用户名: 密码: 验证码:
丛枝菌根与无糖培养对海棠组培苗生理效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物组织培养是一项能获得大量同品质种苗的快速繁育技术,具有其它育苗方式无法比拟的优势,已成为植物良种繁育的重要手段。论文针对常规组织培养生长环境差、易污染、种苗玻璃化、驯化周期长等实际问题,以及植物无糖组培CO_2控制精度低、湿度难以控制、促苗手段缺乏等技术难题,从大型培养容器的设计、环境的精确控制、无糖暴露培养模式、PPFD与CO_2浓度相关性以及菌根促苗等关键技术入手,创建了以大型培养容器为核心的高品质种苗无糖培养技术体系。本研究主要内容与成果如下:
     1.研制了装有新型CO_2施放装置的180L大型培养容器及其环境控制系统,通过对培养容器的改进,使操作更容易;同时,更大的垂直空间,提高了培养容器内气体浓度的缓冲性能;CO_2施放装置的设计与安装,为提高CO_2施放时的控制精度创造了条件;采用小流量控制、三通阀调节和PWM控制方式,实现对CO_2浓度的精确控制,控制精度达到±50μmol·mol~(-1);采用覆膜技术和气体循环吸附除湿相结合的方式实现了对容器内相对湿度的自动控制,控制精度达到±2%。
     2.采用自行设计的无糖培养容器和环境控制系统,建立了穴盘覆膜暴露培养新模式,改进了传统的密闭式小容器培养方法,实现了组培苗开放式培养,摆脱了许多传统组织培养的束缚,省略了组培苗驯化阶段,建立了新的技术体系,采用该模式培养的组培苗光合能力强、根系发达,植株的干物质积累多,组培苗生长均匀,品质高。
     3.研究了PPFD与CO_2相互作用对组培苗光合作用的影响,明确了组培环境应处于适当的高CO_2浓度和与之相匹配的高PPFD,以使组培苗高效利用光能,促进组培苗的生长。
     4.建立了生根阶段接种菌根真菌提高组培苗品质的方法。在生根阶段接种AM真菌,形成平衡的根际生物环境,促进了组培苗的生长发育。主要表现为:减少叶片的气孔阻力、增加叶绿素含量和CO_2的固定,提高寄主植物的光合速率,改善植株的生理状况及品质;而且,形成的菌根真菌—组培苗共生关系在移栽后仍然存在,并减轻了移栽对海棠组培苗造成的胁迫,缩短海棠组培苗的休眠时间7天。
     5.研究并确立了在离体条件下建立丛枝菌根—组培苗共生体关键技术措施:
     (1)降低培养基中营养离子浓度。对于圆叶海棠组培苗研究采用无激素无糖的1/4MS培养基,降低了培养基矿质离子浓度,为有益微生物生长提供一个低渗透压的生存环境。
     (2)选择侵染率高效的菌株。本研究筛选了Gv菌根接种圆叶海棠组培苗能够提高组培苗的品质。
     (3)适宜的接种量,本研究筛选了菌根接种圆叶海棠组培苗接种量为5 g·pot~(-1)的为最好。
     (4)增加光照度和CO_2浓度能够提高组培苗的光合作用,促进组培苗光合产物的积累,减轻菌根真菌初期侵染寄主植物时的副作用。
Plant tissue culture is a widely used biological technique method for production of large number of genetically identical plantlets. It has many advantages over conventional propagation techniques, and has been developed to an important means of plantlet propagation. In this paper, due to the problems of the conventional tissue culture, such as: the unhealthy growth environment, the vulnerable pollution, the vitrification, the long dormant period, and the technical difficulties of the plant sugar-free tissue culture, such as: low CO_2 control precision, the high humidity, the lack of means to improve the plantlet quality and so on. Researches were undertaken on the large-scale vessel design, the environment accuracy control, the sugar-free exposition culture pattern, relevance of PPFD and CO_2 concentration, as well as the mycorrhiza technology to improve the plantlet and so on. The sugar-free culture technology system for high-quality plantlet was founded. The main achievement of this research as follows:
     1. A novel 180 litres large-scale cultural vessel for sugar-free culture was designed. The vessel consisted of CO_2 release pipe (with holes in the pipe), environmental control device and gas exchange holes. This design made the operation to be easier; At the same time, a bigger vertical space enhanced the gas density cushion performance; the installment of CO_2 release pipe created the condition for high control precision; Through the small-flow control, the three-way-valve adjustment and the PWM, The control precision was up to±50μmol·mol~(-1); the membrane tectoria and the gas-cycle adsorption to eliminate the humidity were used to automatically control the relative humidity; the control precision was±2%.
     2. The sugar-free culture box with environmental control system independently designed was adopted, the sugar-free exposed culture pattern in the membrana-tectoria plate were proposed for the first time, which improved the traditional method using the small container, and broke away from many of the traditional constraints of plant tissue culture. The open-vitro cultivation became true, which omitted from the acclimation phase, and established a new technical system. Using this pattern, the plantlets had higher photosynthesis, the developed root, the more dry matter, the growing unanimity, and the better quality.
     3. The relevance of PPFD and CO_2 concentration to the photosynthesis of plantlets was studied, it was showed that when the high CO_2 concentration was matched with high PPFD the photosynthetic rate of plantlets in vitro would be promoted effectively, and the plantlets was vigorous and healthy.
     4. An integrated inoculation technology to enhance of the growth of the plantlets had been established in rooting stage in sugar-free culture in vitro, which formed the balanced rhizosphere biology environment, and promoted the growth of the plantlets, such as: reduced leaf's stoma resistance, increased chlorophyll content and CO_2 fixation, enhanced the photosynthesis rate of the host plantlets, and improved physiological condition and the quality of the plantlets; Moreover, this kind of paragenesis relations still existed after transplanted, which reduced environment stress after transplanted, and shortened the dormant period of crabapple, the sprout time of new leaf was ahead of time 7 days than those of non-mycorrhizal explants.
     5. The key technology of mycorrhizal inoculation with AM fungus on the photosynthesis of plantlets in vitro was:
     (1) Reducing the nutrition ion concentration in the culture medium. 1/4 hormone-free and sugar-free MS medium was used to culture Malus pruniolia var ringo plantlets, which reduced mineral ion concentration, and provided a low-osmolality living environment for microbial growth.
     (2) Choosing species of highly colonization. The better selection of mycorrhizal inoculation species of Malus pruniolia var ringo plantlet in vitro was Gv.
     (3) Using suitable amount of inoculums. The better selection of mycorrhizal inoculation amount in vitro of Malus pruniolia var ringo plantlet was 5 g pot~(-1).
     (4) Increasing the light intensity and CO_2 concentration in plant tissue culture can improve the plantlets' photosynthesis, accelerate accumulation of photosynthetic products, and reduce the side effects of AM initial infection to the host plantlets
引文
1.柏新富,蒋小满,朱建军,梁建光.芋组培苗移栽驯化期的光合特性.园艺学报,2005,32(3):518~520.
    2.蔡能,易自力,李祥.改善植物大规模组织培养条件的研究进展.植物学通报,2003,20(6):745~751.
    3.柴卫淑,潭学林,曲云慧.植物组培新技术-无糖培养法.云南农业科技,2003,6:7~8.
    4.崔瑾.芋(Colocasia esculenta L Schott)脱毒快繁体系的构建以及组培苗无糖培养的研究:[博士学位论文].南京:南京农业大学,2002.
    5.崔瑾,丁永前,李式军,丁为民,徐志刚,杨旭东.增施CO_2对葡萄组培苗生长发育和光合自养能力的影响.南京农业大学学报,2001,24(2):28~31.
    6.陈辉,唐明.树木菌根研究进展.林业科学,1997,33(2):181~188.
    7.丁永前.组培微生态环境中CO_2控制的研究:[硕士学位论文].南京:南京农业大学,2000.
    8.丁永前,丁为民,崔瑾等.组培环境CO_2增施监控系统的设计与试验.农业工程学报,2002,18(1):96~98.
    9.冯固,白灯莎,杨茂秋等.盐胁迫对VA菌根形成及接种VAM真菌对植物耐盐性的效应.应用生态学报,1999.10(1):79~82.
    10.冯固,张玉风,李晓林.丛枝菌根真菌的外生菌丝对土壤水稳性团聚体形成的影响.水土保持学报,2001,15(4):99~102.
    11.冯固,杨茂秋,白灯莎.盐胁迫下VA菌根真菌对无芒雀麦体内矿质元素含量组成的影响.草业学报,1998,7(3):21~28.
    12.弓明钦,陈应龙,仲崇禄.菌根研究及应用.北京:中国林业出版社,1997.
    13.侯福林.植物生理学实验教程.北京,科学出版社,2004,43~58.
    14.贺学礼,赵丽莉,李生秀.水分胁迫及VA菌根接种对绿豆生长的影响.核农学报,1999,14(5):290~294.
    15.何绍江,毛新国,李传涵.vA菌根化杉树苗抗酚能力的研究.湖北农学院学报,1999.19(2):107~109.
    16.李朝周,张利平,曹孜义.葡萄组培苗炼苗过程光合特性的变化.甘肃农业大学学报,1995,12(4):302~306.
    17.刘润进,沈崇尧,李怀方,裘维藩.VA菌根真菌和大丽轮枝菌(Verticillium dahliae)对棉花体内PR蛋白的诱导作用.植物病理学报,1993,23(3):162~165.
    18.刘润进,李晓林.丛枝菌根及其应用.北京:科学出版社,2000.
    19.李志真,谢一青.VA菌根的研究进展及其应用前景.江西农业大学学报(自然科学版),2002,24(4):448~453.
    20.李警,王虹,薛鹰.非灭菌条件下vA菌根真菌对紫茉莉幼苗生长的影响.西安联合大学学报(自然科学版),2000,3(2):7~10.
    21.林先贵,郝文英,施亚琴.VA菌根对植物耐旱、涝能力的影响.土壤,1992,24(3):142~145·
    22.刘润进,李敏,孟祥霞,刘新,李晓林.丛枝菌根真菌对玉米和棉花内源激素的影响.菌物系统,2000,19(1):91~96.
    23.廖飞雄,李玲,姚翠娴,郭仲孝.无蔗糖培养和不同封口膜对非洲菊组培苗生长的影响研究.中国农学通报,2004,20(4):211~214.
    24.李宗菊,周应撰,桂明英,王玲.满天星无糖组培快繁技术的研究.云南大学学报(自然科学版),1999,21:134~138.
    25.刘再亮.密闭式人工光组培室的环境控制与洁净技术的研究:[硕士学位论文].北京:中国农业大学,2004.
    26.李传业,滕光辉,曲英华.基于PLC的无糖组培微环境控制系统.中国农业大学学报,2004,9(4):30~34.
    27.李传业.基于PLC的无糖组培微环境CO_2增施监控系统的开发研究:[硕士学位论文].北京:中国农业大学,2004.
    28.李敏,刘鹏起,刘润进.丛枝菌根真菌对芋组织培养苗生长的影响.园艺学报,2002,29(5):451~453.
    29.李萍萍,胡永光,赵玉国等.增施CO_2气肥对温室结球莴苣光合作用影响的综合模型研究.农业工程学报,2001 17(3):75~79.
    30.李晓林,冯固等.丛枝菌根生态生理.北京:华文出版社.2001,1~358.
    31.潘瑞炽,董愚得.植物生理学,第3版.北京:高等教育出版社,1995.
    32.彭柞登,宋廷茂,张鸿雁.世界干旱半干旱地区集水造林枝术研究应用的现状及其发展动向.世界林业研究,1996 3:29~36.
    33.齐国辉,陈贵林,吕桂云等.丛枝菌根真菌对重茬草莓产量和品质的影响.果树学报,2001,18(6):341~34.
    34.齐国辉,张林平,杨文利等.丛枝菌根真菌对重茬银杏生长及抗病性的影响.河北林果研究,2002,17(3):58~61.
    35.屈云慧,熊丽,张素芳,杨春梅,蒋亚莲.彩色马蹄莲组织苗无糖生根培养的环境控制.植物遗传资源学报,2004,5(2):166~169.
    36.屈云慧,熊丽,张素芳,吴丽芳,杨春梅.虎眼万年青离体快繁体系及无糖生根培养.中南林学院学报,2003,23(5):56~58.
    37.曲英华,胡秀婵,吴毅明.植物组织培养新技术:光独立培养法.农业工程学报,2001,17(6):90~93.
    38.孙儒泳,李庆芬,牛翠娟等.基础生态学.北京:高等教育出版社,2002.
    39.唐明,陈辉,商鸿生.丛枝菌根真菌(AMF)对沙棘抗旱性的影响.林业科学,1999,35(3):48~52.
    40.肖宏儒,曹曙明,万振邦,刘先才,刘学彬.沿海滩涂地区农业资源综合开发利用模式的探索.农业环境与发展,1998,15(1):9~22.
    41.王发园,刘润进.AM真菌分类学最新研究进展.菌物系统,2001,20(4):588~593.
    42.汪洪钢,吴观以,李慧荃.VA菌根对绿豆生长及水分利用的影响.土壤学报,1989,26(4):393~400.
    43.王守生,何首林等.VAM真菌对茶树营养生长和茶叶品质的影响.土壤学报,1997,34(1):97~102.
    44.王真辉.菌根真菌在植物组培苗生产技术中的应用.热带农业科学,2001(5):71~78.
    45.王立文.植物无糖组培中CO_2增施方法及其应用的研究:[博士学位论文].南京:南京农业大学,2005.
    46.吴毅明.植物组织培养的环境调节研究进展.生态农业研究,2000,8(1):73~75.
    47.徐志刚,崔瑾,焦学磊,丁为民,李式军.光照度和CO_2浓度间接调控对甘薯无糖组培苗光合特性的影响.南京农业大学学报,2004,27(1):11~14.
    48.肖玉兰,张立力,张光怡,韩亚平,赵家聪.非洲菊无糖组织培养技术的应用研究.园艺学报,1998,25:408~410.
    49.肖玉兰.植物无糖组培快繁工厂化生产技术.昆明:云南科技出版社,2003.
    50.徐志刚.组培微环境与规模化育苗设施环境调控的研究:[博士学位论文].南京:南京农业大学,2002.
    51.徐志刚,丁为民,丁永前,崔瑾,李式军.规模化组培育苗设施环境与控制的研究进展.农业机械学报,2002,01:106~110.
    52.肖玉兰,钱彪,和树庄等.植物光独立培养微繁殖培养箱.中国专利:00223771.7[P].2001,2001-05-16.
    53.杨显志,邵华,周成等.丛枝菌根研究及应用.云南农业科技,2001(4):38~41.
    54.杨其长,张成波.植物工厂概论.北京:中国农业科学技术出版社,2005.
    55.姚艳玲,冯固等.NaCl胁迫下VA菌根对玉米耐盐能力的影响.新疆农业科学,1999,1:20~22.
    56.张文敏,张美庆,马彦卿等.内生(VA)菌根用于矿山复垦的田间试验研究.有色金属(矿山部分),2000(6):40~42.
    57.周锺信,李明,张丽香,张丽清.非洲菊光合微繁技术的研究.天津农学院学报,2002,9(4):15~18.
    58.周炜.组培微环境调控与组培苗形态及生理的研究.[硕士学位论文].北京:中国农业大学,2006.
    59.张勇.丛枝菌根真菌离体培养及其对葡萄组培苗生长效应的研究:[硕士学位论文].重庆:西南农业大学,2003.
    60.朱本海.人工光型密闭式植物工厂化的洁净与环境控制:[硕士学位论文].北京:中国农业大学,2006.
    61.张英,李瑞卿,王东昌等.AM真菌纯培养研究进展.莱阳农学院学报,2001.18(2):121~124.
    62.张其德,赵福洪,许春辉.光合作用.北京:人民教育出版社,1986.
    63.Afreen F, Zobayed S M A, Kozai T. Photoautotropic culture of Coffea arabusta somatic embryos Ⅱ: development of a bioreactor for the large-scale plantlet conversion from cotyledonary embryos. Ann.Bot. 2002,9: 20~29.
    64.Afreen F, Zobayed S M A, Kubota C, Kobota C, Kozai T. Supporting material affects the growth and development of in vitro sweet potato plantlets cultured photoautotrophically. In vitro Cell. Dev. Biol. Plant.1999,35:470~474. 65Afreen F,Zobayed S M A,Kubota C,Kobota C,Kozai T.Hasegawa.O.A combination of vermiculite and paper pulp supporting material for the Photoautotrophic micropropagation of sweet potato.Plant science 2000,157:225~231. 66. Adelberg J,Fujiwara K,Kirdmanee C,Kozai T.Photoautotrophic shoot and root development for triploid melon.Plant Cell,Tissue and Organ Clture 1999,57:95~104. 67. Aitken-christie J,Kozai T,Smith M A L.Automation and environmental control in plant tissue culture.Kluwer Academic Publishers.Dordrecht.1995. 68. Azcon A C,Berea J M.Applying mycorrhiza biotechnology to horticulture:significance and notentiais.Sci Horticulture 1997,68:1~24. 69. Azcon A C,Encina C L,Azcon R,et al.Effect of arbuscular mycorrhiza on the growth and development of micropropagated Annona cherimola plants.Agriculture Science in Finland.1994,3(3) :281~288. 70. Anushr1 Varshney,Sharma MP,et al.Enhanced growth of micropropagated bulblets of Lilium sp.inoculated with arbuscular mycorrhizal fungi at different P fertility levels in an alfisol.Journal of Horticultural Science and Biotechnology,2002,77(3) :258~263. 71. Budi S W Cordier C,Trouvelot A,et al.Arbuscular mycorrhiza as a way of promoting sustainable growth of micropropagated plants.Acta Horticulture,1998,457:71~77. 72. Becard G,Fortin J A.Early events of vesicular-arbuscular mycorrhiza formation on Ri T-DNA transformed roots.New Phytologist,1988,108:211~218. 73. Brent Tisserat,Chistopher Herman,Robert Silman.Using ultra-high carbon dioxide levels enhances plantlet growth in vitro.Hort Tech,1997,7(3) :7~9. 74. Cui Y Y,Hahn E J,Kozai T,et al.Number of air exchanges,sucrose concentration,photosynthetic photosynthetic photon flux,and differences in photoperiod and dark period temperatures affect growth of Rehmannia glutinosa plantlets in vitro.Plant cell,Tissue and Organ culture.2000,62:219~226. 75. Chenevard D,Jay-Allemand C,Gendraud M.and Frossard J S.The effect of sucrose on the development of hybrid walnut plantlets(Juglans nigra (?)J.regia).Consequences on their survival during their acclimatization.Ann.Sci.For.,1995,52:147~156. 76. Chavez M C,Ferrera C R.Effect of vesicular arbuscular mycorrhizae on tissue culture derived plants of strawberry.Hort.Science.1990,25(8) :903~905. 77. Cassells A C,Mark G L,Periappuram C.Establishment of arbuscular mycorrhizal fungi in autotrophic strawberry cultures in vitro.Comparison with inoculation of microplants in vivo.Agronomic 1996,16:625~632. 78. Desjardins Y.Photosynthesis in vitro on the factors regulating CO_2 assimilation in micropropagation system.Acta Hort,1995,393:45~61.
    79. Cournac L,Dimon B,Carrier P,et al.Growth and photosynthetic characteristics of Solamun tuberosum plantlets cultivated in vitro under different condition of aeration,sucrose supply,and CO_2 enrichment. Plant. Physiol. 1991, 97:112~117.
    80.Diaz-Perez J C, Sutter E G, K A Shackel. Acclimatization and subsequent gas exchange, water relations, survival and growth of microcultured apple plantlets after transplanting them in soil Physiologia Plantarum, 1995, 95: 225~232.
    81.Duke E R, Johnson C R, Koch K E. Accumulation of phosphorus dry matter and betaine during NaCl stress of slip-roof citrus seedlings colonized with vesicular arbuscular mycorrhizal fungi on zero, one or two halves. New Phytol, 1986, 104: 483~590.
    82.Dube S, Vidaver W. Photosynthetic competence of planlets grown in vitro. Physiol Plant, 1992, 84:409~416.
    83.Desjardins Y. Photosynthesis in vitro on the factors regulating CO_2 assimilation in micropropagation systems. Acta Hort, 1995,359: 45~57.
    84.Declerck S, Strullu D G, Plenchette C. Monoxenic culture of the in-traradical forms of Glomus sp. isolated from a tropical ecosystem: a proposed methodology for germplasm collection. Mycologia, 1998, 90 (4): 579~585.
    85.Duffy E M, Cassells A C. The effect of inoculation of potato (Solanum tuberosum L.) microplants with arbuscular mycorrhizal fungi on tuber yield and tuber size distribution. Applied Soil Ecology, 2000, 15: 137~144.
    86.Desjardins Y, Lafoxge F, Lussier C, Gosselin A. Effect of CO_2 enrichment and high photosynthetic photon flux on the development of autotrophy and growth of tissue cultured strawberry raspberry and asparagus plants. Acta Hort, 1988,230: 45~53.
    87.Estaun M, Calvet C, Camprubi A, et al. Long-term effects of nursery starter substrate and AM inoculation of micropropagated peach X almond hybrid rootstock. Agronomie, 1999, 19(6) : 483~489.
    88.Fujiwara K, Kozai T, Watanable I. Development of a phtotoautotropic tissue culture system for shoots and/or plantlets at rooting and acclimatization stages. Acta Hort. 1988, 230: 152~158.
    89.Fujiwara K, Kozai T. Autotrophic (Sugar-free) micropropagation for a significant reduction of production costs. Chronica Hort, 1989, 29(2): 19.
    90.Fujiwara K, Kozai T. Physical microenvironment and its effects. In: J. Aithen-christie, T. 1995.
    91.Elmeskaoui A, Damout J P, Poulin M J, et al. A tripartite culture system for endomycorrhizal inoculation of micropropagated strawberry plantlets in vitro. Mycorrhiza, 1995, 5: 313~319.
    92.Fortuna P, Morini S, Giovannetti M. Effects of arbuscular mycorrhizal gungi on in vitro root initiation and development of micropropagated plum shoots. Journal of Horticultural Science and Biotechnology, 1998,73(1): 19~28.
    93.Goodman A M, Ennds A P. The effects of soil bulk density on the morphology and anchorage mechanics of the root systems of sunflower and maize. Annals of Botany, 1999, 83: 293~302.
    94.Hayashi M, Kozai T. Development of a facility for accelerating the acclimatization of tissue-cultured plantlets and the performance of test cultivations. Symp. Florizel on plant micropropagation in hort. Ind. Arlon, Belgium, 1987,123~134.
    95. Heo J,Kozai T.Forced ventilation micropropagation system for enhancing photosynthesis,growth and development of sweet potato plantlets.Environ.Cont.Biol.1999,37:83~92. 96. Heo J,Wilson S,Kozai T.A forced ventilation micropropagation system for production of photoautotropic sweet potato plug plantlets in a scaled-up culture vessel:I.Growth and uniformity.HortTech 2001,11:90~94. 97. Infante R,Magnanini E,Righetti B.The role of light and CO_2 in optimising the conditions for shoot proliferation of actinidia deliciosa in vitro.Physiol.plant.1989,77:191~195. 98. Johnson N C,Graham J H,Smith F A.Functioning of mycorrhizal associations along the mutualism-parasitism continuum.New Phytologist,1997. 135:575~586. 99. Keller M,Barros FCF,Feldmann F.Growth response of in vitro propagated Baptisia tinctoria plantlets to microbial inoculation.Angewandte BotanikBerichte,1997,6:145~151. 100. Kozai T,Smith M A L.Automation and environmental control in plant tissue culture.Kluwer Academic Publishers,The Netherlands,1995,319~369. 101. Kozai T,Y Iwanami.Effects of CO_2 enrichment and sucrose concentration under high photon fluxes on plantlet growth of carnation.Japan Soc.Hort.Sci.1988,57(2) :279~288. 102. Kozai T,Y.Koyoma,I.Watanabe.Multiplication of potato plantlets in vitro with sugar-free medium under high photosynthetic photon flux.Acta Horticulturae.1988,230:121~127. 103. Kozai T,Kubota C,Ryoung-Jeong B.Environmental control for the large-scale production of plants through in vitro techniques.Plant cell,Tissue and Organ culture.1997,51:49~56. 104. Kozai T,Fujiwarak,Kitaga Y.Modeling measurement and control in plant tissue culture.Acta Hort,1993,34(3) :68~78. 105. Kirdmanee C,Kitaya Y,Kozai T.Effects of CO_2 enrichment and supporting material in vitro on photoautotrophic growth of eucalyptus plantlets in vitro and ex vitro:Anatomical comparisons.Acta Hort.,1995,393:111~118. 106. Kubota C,Kozai T.Growth and net photosynthetic rate of Solanum tuberosum in vitro under forced ventilation.HortScience,1992,27:1312~1314. 107. Kitaya Y,Sakami K,Kozai T.Development of photoautotrophic plant tissue culture system using CO_2 from shiitake mushroom.Acta Horticulturae 1995,393:195~202. 108. Kozai T,Tanake K J,Fujiwara K.Effect of relative humidity in the culture vessel on the growth and shoot elongation of potato (Solanum tuberosum L.) plantlets in vitro.J.Jpn.Soc.Hort.Sci.,1993,62(2) :413~417. 109. Kozai T,Oki H,Fujiwara K.Photosynthetic characteristics of Cymbidiumplantlet in vitro.Plant Ce11,Tissue and Organ Cultere,1990,22:205~211. 110. Kubota C,Kozai T.Mathematical models for planning vegetative propagation under controlled environments.HortScience,2001,36:15~19. 111. Lakso A N,Reisch B I,Mortensen J,Roberts M H.Carbon dioxide enrichment fox stimulation of growth of in vitro propagated grapevines after transfer from culture.J.Amer Soc Hort.Sci,1986,111(4) :634~638.
    112.Lovato P.E., Gianinazzi-Pearson V., Trouvelot A., Gianinazzi S. The state of art of mycorrhizas and micropropagation. Advance in Horticulture Science, 1996, 10:46-52
    113.Michio K, Masakatsu O, Michiko A. The effect of carbon dioxide enrichment, natural ventilation, and light intensity on growth ,photosynthesis, and transpiration of cauliflower plantlets cultured in vitro photoautotrophically and photomixotrophically. J. Amer. Hort.Sci, 1998,123(2): 176~181.
    114.Mathur N, Vyas A. Improved biomass production, nutrient uptake and establishment of in vitro raised Ziziphus mauritiana VA mycorrhiza. Journal of Plant Physiology, 1999, 155(1): 129~132.
    115.Mathur N, Vyas A. In vitro production of Glomus deserticola in association with Ziziphus nummularia. Plant Cell Reports, 1995,14: 735~737.
    116.Matthieu F, Daniel C, Rose G. A method for the study of CO_2 exchanges in vitro cultured vitis rupestris plantlets. Plant Cell,Tissue and Organ Culture, 1991, 27: 175~181.
    117.Mirra A, Dey S, Sawarkar S K. Photoautotrophic in vitro multiplication of the orchid Dendrobium under CO_2 enrichment. Biologia Plantarum, 1997,41(1): 145~148.
    118.Mousseau M. CO_2 enrichment in vitro efect on autotrophic and heterotrophic culture of Nicotiana tabacum. Photosynthesis Res, 1986, 8: 187~191.
    119.Mangal J L, Kumar V. Vesieular-arbuseular-mycorrhiza(VAM) improved performance of potted onions under saline conditions with and without phosphorus nutrition.Vegetable Sciense, 1998. 25(2) : 119~123.
    120.Mukerji K G. Chamalo B P, Singh J. Mycorrhizal biology. New York; Kluwer Academic/Plenum Publishers, 2000, 1~226.
    121.Nowak J. Benefits of in vitro "biotization" of plant tissue culture with microbial inoculants. In Vitro Cell Development Biology, 1998,34:122~130.
    122.Niu G, Kozai T. Simulation of the growth of potato plantlets cultured photoautotrophically in vitro. Transactions of the ASAE, 1997, 40(1): 255~260.
    123.Niu G, Kozai T, Kitaya Y. Simulation of the time course of CO_2 concentration in the culture vessel and net photosynthetic rate of Cymbidium plantlets. Transactions of the ASAE, 1996,39(4): 1567~1573.
    124.Nguyen Q T, Kozai T, Heo J ,Thai D X. Photoautotrophic growth response of in vitro cultured coffee plantlets to ventilation methods and photosynthetic photon fluxes under carbon dioxide enriched condition. Plant Cell Tiss Org, 2001, 66(3): 217~225.
    125.Poss J A, Pond E, et al. Effect of salinity on mycorrhizal onion and tomato in soil with and without additional phosphate. Plant and Soil, 1985, 88: 307~319.
    126.Puthur JT, Prasad KVSK, Sharmila P. Vesicular arbuscular mycorrhizal fungi improves establishment of micropropagated Leucaena leucocephala plantlets. Plant Cell Tissue Organ Culture, 1998, 53 (1):41~47.
    127.Roche T D, Long R D, Sayegh A J. Commercial scale photoautotrophic micropropagations in Irish agriculture, horticulture and forestry. Acta Hort, 1996, 440:515~520.
    128.Ravolanirina F, Gianinazzi S, Trouvelot A et al. Production of endomycorrhizal explants of micropropagated grapevine rootstocks. Agricultural Economic and Environment, 1989, 29:323~327.
    129. Ruii-lozano J M, Aicon R, Gomez M. Alleviation of salt stress by arbuscular mycorrhiza fungi Glomus in lactuca sativa plants. Physiological plantarum, 1996, 98(4): 767~772.
    130. Nguyen Q T, Kozai T, Nguyen, K L, Nguyen U V. Effects of sucrose concentration, supporting material and number of air exchanges of the vessel on the growth of in vitro coffee plantlets. Plant Cell Tiss. Organ Cult. 1999, 58: 51~57.
    131. Niu G, Kozai T, Kubota C. A system for measuring the in situ CO_2 exchange rate of in vitro plantlets. HortScience, 1998, 33(6): 1076~1078.
    132. Read D J, Francis R, Finlay R D. Mycorrhizal mycelia and nutrient cycling in plant communities. Oxford: Blackwell: Ecological Interactions in Soils. 1985, 193~217.
    133. Rupam K, Giri B, Muderji K G, Kapoor R. Effect of vesicular arbuscular mycorrhiza on growth and essential oil yield of Anethum graveolem L. Indian Journal of Plant Physiology, 2001, 6(1): 77~80
    134. Ruizlozano J M, Azlon R. Hyphal contribution to water up take in mycorrhizal plants as affected by the fungal species and water status. Physiologia Plantarum, 1995, 95(3): 427~428.
    135. Ruizlozano J M, Azlon R, Gomez M. Alleviation of salt stress by arbuscular mycorrh- izal Glomus species in Lactuca sativa plants. Physiologia Plantarum, 1996, 98: 767~772.
    136. Seko Y, Nishimura M. Effects of CO_2 and light on survival and growth of rice regenerants in vitro on sugar-free medium. Plant Cell, Tissue and Organ Culture, 1997, 46(3): 257~264.
    137. Srivastava A K. Ahmed R.Kumar S, el al. Role of VA-Mycorrhiza in the management of wilt disease of guavain the Alfisols of Chotanagpur. Indian Phytopathology, 2001, 54(1): 78~81.
    138. Shukry W M. Efect of induatrial effluenta polluting the River Nile on growth, metabolism and productivity of Triticum aestivum and Vicia faba plants. Acta Botaniea Hungarica, 2001, 43(3-4): 403~421.
    139. Sato A Y, Carvalho N D, Pinto JE B P, et al. Application of arbuscular mycorrhiza to micropropagated Heliconia and Gerbera plants during acclimazation period. Horticultura Brasicira, 1999,17(1): 25~28.
    140. Smith S E, Gianinazzi-Pearson V, Koide R, Caimey J W G. Nutrient transport in mycorrhiza: structure, physiology and consequences for efficiency of the symbiosis. Plant and Soil, 1994, 159: 103~113.
    141. Tanaka K, Fujiwara K, Kozai T. Effects of relative humidity in the culture vessel on the transpiration and net photosynthetic rates of potato plantlets in vitro. Acta. Hort, 1992, 319: 59~64.
    142. Veatberg M, Estanm V. Micropropagated plants and opportunity to positively manage mycorrhizal activities. In: Gianinazzi S and Schuepp H (editors) Impact of Arbuscular Mycorrhizas on Sustainable Agricultural and Natural Ecosystem. Birkhauser Basel 1994, 217~226.
    143. Verma R K, Arya I D. Effect of arbuscular mycorrhizal fungal isolates and organic manure on growth and mycorrhization of micropropagated Dendrocalamus asper plantlets and on spore production in their rhizosphere. Mycorrhiza. 1998, 8(2): 113~116.
    144. Wilson S B,Heo J,Kubota C,Kozai T.A forced ventilation micropropagation system for photoautotrophic production of sweet potato plug plantlets in a scaled-up culture vessel:Ⅱ.Carbohydrate status.HortTech 2001,11:95~99.
    145. Winarsih S.Effect of phosphorus sources and mycorrhizal infection on growth of in vitro coffee plantlet.Pelita perkebunan,1996,12(1) :16~24.
    146. Xiao Y,Zhou J,Kozai T.Practical sugar-free micropropagation system using large vessels with forced ventilation.In Kubota,C.;Chun,C.,eds.Transplant production in the 21th century,2000:266~273.
    147. Xiao Y;Kozai T.Commercial application of a photoautotrophic micropropagation system using large vessels with forced ventilation.HortScience.2004,3 9(6) :1387~1391.
    148. Zobayed S M A,Kubota C,Kobota C,Kozai T.Development of a forced ventilation micropropagation system for large-scale Photoautotrophic culture and its utilization in sweet potato.In vitro Cell.Dev.Biol.Plant.1999,34:350~355.
    149. Zobayed S M A,Afreen F,Kobota C,Kozai T.Mass propagation of Eucalyptus in a scaled-up vessel under in vitro photoautotropic condition,Ann.Bot.2000a,85:587~592.
    150. Zobayed S M A,Afreen F,Kobota C,Kozai T.Water control ability of Ipomoea batatas grown photoautotrophically under forced ventilation and photomixotrophically under natural ventilation,Ann.Bot.2000b,85:603~610.
    151. Zobayed S M A,Afreen F,Kobota C,Kozai T.Physiology of Eucalyptus plantlets cultured photoautotrophically under forced ventilation.In Vitro Cell.Dev.Biol.Plant 2001,37:807~813.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700