties on proteomic family for marketed oral drugs. J. Med. Chem.2006,49,3451-3453.
    19. O'Shea, R.; Moser, H.E. Physicochemical properties of antibacterial compounds:implications for drug discovery. J. Med. Chem.2008,51,2871-2878.
    20. Vistoli, G.; Pedretti, A.; Testa, B. Assessing drug-likeness--what are we missing? Drug Discov. Today 2008,13,285-294.
    21. Mishra, H.; Singh, N.; Lahiri, T., et al. A comparative study on the molecular descriptors for predicting drug-likeness of small molecules. Bioinformation 2009,3,384-388.
    22. Tice, C.M. Selecting the right compounds for screening:use of surface-area parameters. Pest Manag. Sci.2002,58,219-233.
    23. Tice, C.M. Selecting the right compounds for screening:does Lipinski's Rule of 5 for Pharmaceuticals apply to agrochemicals? Pest Manag. Sci.2001,57,3-16.
    24. Clarke, E.D.; Delaney, J.S. Physical and molecular properties of agrochemicals:An analysis of screen inputs, hits, leads, and products. Chimia 2003,57,731-734.
    25. Zcrnov, V.V.; Balakin, K.V.; Ivaschenko, A.A., et al. Drug Discovery Using Support Vector Machines. The Case Studies of Drug-likeness, Agrochemical-likeness, and Enzyme Inhibition Predictions. J. Chem. Inf. Comp. Sci.2003,43,2048-2056.
    26. Clarke, E.D. Beyond physical properties--application of Abraham descriptors and LFER analysis in agrochemical research. Bioorg. Med. Chem.2009,17,4153-4159.
    27. Naumann, K. Research into fluorinated pyrethroid alcohols-an episode in the history of pyrethroid discovery. Pestic. Sci.1998,52,3-20.
    28. Bartlett, D.W.; Clough, J.M.; Godwin, J.R., et al. The strobilurin fungicides. Pest Manag. Sci. 2002,58,649-662.
    29. Rao, VS., Principles of weed science.2002:Science Publishers, Inc.
    30. Abraham, M.H.; Enomoto, K.; Clarke, E.D., et al. Henry's Law constants or air to water partition coefficients for 1,3,5-triazines by an LFER method. J. Environ. Monit.2007,9,234-239.
    31. Tomlin, C., The Pesticide Manual,15th ed.2009:The British Crop Protection Council.
    32. http://www.alanwood.net/pesticides/.
    33. Greenberg, D.S. Pesticides:White House Advisory Body Issues Report Recommending Steps to Reduce Hazard to Public. Science 1963,140,878-879.
    34. Veber, D.F.; Johnson, S.R.; Cheng, H.Y., et al. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem.2002,45,2615-2623.
    35. Das, K.; Clark, A.D., Jr.; Lewi, P.J., et al. Roles of conformational and positional adaptability in structure-based design of TMC125-R165335 (etravirine) and related non-nucleoside reverse transcriptase inhibitors that are highly potent and effective against wild-type and drug-resistant HIV-1 variants. J. Med. Chem.2004,47,2550-2560.
    36. Das, K.; Bauman, J.D.; Clark, A.D., Jr., et al. High-resolution structures of HTV-1 reverse transcriptase/TMC278 complexes:strategic flexibility explains potency against resistance mutations. Proc. Natl. Acad. Sci. U. S. A.2008,105,1466-1471.
    37. Ji, F.Q.; Niu, C.W.; Chen, C.N., et al. Computational design and discovery of conformationally flexible inhibitors of acetohydroxyacid synthase to overcome drug resistance associated with the W586L mutation. ChemMedChem 2008,3,1203-1206.
    38. Migani, A.; Bearpark, M.J.; Olivucci, M., et al. Photostability versus Photodegradation in the Excited-State Intramolecular Proton Transfer of Nitro Enamines:Competing Reaction Paths and Conical Intersections. J. Am. Chem. Soc.2007,129,3703-3713.
    39. Eyheraguibel, B.; ter Halle, A.; Richard, C. Photodegradation of Bentazon, Clopyralid, and Triclopyr on Model Leaves:Importance of a Systematic Evaluation of Pesticide Photostability on Crops. J. Agric. Food Chem.2009,57,1960-1966.
    40. Henry, B.; Foti, C; Alsante, K. Can light absorption and photostability data be used to assess the photosafety risks in patients for a new drug molecule? J. Photochem. Photobiol. B:Biol.2009, 96,57-62.
    41. Sybyl7.0, Tripos Inc 1699 South Hanley Road. St Louis, MO.
    42. Tonnesen, H.H., Photostability of drugs and drug formulations, Second Edition.2004:CRC Press.
    43. Oprea, T.I.; Davis, A.M.; Teague, S.J., et al. Is there a difference between leads and drugs? A historical perspective. J. Chem. Inf. Comp. Sci.2001,41,1308-1315.
    1. Thimann, K.V.50 Years of Plant Hormone Research. Plant Physiol.1974,54,450-453.
    2. Ferber, D. Biochemistry-Plant hormone's long-sought receptor found. Science 2005,308, 1240-1240.
    3. Chow, B.; McCourt, P. Plant hormone receptors:perception is everything. Genes Dev.2006,20, 1998-2008.
    4. Spartz, A.K.; Gray, W.M. Plant hormone receptors:new perceptions. Genes Dev.2008,22, 2139-2148.
    5. Santner, A.; Estelle, M. Recent advances and emerging trends in plant hormone signalling. Nature 2009,459,1071-1078.
    6. Santner, A.; Calderon-Villalobos, L.I.A.; Estelle, M. Plant hormones are versatile chemical regulators of plant growth. Nat. Chem. Biol.2009,5,301-307.
    7. Ruegger, M.; Dewey, E.; Hobbie, L., et al. Reduced naphthylphthalamic acid binding in the tir3 mutant of Arabidopsis is associated with a reduction in polar auxin transport and diverse morphological defects. Plant Cell 1997,9,745-757.
    8. Ruegger, M.; Dewey, E.; Gray, W.M., et al. The TIR1 protein of Arabidopsis functions in auxin response and is related to human SKP2 and yeast grrlp. Genes Dev.1998,12,198-207.
    9. Gray, W.M.; Kepinski, S.; Rouse, D., et al. Auxin regulates SCF(TIR1)-dependent degradation of AUX/IAA proteins. Nature 2001,414,271-276.
    10. Tiwari, S.B.; Wang, X.J.; Hagen, G., et al. AUX/IAA proteins are active repressors, and their stability and activity arc modulated by auxin. Plant Cell 2001,13,2809-2822.
    11. Zenser, N.; Ellsmore, A.; Leasure, C., et al. Auxin modulates the degradation rate of Aux/IAA proteins. Proc. Natl. Acad. Sci. U. S. A.2001,98,11795-11800.
    12. Dharmasiri, N.; Dharmasiri, S.; Estelle, M. The F-box protein TIR1 is an auxin receptor. Nature 2005,435,441-445.
    13. Kepinski, S.; Leyser, O. The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature 2005, 435,446-451.
    14. Tan, X.; Calderon-Villalobos, L.I.; Sharon, M., et al. Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 2007,446,640-645.
    15. Taiz, L.; Zeigcr, E. Chapter 19. Auxin:The growth hormone. Plant Physiol. (Online) 2006.
    16. Case, D.A.; Darden, T.A.; Cheatham, T.E., Ⅲ, et al., eds. AMBER8.2004:University of California:San Francisco, CA,.
    17. Hornak, V; Abel, R.; Okur, A., et al. Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins 2006,65,712-725.
    18. Wang, J.; Wolf, R.M.; Caldwell, J.W., et al. Development and testing of a general amber force field. J. Comput. Chem.2004,25,1157-1174.
    19. Jakalian, A.; Jack, D.B.; Bayly, C.I. Fast, efficient generation of high-quality atomic charges. AM1-BCC model:Ⅱ. Parameterization and validation. J. Comput. Chem.2002,23,1623-1641.
    20. Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.D. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys.1983,79,926-935.
    21. Coleman, T.G.; Mesick, H.C.; Darby, R.L. Numerical integration:a method for improving solution stability in models of the circulation. Ann. Biomed. Eng.1977,5,322-328.
    22. Darden, T.; York, D.; Pedersen, L. Particle mesh Ewald:An N·log (N) method for Ewald sums in large systems. J. Chem. Phys.1993,98,10089-10092.
    23. Essmann, U.; Perera, L.; Berkowitz, M.L. A smooth particle mesh Ewald method. J. Chem. Phys. 1995,103,8577-8593.
    24. Kollman, P. A.; Massova, I.; Reyes, C, et al. Calculating structures and free energies of complex molecules:combining molecular mechanics and continuum models. Acc. Chem. Res.2000,33, 889-897.
    25. Honig, B.; Nicholls, A. Classical electrostatics in biology and chemistry. Science 1995,268, 1144-1149.
    26. Sitkoff, D.; Sharp, K.A.; Honig, B. Accurate Calculation of Hydration Free Energies Using Macroscopic Solvent Models. J. Phys. Chem.1994,98,1978-1988.
    27. Connolly, M.L. Analytical molecular surface calculation. J. Appl. Cryst.1983,16,548-558.
    28. Case, D.A.; Cheatham, T.E.,3rd; Darden, T., et al. The Amber biomolecular simulation programs. J. Comput. Chem.2005,26,1668-1688.
    29. Baker, E.N.; Hubbard, R.E. Hydrogen bonding in globular proteins. Prog. Biophys. Mol. Biol. 1984,44,97-179.
    30. Morris, G.M.; Goodsell, D.S.; Halliday, R.S., et al. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem.1998,19, 1639-1662.
    31. Radley, M. Occurrence of Substances Similar to Gibberellic Acid in Higher Plants. Nature 1956, 178,1070-1071.
    32. http://www.plant-hormones.info/gibberellins.htm.
    33. Yamaguchi, S. Gibberellin metabolism and its regulation. Annu. Rev. Plant. Biol.2008,59, 225-251.
    34. Dill, A.; Jung, H.S.; Sun, T.P. The DELLA motif is essential for gibberellin-induced degradation of RGA. Proc. Natl. Acad. Sci. U. S. A.2001,98,14162-14167.
    35. Itoh, H.; Ueguchi-Tanaka, M.; Sato, Y., et al. The gibberellin signaling pathway is regulated by the appearance and disappearance of SLENDER RICE1 in nuclei. Plant Cell 2002,14,57-70.
    36. Ueguchi-Tanaka, M.; Ashikari, M.; Nakajima, M., et al. GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin. Nature 2005,437,693-698.
    37. Silverstone, A.L.; Jung, H.S.; Dill, A., et al. Repressing a repressor:gibberellin-induced rapid reduction of the RGA protein in Arabidopsis. Plant Cell 2001,13,1555-1566.
    38. Dill, A.; Thomas, S.G.; Hu, J., et al. The Arabidopsis F-box protein SLEEPY1 targets gibberellin signaling repressors for gibberellin-induced degradation. Plant Cell 2004,16,1392-1405.
    39. Griffiths, J.; Murase, K.; Rieu, I., et al. Genetic characterization and functional analysis of the GID1 gibberellin receptors in Arabidopsis. Plant Cell 2006,18,3399-3414.
    40. Murase, K.; Hirano, Y.; Sun, T.R, et al. Gibberellin-induced DELLA recognition by the gibberellin receptor GID1. Nature 2008,456,459-463.
    41. Shimada, A.; Ueguchi-Tanaka, M.; Nakatsu, T., et al. Structural basis for gibberellin recognition by its receptor GID1. Nature 2008,456,520-523.
    42. Bayly, C.I.; Cieplak, P.; Cornell, W.D., et al. A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges:the RESP model. J. Phys. Chem.1993,97, 10269-10280.
    43. Cornell, W.D.; Cieplak, P.; Bayly, C.I., et al. Application of RESP charges to calculate conformational energies, hydrogen bond energies, and free energies of solvation. J. Am. Chem. Soc.1993,115,9620-9631.
    44. Frisch, M.J.; Trucks, G.W.; Schlegel, H.B., et al., Gaussian 03, revision B-03.2003:Gaussian, Inc.:Pittsburgh, PA.
    45. Torrie, G.M.; Valleau, J.P. Nonphysical sampling distribution in Monte Carlo free-energy estimation:umbrella sampling. J. Comput. Phys.1977,23,187-199.
    46. Petrek, M.; Otyepka, M.; Banas, P., et al. CAVER:a new tool to explore routes from protein clefts, pockets and cavities. BMC Bioinformatics 2006,7,316.
    47. Shen, J.; Li, W.; Liu, G., et al. Computational insights into the mechanism of ligand unbinding and selectivity of estrogen receptors. J. Phys. Chem. B 2009,113,10436-10444.
    48. Park, S.; Schulten, K. Calculating potentials of mean force from steered molecular dynamics simulations. J. Chem. Phys.2004,120,5946-5961.
    49. Kirkwood, J.G. Statistical mechanics of fluid mixtures.J. Chem. Phys.1935,3,300-313.
    50. Kumar, S.; Bouzida, D.; Swendsen, R.H., et al. The weighted histogram analysis method for free-energy calculations on biomolecules. I:The method. J. Comput. Chem.1992,13, 1011-1021.
    51. Roux, B. The calculation of the potential of mean force using computer simulations. Comput. Phys. Commun.1995,91,275-282.
    52. http://membrane.urmc.rochester.edu/content/wham.
    53. Nakajima, M.; Shimada, A.; Takashi, Y., et al. Identification and characterization of Arabidopsis gibberellin receptors. Plant J.2006,46,880-889.
    54. Hamza, A.; Zhan, C.G. Determination of the Structure of Human Phosphodiesterase-2 in a Bound State and Its Binding with Inhibitors by Molecular Modeling, Docking, and Dynamics Simulation. J. Phys. Chem. B 2009.
    55. Ueguchi-Tanaka, M.; Nakajima, M.; Katoh, E., et al. Molecular interactions of a soluble gibberellin receptor, GID1, with a rice DELLA protein, SLR1, and gibberellin. Plant Cell 2007, 19,2140-2155.
    1. Ghosh, A.K.; Chapsal, B.D.; Weber, I.T., et al. Design of HIV protease inhibitors targeting protein backbone:an effective strategy for combating drug resistance. Ace. Chem. Res.2008,41, 78-86.
    2. Gerald, S.M. The biosynthesis of heme and chlorophyll. Bot. Rev.1966,32,56-94.
    3. Porra, R.J.; Falk, J.E. Coproporphyrinogenase in a respiration-deficient mutant of yeast lacking all cytochromes and accumulating coproporphyrin. Biochem. J.1964,90,69-72.
    4. Poulson, R.; Polglase, W.J. Enzymic Conversion of Protoporphyrinogen-Ix to Protoporphyrin-Ix-Protoporphyrinogen Oxidase Activity in Mitochondrial Extracts of Saccharomyces-Cerevisiae. J. Biol. Chem.1975,250,1269-1274.
    5. Poulson, R. Enzymic Conversion of Protoporphyrinogenix to Protoporphyrinix in Mammalian Mitochondria. J. Biol. Chem.1976,251,3730-3733.
    6. Deybach, J.C.; Dasilva, V.; Grandchamp, B., et al. The Mitochondrial Location of Protoporphyrinogen Oxidase. Eur. J. Biochem.1985,149,431-435.
    7. Ferreira, G.C.; Andrew, T.L.; Karr, S.W., et al. Organization of the Terminal 2 Enzymes of the Heme Biosynthetic-Pathway-Orientation of Protoporphyrinogen Oxidase and Evidence for a Membrane Complex. J. Biol. Chem.1988,263,3835-3839.
    8. Ferreira, G.C.; Dailey, H.A. Mouse Protoporphyrinogen Oxidase-Kinetic-Parameters and Demonstration of Inhibition by Bilirubin. Biochem. J.1988,250,597-603.
    9. Jacobs, J.M.; Jacobs, N.J. Protoporphyrinogen Oxidation, an Enzymatic Step in Heme and Chlorophyll Synthesis-Partial Characterization of the Reaction in Plant Organelles and Comparison with Mammalian and Bacterial Systems. Arch. Biochem. Biophys.1984,229, 312-319.
    10. Lermontova, I.; Kruse, E.; Mock, H.P., et al. Cloning and characterization of a plastidal and a mitochondrial isoform of tobacco protoporphyrinogen Ⅸ oxidase. Proc. Natl. Acad. Sci. U. S. A. 1997,94,8895-8900.
    11. Beale, S.I. Enzymes of chlorophyll biosynthesis. Photosynth. Res.1999,60,43-73.
    12. Heinemann, I.U.; Diekmann, N.; Masoumi, A., et al. Functional definition of the tobacco protoporphyrinogen Ⅸ oxidase substrate-binding site. Biochem. J.2007,402,575-580.
    13. Jung, S.; Lee, Y.; Yang, K., et al. Dual targeting of Myxococcus xanthus protoporphyrinogen oxidase into chloroplasts and mitochondria and high level oxyfluorfen resistance. Plant Cell Environ.2004,27,1436-1446.
    14. Jackson, A.H.; Games, D.E.; Couch, P., et al. Conversion of Coproporphyrinogen-Iii to Protoporphyrin-Ix. Enzyme 1974,17,81-87.
    15. Duke, S.O.; Lydon, J.; Becerril, J.M., et al. Protoporphyrinogen Oxidase-Inhibiting Herbicides. Weed Sci.1991,39,465-473.
    16. Duke, S.O.; Nandihalli, U.B.; Lee, H.J., et al., Protoporphyrinogen Oxidase as the Optimal Herbicide Site in the Porphyrin Pathway, in Porphyric Pesticides-Chemistry, Toxicology, and Pharmaceutical Applications, S.O. Duke;C.A. Rebeiz, Editors.1994, Amer Chemical Soc: Washington, p.191-204.
    17. Nandihalli, U.B.; Duke, S.O. The Porphyrin Pathway as a Herbicide Target Site. ACS Symp. Ser. 1993,524,62-78.
    18. Scalla, R.; Matringe, M. Inhibitors of protoporphyrinogen oxidase as herbicides:Diphenyl ethers and related photobleaching molecules. Rev. Weed Sci.1994,6,103-132.
    19. Arnould, S.; Camadro, J.M. The domain structure of protoporphyrinogen oxidase, the molecular target of diphenyl ether-type herbicides. Proc. Natl. Acad. Sci. U. S. A.1998,95,10553-10558.
    20. Brenner, D.A.; Bloomer, J.R. Enzymatic Defect in Variegate Porphyria-Studies with Human Cultured Skin Fibroblasts. N. Engl. J. Med.1980,302,765-769.
    21. Deybach, J.C.; Deverneuil, II.; Nordmann, Y. The Inherited Enzymatic Defect in Porphyria Variegata. Hum. Genet.1981,58,425-428.
    22. Meissner, P.N.; Day, R.S.; Moore, M.R., et al. Protoporphyrinogen Oxidase and Porphobilinogen Deaminase in Variegate Porphyria. Eur. J. Clin. Investig.1986,16,257-261.
    23. Whatley, S.D.; Puy, H.; Morgan, R.R., et al. Variegate porphyria in western Europe: Identification of PPOX gene mutations in 104 families, extent of allelic heterogeneity, and absence of correlation between phenotype and type of mutation. Am. J. Hum. Genet.1999,65, 984-994.
    24. Nordmann, Y.; Puy, H. Human hereditary hepatic porphyrias. Clin. Chim. Acta 2002,325,17-37.
    25. Jenkins, T. The South African malady. Nat. Genet.1996,13,7-9.
    26. Day, R.S. Variegate Porphyria. Semin. Dermatol.1986,5,138-154.
    27. Maneli, M.H.; Corrigall, A.V.; Klump, H.H., et al. Kinetic and physical characterisation of recombinant wild-type and mutant human protoporphyrinogen oxidases. Biochim. Biophys. Acta-Protein Proteom.2003,1650,10-21.
    28. Matringe, M.; Camadro, J.M.; Labbe, P., et al. Protoporphyrinogen Oxidase as a Molecular Target for Diphenyl Ether Herbicides. Biochem. J.1989,260,231-235.
    29. Camadro, J.M.; Matringe, M.; Scalla, R., et al. Kinetic-Studies on Protoporphyrinogen Oxidase Inhibition by Diphenyl Ether Herbicides. Biochem. J.1991,277,17-21.
    30. Hess, F.D. Light-dependent herbicides:an overview. Weed Sci.2000,48,160-170.
    31. Meazza, G.; Bettarini, F.; La Porta, P., et al. Synthesis and herbicidal activity of novel heterocyclic protoporphyrinogen oxidase inhibitors. Pest Manag. Sci.2004,60,1178-1188.
    32. Fingar, V.H.; Wieman, T.J.; McMahon, K.S., et al. Photodynamic therapy using a protoporphyrinogen oxidase inhibitor. Cancer Res.1997,57,4551-4556.
    33. Dougherty, T.J.; Gomer, C.J.; Henderson, B.W., et al. Photodynamic therapy. J. Natl. Cancer Inst. 1998,90,889-905.
    34. Kennedy, J.C.; Pottier, R.H.; Pross, D.C. Photodynamic Therapy with Endogenous Protoporphyrin.9. Basic Principles and Present Clinical-Experience. J. Photochem. Photobiol. B Biol.1990,6,143-148.
    35. Dickson, E.F.G.; Goyan, R.L.; Pottier, R.H. New directions in photodynamic therapy. Cell. Mol. Biol.2002,48,939-954.
    36. Vrouenraets, M.B.; Visser, G.W.M.; Snow, G.B., et al. Basic principles, applications in oncology and improved selectivity of photodynamic therapy. Anticancer Res.2003,23,505-522.
    37. Dolmans, D.; Fukumura, D.; Jain, R.K. Photodynamic therapy for cancer. Nat. Rev. Cancer 2003, 3,380-387.
    38. Deybach, J.C.; Puy, H.; Robreau, A.M., et al. Mutations in the protoporphyrinogen oxidase gene in patients with variegate porphyria. Hum. Mol. Genet.1996,5,407-410.
    39. Meissner, P.N.; Dailey, T.A.; Hift, R., et al. A R59W mutation in human protoporphyrinogen oxidase results in decreased enzyme activity and is prevalent in South Africans with variegate porphyria. Nat. Genet.1996,13,95-97.
    40. www.weedscience.com.
    41. Patzoldt, W.L.; Hager, A.G.; McCormick, J.S., et al. A codon deletion confers resistance to herbicides inhibiting protoporphyrinogen oxidase. Proc. Natl. Acad. Sci. U. S. A.2006,103, 12329-12334.
    42. Gressel, J.; Levy, A.A. Agriculture:The selector of improbable mutations. Proc. Natl. Acad Sci. U.S.A.2006,103,12215-12216.
    43. Freire, E. Overcoming HIV-1 resistance to protease inhibitors. Drug Discov. Today Dis. Mech. 2006,3,281-286.
    44. Ode, H.; Matsuyama, S.; Hata, M., et al. Computational characterization of structural role of the non-active site mutation M36I of human immunodeficiency virus type 1 protease. J. Mol. Biol. 2007,370,598-607.
    45. Barreca, M.L.; Lcc, K.W.; Chimirri, A., et al. Molecular dynamics studies of the wild-type and double mutant HTV-1 integrase complexed with the 5CITEP inhibitor:Mechanism for inhibition and drug resistance. Biophys. J.2003,84,1450-1463.
    46. Ode, H.; Neya, S.; Hata, M., et al. Computational simulations of HIV-1 proteases-multi-drug resistance due to nonactive site mutation L90M. J. Am. Chem. Soc.2006,128,7887-7895.
    47. Laskowski, R.A.; Macarthur, M.W.; Moss, D.S., et al. Procheck-a Program to Check the Stereochemical Quality of Protein Structures. J. Appl. Cryst.1993,26,283-291.
    48. Jones, G.; Willett, P.; Glen, R.C., et al. Development and validation of a genetic algorithm for flexible docking. J. Mol. Biol.1997,267,727-748.
    49. Verdonk, M.L.; Cole, J.C.; Hartshorn, M.J., et al. Improved protein-ligand docking using GOLD. Protein Struct. Funct. Genet.2003,52,609-623.
    50. Raha, K.; Merz, K.M. Large-scale validation of a quantum mechanics based scoring function: Predicting the binding affinity and the binding mode of a diverse set of protein-ligand complexes. J. Med. Chem.2005,48,4558-4575.
    51. Bardi, J.S.; Luque, I.; Freire, E. Structure-based thermodynamic analysis of HIV-1 protease inhibitors. Biochemistry 1997,36,6588-6596.
    52. Gomez, J.; Freire, E. Thermodynamic Mapping of the Inhibitor Site of the Aspartic Protease Endothiapepsin. J. Mol. Biol.1995,252,337-350.
    53. Baldwin, R.L. Temperature-Dependence of the Hydrophobic Interaction in Protein Folding. Proc. Natl. Acad. Sci. U. S. A.1986,83,8069-8072.
    54. Daquino, J.A.; Gomez, J.; Hilser, V.J., et al. The magnitude of the backbone conformational entropy change in protein folding. Protein Struct. Funct. Genet.1996,25,143-156.
    55. Pan, Y.M.; Gao, D.Q.; Zhan, C.G. Modeling the catalysis of anti-cocaine catalytic antibody: Competing reaction pathways and free energy barriers. J. Am. Chem. Soc.2008,130,5140-5149.
    56. Koch, M.; Breithaupt, C.; Kiefersauer, R., et al. Crystal structure of protoporphyrinogen IX oxidase:a key enzyme in haem and chlorophyll biosynthesis. EMBO J.2004,23,1720-1728.
    57. Corradi, H.R.; Corrigall, A.V.; Boix, E., et al. Crystal structure of protoporphyrinogen oxidase from Myxococcus xanthus and its complex with the inhibitor acifluorfen. J. Biol. Chem.2006, 281,38625-38633.
    58. Shoup, D.E.; Al-Khatib, K.; Peterson, D.E. Common waterhemp (Amaranthus rudis) resistance to protoporphyrinogen oxidase-inhibiting herbicides. Weed Sci.2003,51,145-150.
    59. Patzoldt, W.L.; Tranel, P.J.; Hager, A.G. A waterhemp (Amaranthus tuberculatus) biotype with multiple resistance across three herbicide sites of action. Weed Sci.2005,53,30-36.
    60. Erickson, J.W.; Burt, S.K. Structural mechanisms of HIV drug resistance. Annu. Rev. Pharmacol. Toxicol.1996,36,545-571.
    61. Blanchard, J.S. Molecular mechanisms of drug resistance in Mycobacterium tuberculosis. Annu. Rev. Biochem.1996,65,215-239.
    62. Draghici, S.; Potter, R.B. Predicting HIV drug resistance with neural networks. Bioinformatics 2003,19,98-107.
    63. Rhee, S.Y.; Taylor, J.; Wadhera, G., et al. Genotypic predictors of human immunodeficiency virus type 1 drug resistance. Proc. Natl. Acad. Sci. U. S. A.2006,103,17355-17360.
    64. Stoica, I.; Sadiq, S.K.; Coveney, P.V. Rapid and accurate prediction of binding free energies for saquinavir-bound HIV-1 proteases. J. Am. Chem. Soc.2008,130,2639-2648.
    65. Ji, F.Q.; Niu, C.W.; Chen, C.N., et al. Computational design and discovery of conformationally flexible inhibitors of acetohydroxyacid synthase to overcome drug resistance associated with the W586L mutation. ChemMedChem 2008,3,1203-1206.
    66. Zhu, X.L.; Ge-Fei, H.; Zhan, C.G., et al. Computational Simulations of the Interactions between Acetyl-Coenzyme-A Carboxylase and Clodinafop:Resistance Mechanism Due to Active and Nonactive Site Mutations. J. Chem. Inf. Model.2009,49,1936-1943.
    67. Hao, G.F.; Zhu, X.L.; Ji, F.Q., et al. Understanding the Mechanism of Drug Resistance Due to a Codon Deletion in Protoporphyrinogen Oxidase through Computational Modeling. J. Phys. Chem. B 2009,113,4865-4875.
    68. Massova, I.; Kollman, P.A. Computational alanine scanning to probe protein-protein interactions: A novel approach to evaluate binding free energies. J. Am. Chem. Soc.1999,121,8133-8143.
    69. Moreira, I.S.; Fernandes, P.A.; Ramos, M.J. Unraveling the importance of protein-protein interaction:Application of a computational alanine-scanning mutagenesis to the study of the IgG1 streptococcal protein G (C2 fragment) complex. J. Phys. Chem. B 2006,110,10962-10969.
    70. Moreira, I.S.; Fernandes, P.A.; Ramos, M.J. Computational alanine scanning mutagenesis-An improved methodological approach. J. Comput. Chem.2007,28,644-654.
    71. Desjarlais, R.L.; Dixon, J.S. A Shape-Based and Chemistry-Based Docking Method and Its Use in the Design of Hiv-1 Protease Inhibitors. J. Comput-Aided. Mol. Des.1994,8,231-242.
    72. Wu, G.S.; Vieth, M. SDOCKER:A method utilizing existing X-ray structures to improve docking accuracy. J. Med. Chem.2004,47,3142-3148.
    73. Yang, J.M.; Chen, C.C. GEMDOCK:A generic evolutionary method for molecular docking. Protein Struct. Funct. Bioinf.2004,55,288-304.
    74. Charifson, P.S.; Corkery, J.J.; Murcko, M.A., et al. Consensus scoring:A method for obtaining improved hit rates from docking databases of three-dimensional structures into proteins. J. Med. Chem.1999,42,5100-5109.
    75. Burnett, J.C.; Botti, P.; Abraham, D.J., et al. Computationally accessible method for estimating free energy changes resulting from site-specific mutations of biomolecules:Systematic model building and structural/hydropathic analysis of deoxy and oxy hemoglobins. Protein Struct. Funct. Genet.2001,42,355-377.
    76. Krohn, A.; Redshaw, S.; Ritchie, J.C., et al. Novel binding mode of highly potent HIV-proteinase inhibitors incorporating the (R)-hydroxyethylamine isostere. J. Med. Chem.1991,34, 3340-3342.
    77. Kempf, D.J.; Marsh, K.C.; Denissen, J.F., et al. ABT-538 is a potent inhibitor of human immunodeficiency virus protease and has high oral bioavailability in humans. Proc. Natl. Acad. Sci. U.S.A.1995,92,2484-2488.
    78. Chen, Z.; Li, Y; Chen, E., et al. Crystal structure at 1.9-A resolution of human immunodeficiency virus (HIV) II protease complexed with L-735,524, an orally bioavailable inhibitor of the HIV proteases. J. Biol. Chem.1994,269,26344-26348.
    79. Kaldor, S.W.; Kalish, V.J.; Davies, J.F.,2nd, et al. Viracept (nelfinavir mesylate, AG1343):a potent, orally bioavailable inhibitor of HTV-1 protease. J. Med. Chem.1997,40,3979-3985.
    80. Kim, E.E.; Baker, C.T.; Dwyer, M.D., et al. Crystal Structure of HIV-1 Protease in Complex with Vx-478, a Potent and Orally Bioavailable Inhibitor of the Enzyme. J. Am. Chem. Soc.1995,117, 1181-1182.
    81. Stoll, V.; Qin, W.; Stewart, K.D., et al. X-ray crystallographic structure of ABT-378 (lopinavir) bound to HTV-1 protease. Bioorg. Med. Chem.2002,10,2803-2806.
    82. Wittayanarakul, K.; Aruksakunwong, O.; Saen-oon, S., et al. Insights into saquinavir resistance in the G48V HIV-1 protease:Quantum calculations and molecular dynamic simulations. Biophys. J.2005,88,867-879.
    83. Wittayanarakul, K.; Hannongbua, S.; Feig, M. Accurate prediction of protonation state as a prerequisite for reliable MM-PB(GB)SA binding free energy calculations of HIV-1 protease inhibitors. J. Comput. Chem.2008,29,673-685.
    84. Duan, Y.; Wu, C.; Chowdhury, S., et al. A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J. Comput. Chem.2003,24,1999-2012.
    85. Bayly, C.I.; Cieplak, P.; Cornell, W.D., et al. A Well-Behaved Electrostatic Potential Based Method Using Charge Restraints for Deriving Atomic Charges-the Resp Model. J. Phys. Chem. 1993,97,10269-10280.
    86. Cornell, W.D.; Cieplak, P.; Bayly, C.I., et al. Application of Resp Charges to Calculate Conformational Energies, Hydrogen-Bond Energies, and Free-Energies of Solvation. J. Am. Chem. Soc.1993,115,9620-9631.
    87. Michael, F.; John, K.; Charles, L.B., MMTSB Tool Set.2001:MMTSB NIH Research Resource: The Scripps Research Institute.
    88. Maschera, B.; Darby, G.; Palu, G., et al. Human immunodeficiency virus-Mutations in the viral protease that confer resistance to saquinavir increase the dissociation rate constant of the protease-saquinavir complex. J. Biol. Chem 1996,271,33231-33235.
    89. Markland, W.; Rao, B.G.; Parsons, J.D., et al. Structural and kinetic analyses of the protease from an amprenavir-resistant human immunodeficiency virus type 1 mutant rendered resistant to saquinavir and resensitized to amprenavir. J. Virol.2000,74,7636-7641.
    90. Muzammil, S.; Armstrong, A.A.; Kang, L.W., et al. Unique thermodynamic response of tipranavir to human immunodeficiency virus type 1 protease drug resistance mutations. J. Virol. 2007,81,5144-5154.
    91. Sham, H.L.; Kempf, D.J.; Molla, A., et al. ABT-378, a highly potent inhibitor of the human immunodeficiency virus protease. Antimicrob. Agents Chemother.1998,42,3218-3224.
    92. Rinnova, M.; Hradilek, M.; Barinka, C., et al. A picomolar inhibitor of resistant strains of human immunodeficiency virus protease identified by a combinatorial approach. Arch. Biochem. Biophys.2000,382,22-30.
    93. Wilson, S.I.; Phylip, L.H.; Mills, J.S., et al. Escape mutants of HIV-1 proteinase:Enzymic efficiency and susceptibility to inhibition. Biochim. Biophys. Acta-Protein Struct. Molec. Enzym. 1997,1339,113-125.
    94. Ermolieff, J.; Lin, X.L.; Tang, J. Kinetic properties of saquinavir-resistant mutants of human immunodeficiency virus type 1 protease and their implications in drug resistance in vivo. Biochemistry 1997,36,12364-12370.
    95. Klabe, R.M.; Bacheler, L.T.; Ala, P.J., et al. Resistance to HIV protease inhibitors:A comparison of enzyme inhibition and antiviral potency. Biochemistry 1998,37,8735-8742.
    96. Todd, M.J.; Luque, I.; Velazquez-Campoy, A., et al. Thermodynamic basis of resistance to HIV-1 protease inhibition:Calorimetric analysis of the V82F/I84V active site resistant mutant. Biochemistry 2000,39,11876-11883.
    97. Muzammil, S.; Ross, P.; Freire, E. A major role for a set of non-active site mutations in the development of HIV-1 protease drug resistance. Biochemistry 2003,42,631-638.
    98. Ohtaka, H.; Schon, A.; Freire, E. Multidrug resistance to HIV-1 protease inhibition requires cooperative coupling between distal mutations. Biochemistry 2003,42,13659-13666.
    99. Pazhanisamy, S.; Stuver, C.M.; Cullinan, A.B., et al. Kinetic characterization of human immunodeficiency virus type-1 protease-resistant variants. J. Biol. Chem.1996,271, 17979-17985.
    100. Liu, F.L.; Kovalevsky, A.Y.; Tie, Y.F., et al. Effect of flap mutations on structure of HIV-1 protease and inhibition by saquinavir and darunavir. J. Mol. Biol.2008,381,102-115.
    101. Rose, R.E.; Gong, Y.F.; Greytok, J.A., et al. Human immunodeficiency virus type 1 viral background plays a major role in development of resistance to protease inhibitors. Proc. Natl. Acad. Sci. U. S. A.1996,93,1648-1653.
    102. Gulnik, S.V.; Suvorov, L.I.; Liu, B.S., et al. Kinetic Characterization and Cross-Resistance Patterns of Hiv-1 Protease Mutants Selected under Drug Pressure. Biochemistry 1995,34, 9282-9287.
    103. Partaledis, J.A.; Yamaguchi, K.; Tisdale, M., et al. In-Vitro Selection and Characterization of Human-Immunodeficiency-Virus Type-1 (Hiv-1) Isolates with Reduced Sensitivity to Hydroxyethylamino Sulfonamide Inhibitors of Hiv-1 Aspartyl Protease. J. Virol.1995,69, 5228-5235.
    104. Kuhn, B.; Kollman, P.A. A ligand that is predicted to bind better to avidin than biotin:Insights from computational fluorine scanning. J. Am. Chem. Soc.2000,122,3909-3916.
    105. http://www.weedscience.org/In.asp.
    106. Hao, G.-F.; Tan, Y.; Yu, N.-X., et al. Structure-activity relationships of diphenyl-ether as protoporphyrinogen oxidase inhibitors:insights from computational simulations. J. Comput-Aided. Mol. Des.2011,25,213-222.
    1. Kirkpatrick, P.; Ellis, C. Chemical space. Nature 2004,432,823-823.
    2. Erlanson, D.A.; Wells, J.A.; Braisted, A.C. Tethering:Fragment-based drug discovery. Annu. Rev. Biophys. Biomol. Struct.2004,33,199-223.
    3. Hann, M.M.; Oprea, T.I. Pursuing the leadlikeness concept in pharmaceutical research. Curr. Opin. Chem. Biol.2004,8,255-263.
    4. Kuntz, I.D.; Chen, K.; Sharp, K.A., et al. The maximal affinity of ligands. Proc. Natl. Acad. Sci. U. S. A.1999,96,9997-10002.
    5. Hopkins, A.L.; Groom, C.R.; Alex, A. Ligand efficiency:a useful metric for lead selection. Drug Discov. Today 2004,9,430-431.
    6. Hajduk, P.J.; Greer, J. A decade of fragment-based drug design:strategic advances and lessons learned. Nat. Rev. Drug Discov.2007,6,211-219.
    7. Shuker, S.B.; Hajduk, P.J.; Meadows, R.P., et al. Discovering high-affinity ligands for proteins: SAR by NMR. Science 1996,274,1531-1534.
    8. Pellecchia, M; Bertini, I.; Cowburn, D., et al. Perspectives on NMR in drug discovery:a technique comes of age. Nat. Rev. Drug Discov.2008,7,738-745.
    9. Hartshorn, M.J.; Murray, C.W.; Cleasby, A., et al. Fragment-based lead discovery using X-ray crystallography. J. Med. Chem.2005,48,403-413.
    10. Sweeney, Z.K.; Acharya, S.; Briggs, A., et al. Discovery of triazolinone non-nucleoside inhibitors of HIV reverse transcriptase. Bioorg. Med. Chem. Lett.2008,18,4348-4351.
    11. Erlanson, D.A. Fragment-based lead discovery:a chemical update. Curr. Opin. Biotechnol.2006, 17,643-652.
    12. Baier, G.; Schraven, B.; Zugel, U., et al., Fragment-Based Drug Discovery Using Rational Design, in Sparking Signals.2008, Springer Berlin Heidelberg, p.169-185.
    13. Huang, J.W.; Zhang, Z.M.; Wu, B.N., et al. Fragment-Based Design of Small Molecule X-Linked Inhibitor of Apoptosis Protein Inhibitors. J. Med. Chem.2008,51,7111-7118.
    14. Marcou, G.; Rognan, D. Optimizing fragment and scaffold docking by use of molecular interaction fingerprints. J. Chem. Inf. Model.2007,47,195-207.
    15. Hubbard, R.E.; Chen, I.; Davis, B. Informatics and modeling challenges in fragment-based drug discovery. Curr. Opin. Drug Discov. Devel.2007,10,289-297.
    16. Klebe, G. Virtual ligand screening:strategies, perspectives and limitations. Drug Discov. Today 2006,11,580-594.
    17. Kolb, P.; Caflisch, A. Automatic and efficient decomposition of two-dimensional structures of small molecules for fragment-based high-throughput docking. J. Med. Chem.2006,49, 7384-7392.
    18. Congreve, M.; Carr, R.; Murray, C., et al. A rule of three for fragment-based lead discovery? Drug Discov. Today 2003,8,876-877.
    19. Brandt, U.; Trumpower, B. The Protonmotive Q-Cycle in Mitochondria and Bacteria. Crit. Rev. Biochem. Mol. Biol.1994,29,165-197.
    20. Berry, E.A.; Guergova-Kuras, M.; Huang, L.S., et al. Structure and function of cytochrome be complexes. Annu. Rev. Biochem.2000,69,1005-1075.
    21. Palsdottir, H.; Lojero, C.G.; Trumpower, B.L., et al. Structure of the yeast cytochrome bc(1) complex with a hydroxyquinone anion Q(o) site inhibitor bound. J. Biol. Chem.2003,278, 31303-31311.
    22. Mitchell, P. Possible Molecular Mechanisms of Protonmotive Function of Cytochrome Systems. J. Theor. Biol.1976,62,327-367.
    23. Sauter, H.; Steglich, W.; Anke, T. Strobilurins:Evolution of a new class of active substances. Angew. Chem.-Int. Edit.1999,38,1329-1349.
    24. Xiang, H.; McSurdy-Freed, J.; Moorthy, G.S., et al. Preclinical drug metabolism and pharmacokinetic evaluation of GW844520, a novel anti-malarial mitochondrial electron transport inhibitor. J. Pharm. Sci.2006,95,2657-2672.
    25. Yeates, C.L.; Batchelor, J.F.; Capon, E.C., et al. Synthesis and structure-activity relationships of 4-pyridones as potential antimalarials. J. Med. Chem.2008,57,2845-2852.
    26. Mather, M.W.; Darrouzet, E.; Valkova-Valchanova, M., et al. Uncovering the molecular mode of action of the antimalarial drug atovaquone using a bacterial system. J. Biol. Chem.2005,280, 27458-27465.
    27. Kessl, J.J.; Lange, B.B.; Merbitz-Zahradnik, T., et al. Molecular basis for atovaquone binding to the cytochrome bc(1) complex. J. Biol. Chem.2003,275,31312-31318.
    28. Balba, H. Review of strobilurin fungicide chemicals. J. Environ. Sci. Health Part B-Pestic. Contam. Agric. Wastes 2007,42,441-451.
    29. Bartlett, D.W.; Clough, J.M.; Godwin, J.R., et al. The strobilurin fungicides. Pest Manag. Sci. 2002,58,649-662.
    30. Becker, W.F.; Vonjagow, G.; Anke, T., et al. Oudemansin, Strobilurin-a, Strobilurin-B and Myxothiazol-New Inhibitors of the Bcl Segment of the Respiratory-Chain with an E-Beta-Methoxyacrylate System as Common Structural Element. FEBS Lett.1981,132, 329-333.
    31. Zhao, P.L.; Wang, L.; Zhu, X.L., et al. Subnanomolar Inhibitor of Cytochrome bc(1) Complex Designed by Optimizing Interaction with Conformationally Flexible Residues. J. Am. Chem. Soc. 2010,132,185-194.
    32. Fisher, N.; Brown, A.C.; Sexton, G., et al. Modeling the Q(o) site of crop pathogens in Saccharomyces cerevisiae cytochrome b. Eur. J. Biochem.2004,271,2264-2271.
    33. Kim, Y.S.; Dixon, E.W.; Vincelli, P., et al. Field resistance to strobilurin (Q(o)I) fungicides in Pyricularia grisea caused by mutations in the mitochondrial cytochrome b gene. Phytopathology 2003,93,891-900.
    34. Sierotzki, H.; Frey, R.; Wullschleger, J., et al. Cytochrome b gene sequence and structure of Pyrenophora teres and P-tritici-repentis and implications for QoI resistance. Pest Manag. Sci. 2007,63,225-233.
    35. Fernandez-Ortuno, D.; Tores, J.A.; de Vicente, A., et al. Field resistance to QoI fungicides in Podosphaera fusca is not supported by typical mutations in the mitochondrial cytochrome b gene. Pest Manag. Sci.2008,64,694-702.
    36. Durrant, J.D.; Amaro, R.E.; McCammon, J.A. AutoGrow:A Novel Algorithm for Protein Inhibitor Design. Chem. Biol. Drug Des.2009,73,168-178.
    37. Hornak, V; Abel, R.; Okur, A., et al. Comparison of multiple amber force fields and development of improved protein backbone parameters. Protein Struct. Funct. Bioinf.2006,65,712-725.
    38. Wang, J.M.; Wolf, R.M.; Caldwell, J.W., et al. Development and testing of a general amber force field. J. Comput. Chem.2004,25,1157-1174.
    39. Gao, X.G.; Wen, X.L.; Yu, C.A., et al. The crystal structure of mitochondrial cytochrome bcl in complex with famoxadone:The role of aromatic-aromatic interaction in inhibition. Biochemistry 2002,41,11692-11702.
    40. Esser, L.; Quinn, B.; Li, Y.F., et al. Crystallographic studies of quinol oxidation site inhibitors:A modified classification of inhibitors for the cytochrome bc(1) complex. J. Mol. Biol.2004,341, 281-302.
    41. Gasteiger, J.; Saller, H. Calculation of the Charge-Distribution in Conjugated Systems by a Quantification of the Resonance Concept. Angew. Chem.-Int. Edit.1985,24,687-689.
    42. Jakalian, A.; Jack, D.B.; Bayly, C.I. Fast, efficient generation of high-quality atomic charges. AM1-BCC model:II. Parameterization and validation. J. Comput. Chem.2002,23,1623-1641.
    43. Adelman, S.A.; Doll, J.D. Generalized Langevin Equation Approach for Atom-Solid-Surface Scattering-General Formulation for Classical Scattering Off Harmonic Solids. J. Chem. Phys. 1976,64,2375-2388.
    44. Tie, Y.F.; Boross, P.I.; Wang, Y.F., et al. High resolution crystal structures of HIV-1 protease with a potent non-peptide inhibitor (UIC-94017) active against multi-drug-resistant clinical strains. J. Mol. Biol.2004,338,341-352.
    45. Ghosh, A.K.; Sridhar, P.R.; Leshchcnko, S., et al. Structure-based design of novel HIV-1 protease inhibitors to combat drug resistance. J. Med. Chem.2006,49,5252-5261.
    46. Ghosh, A.K.; Kulkarni, S.; Anderson, D.D., et al. Design, Synthesis, Protein-Ligand X-ray Structure, and Biological Evaluation of a Series of Novel Macrocyclic Human Immunodeficiency Virus-1 Protease Inhibitors to Combat Drug Resistance. J. Med. Chem.2009, 52,7689-7705.
    47. Ghosh, A.K.; Chapsal, B.D.; Weber, I.T., et al. Design of HIV protease inhibitors targeting protein backbone:An effective strategy for combating drug resistance. Ace. Chem. Res.2008,41, 78-86.
    48. Hsiou, Y.; Das, K.Y.; Ding, J.P., et al. Structures of Tyr188Leu mutant and wild-type HIV-1 reverse transcriptase complexed with the non-nucleoside inhibitor HBY 097:Inhibitor flexibility is a useful design feature for reducing drug resistance. J. Mol. Biol.1998,284,313-323.
    49. Das, K.; Clark, A.D.; Lewi, P.J., et al. Roles of conformational and positional adaptability in structure-based design of TMC125-R165335 (etravirine) and related non-nucleoside reverse transcriptase inhibitors that are highly potent and effective against wild-type and drug-resistant HIV-1 variants. J. Med. Chem.2004,47,2550-2560.
    50. Das, K.; Bauman, J.D.; Clark, A.D., et al. High-resolution structures of HIV-1 reverse transcriptase/TMC278 complexes:Strategic flexibility explains potency against resistance mutations. Proc. Natl. Acad. Sci. U. S. A.2008,105,1466-1471.
    51. McKimm-Breschkin, J.L.; Sahasrabudhe, A.; Blick, T.J., et al. Mutations in a conserved residue in the influenza virus neuraminidase active site decreases sensitivity to Neu5Ac2en-derived inhibitors. J. Virol.1998,72,2456-2462.
    52. Fattorusso, C.; Gemma, S.; Butini, S., et al. Specific targeting highly conserved residues in the HIV-1 reverse transcriptase primer grip region. Design, synthesis, and biological evaluation of novel, potent, and broad spectrum NNRTIs with antiviral activity. J. Med. Chem.2005,48, 7153-7165.
    53. Butini, S.; Brindisi, M.; Cosconati, S., et al. Specific Targeting of Highly Conserved Residues in the HIV-1 Reverse Transcriptase Primer Grip Region.2. Stereoselective Interaction to Overcome the Effects of Drug Resistant Mutations. J. Med. Chem.2009,52,1224-1228.
    54. http://zinc.docking.org/.
    55. Abad-Zapatero, C.; Metz, J.T. Ligand efficiency indices as guideposts for drug discovery. Drug Discov. Today 2005,10,464-469.
    56. Heinemann, I.U.; Diekmann, N.; Masoumi, A., et al. Functional definition of the tobacco protoporphyrinogen IX oxidase substrate-binding site. Biochem. J.2007,402,575-580.
    57. Koch, M.; Breithaupt, C.; Kiefersauer, R., et al. Crystal structure of protoporphyrinogen IX oxidase:a key enzyme in haem and chlorophyll biosynthesis. EMBO J.2004,23,1720-1728.
    58. Zhang, L.; Hao, G.F.; Tan, Y., et al. Bioactive conformation analysis of cyclic imides as protoporphyrinogen oxidase inhibitor by combining DFT calculations, QSAR and molecular dynamic simulations. Bioorg. Med. Chem.2009,17,4935-4942.
    59. Wan, J.; Zhang, L.; Yang, G.F. Quantitative structure-activity relationships for phenyl triazolinones of protoporphyrinogen oxidase inhibitors:A density functional theory study. J. Comput. Chem.2004,25,1827-1832.
    60. Wan, J.; Zhang, L.; Yang, G.F., et al. Quantitative structure-activity relationship for cyclic imide derivatives of protoporphyrinogen oxidase inhibitors:A study of quantum chemical descriptors from density functional theory. J. Chem. Inf. Comp. Sci.2004,44,2099-2105.
    61. Hao, G.-F.; Tan, Y.; Yu, N.-X., et al. Structure-activity relationships of diphenyl-ether as protoporphyrinogen oxidase inhibitors:insights from computational simulations. J. Comput-Aided. Mol. Des.2011,25,213-222.
    62. Hao, G.F.; Zhu, X.L.; Ji, F.Q., et al. Understanding the Mechanism of Drug Resistance Due to a Codon Deletion in Protoporphyrinogen Oxidase through Computational Modeling. J. Phys. Chem. B 2009,113,4865-4875.
    63. Zhang, L.; Wan, H.; Yang, G.F. A DFT-based QSARs study of protoporphyrinogen oxidase inhibitors:phenyl triazolinones. Bioorg. Med. Chem.2004,12,6183-6191.
    64. Scalla, R.; Matringe, M. Inhibitors of protoporphyrinogen oxidase as herbicides:Diphenyl ethers and related photobleaching molecules. Rev. Weed Sci.1994,6,103-132.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700