用户名: 密码: 验证码:
太阳能固定膜光催化氧化去除饮用水中污染物研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以结构简单、光能利用率高的复合抛物面采光板为采光元件,采用溶胶-凝胶法在比表面积大、化学性质稳定的玻璃纤维网上制备高活性TiO_2固定催化剂作为催化组件,并用长寿命冷阴极低压汞灯作为人工辅助光源,研制成功一种新型中试规模太阳光固定膜光催化反应器。
     以草酸铁钾化学光量计曝光试验对新型太阳光催化反应器的光学性能进行了评价,其光子采集效率φ_(ef)约为0.759。本装置降解苯酚表观量子产率可以达到悬浆催化体系的1/2。固定在玻璃纤维网上的光催化剂,可在较长期内重复使用。装置对水中苯酚、甲酸等低浓度有机物具有较高处理效率;由于采用电光源作为太阳光的补充,装置对天气具有良好的适应性,能够实现全天候稳定运行。
     以苯酚为模型污染物的研究表明,新装置具有良好的传质作用,在循环流量大于5L/min时即可消除传质限制作用。在苯酚初始浓度在1.8~7.5mg/L范围内时,苯酚的太阳光催化降解呈表观一级反应,表观动力学常数随着初始浓度的增加而变小。在太阳光强介于12.4~25.9W/m~2时,苯酚降解的表观反应速率常数和光强呈线性关系。采用电光源时,苯酚的降解是光催化和直接光分解综合作用的结果。
     对蒸馏水中大肠杆菌的灭活特性研究表明,太阳光固定膜光催化灭菌是光催化灭菌和阳光直接灭菌协同作用的结果,光催化杀菌效果优于阳光直接杀菌作用。环境扫描电镜分析(ESEM)表明光催化对菌体产生了致命性破坏。光催化灭菌速率和循环流速、光强存在正相关性。光催化灭菌还具有良好的持久性,灭菌处理8h后,没有出现明显复活再生现象。
     对双酚A(BPA)光催化降解特性的研究表明,BPA的降解受不同光源影响显著。BPA在阳光照射下很难光解;在较低浓度下,BPA的太阳光光催化降解呈现表观一级反应,反应速率常数随初始浓度增大而减小;在光强介于5.7~23.5W/m~2时,表观反应速率常数和光强呈线性关系。在UV254下,BPA存在明显光解作用,一级表观反应速率常数随初始浓度增大而增大。太阳光催化对BPA具有良好的矿化作用,但和短波紫外光下光催化矿化过程存在很大差异。通过BSTFA衍生和GC/MS分析,在不同光源下均检测到多种BPA降解中间产物。
     新装置在不同光源下对自来水中半挥发性有机污染物均具有良好的净化效果。在本研究中太阳光催化条件下,自来水中可通过GC/MS较准确定性的23种微量半挥发性有机物中的18种物质去除率在50%以上,其中16种物质在处理后水中已经降到仪器检测限以下。装置对自来水中常见的有机污染物如三氯甲烷、苯酚和双酚A具有良好的去除效果;另外,装置在去除自来水中有机污染物同时,还对自来水中细菌具有一定的杀灭效果。太阳光固定膜光催化具有良好的实际应用前景。
A novel pilot-scale solar photocatalytic reactor with immobilized catalyst wasdeveloped, where low concentrating compound parabolic concentrator was applied assolar collecting component, and immobilized TiO_2 membrane supported on glassfiber mesh with sol-gel method used as catalyst and cold cathode low-pressuremercury lamps used as assisting artificial UV source.
     The photonic collection efficiency factorφ_(ef) was estimated to be about 0.759 bypotassium ferrioxalate actinometries. And apparent quantum yield of phenoldegradation can reach up to 1/2 of that of slurry system. The photocatalyst supportedon glass fiber net can be reused in a rather long time. The new reactor, which treatedphenol and formic acid with high efficiency, can make all-weather stable operationwith good compatibility to different weathers.
     Phenol was used as model pollutant to evaluating the device performance. Thelimitation of mass transfer was diminished when the circular flux exceeded 5L/min.When initial concentration ranged from 1.8 to 7.5mg/L, the solar photocatalyticreaction followed apparent first-order kinetics, and the apparent kinetic constantsdecreased with the increase of initial concentration. The linear dependence betweenapparent reaction rate and radiation density flux was also found from 12.4 to 25.9W/m~2. Phenol removal under artificial UV radiation was the combined effects ofphotocatalysis as well as photolytic degradation.
     Inactivation characteristics of Escherichia coli were also studied by the newsolar photocatalytic reactor. Photocatalytic deactivation of Escherichia coli was aconsequence of the synergistic effect of the oxidant species generated by supportedTiO_2 and solar UV irradiation, and the disinfection efficiency of photocatalysis washigher than sunlight deactivation. Increasing flow rate and light intensity had positiveeffects on disinfection rate. ESEM examination indicated that bacteria cell waslethally destroyed by solar photocatalysis. No significant recovery or multiplicationwas observed during 8 hatter solar photocatalysis treatment.
     Photocatalytic degradation characteristics of bisphenol A (BPA) were explored.And experiment results indicated that BPA degradation was influenced significantlyby different light sources. BPA underwent insignificant photolysis under solarirradiation. At low initial concentrations, the apparent reaction kinetics was first orderwith respect to the concentration and the apparent kinetic constants decreased withthe increase of initial concentrations. Linear dependence between apparent reactionrate and radiation density flux was also found from 5.7 to 23.5 W/m~2. While underUV254, BPA underwent significant photolysis and the first-order kinetic constantsincreased with the increase of initial concentration. Solar photocatalysis couldmineralize BPA well, but the mineralization process differs greatly from that undershort wavelength UV. Several intermediates were detected by GC/MS analysis afterBSTFA-derivatization of intermediate samples.
     Semi-volatile organic pollutants in tap water could be purified well by the newphotocatalytic reactor under different irradiation. Under solar photocatalysiscondition, 18 trace semi-volatile organics among those 23 ones which were identifiedby GC/MS analysis were removed more than 50%, and 16 of them were evenlowered below detection limits. Common pollutants such as chloroform, phenol andBPA could also be removed well. Furthermore, bacteria in tap water were inactivatedsuccessfully while organic pollutants were removed. Solar photocatalysis techniquewith immobilized catalyst is promising in tap water purification.
引文
[1] 周彤.污水回用决策与技术[M].北京:化学工业出版社,2002.
    [2] 刘淑彦,王秀蘅.饮用水深度净化技术的现状与发展方向[J].2003,35(6):711-714.
    [3] Qamar M., Muneer M., Bahnemann D. Heterogeneous photocatalysed degradation of two selected pesticide derivatives, triclopyr and daminozid in aqueous suspensions of titanium dioxide [J]. Journal of Environmental Management, 2006, 80: 99-106.
    [4] Hoffmann M. R., Martin S. T., Choi W. Y., et al. Envitonmental applications of semiconductor photocatalysis [J]. Chemical Reviews, 1995, 95(1): 69-96.
    [5] Mahmoodi N. M., Arami M., Limaee Y. N., et al. Kinetics of heterogeneous photocatalytic degradation of reactive dyes in an immobilized TiO_2 photocatalytic reactor [J]. Journal of Colloid and Interface Science, 2006, 295: 159-164.
    [6] Fujishima A. Rao T. N. Tryk D. A. Titanium dioxide photocatalysis [J]. Journal of Photochemistry and Photobiology C: Photochemistry Review, 2000,1:1-21.
    [7] Herrmann J. M.. Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants [J]. Catalysis Today, 1999, 53:115-129.
    [8] Abdel-Wahab, Aboel-Magd A., Gaber, et al. TiO_2-photocatalytic oxidation of selected heterocylic sulfur compounds [J]. Joumal of Photochemistry and Photobiology A: Chemistry, 1998,114: 213-218.
    [9] Herrmann J. M..Heterogeneous photocatalysis: an emerging discipline involving multiphase systems [J]. Catalysis Today, 1995, 24: 157-164.
    [10] Marc Pera-Titus, Ver6nica Garcia-Molina, Miguel A. Banos, et al. Degradation of chlorophenols by means of advanced oxidation processes: a general review [J]. Applied Catalysis B: Environmental, 2004, 47(4): 219-256.
    [11] Ollis D. F., Pelizzetti E., Serpone N.. Destruction of water contaminants [J]. Environmental Science & Technology, 1991, 25: 1523-1529.
    [12] Wist J., Sanabria J., Dierolf C., et al. Evaluation of photocatalytic disinfection of crude water for drinking-water production [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2002, 147: 241-246.
    [13] Watts R. J., Kong S. H., Orr M. P., et al. Photocatalytic inactivation of coliform bacteria and viruses in secondary wastewater effluent [J]. Water Research, 1995, 29: 95-100.
    [14] Rincon A.G., Pulgarin C.. Photocatalytical inactivation of E. coli: effect of (continuous-intermittent) light intensity and of (suspended-fixed) TiO_2 concentration [J]. Applied Catalysis B: Environmental, 2003, 44: 263-284.
    [15] Gratzel M.. Heterogeneous Photochemical Electron Transfer [M]. Baton Rouge: CRC Press, 1998.
    [16] 仇雁翎.玻璃纤维网上TiO_2膜的制备与光催化降解有机物研究:[博士学位论文].上海:同济大学,2005.
    [17] 段小平.太阳能固定膜光催化氧化反应器降解苯酚的研究:[硕士学位论文].上海:同济大学,2005.
    [18] Balcioglu, Incl. Photocatalytic degradation of organic contaminants in semiconductor suspensions added H_2O_2 [J]. Journal of Environmental Science and Health Part A: Environmental Science and Engineering & Toxic and Hazardous Substance Control, 1996, 31(1):123-138.
    [19] Turchi C. S., Ollis D. F.. Photocatalytic degradation of organic water contaminants: mechanisms involving hydroxyl radical attack [J]. Journal of Catalysis, 1990, 3:143-157.
    [20] Detlef Bahnemann. Photocatalytic water treatment: solar energy applications [J]. Solar Energy, 2004, 77: 445-459.
    [21] Blanco J., Malato S.. Solar Detoxification [OLl. www.worldsolar.org/solar.htm
    [22] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode [J]. Nature, 1972, 238: 37-38.
    [23] Carey J. H., Lawrence H., Tosine H. M.. Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspensions [J]. Bulletin of Environmental Contaminatin and Toxicology, 1976, 16(6): 697-701.
    [24] Blake D. M.. Bibliography of work on the photocatalytic removal of hazardous compounds from water and air [R]. NREL/TP-510-31319, golden, CO: National Renewable Energy Laboratory, 2001.
    [25] 魏宏斌.二氧化钛膜光催化氧化水中微量有机污染物的研究:[博士学位论文].上海:同济大学环境科学与工程学院,1996.
    [26] 李田,侯玲.纯水制备预处理中光催化反应的应用研究[J].水处理技术,1997,23(3):179-183.
    [27] 王侃.负载型TiO_2催化剂可见光降解染料污染物的研究:[博士学位论文].杭州:浙江大学,2004.
    [28] 吕妍.溶胶凝胶法在玻璃纤维网上制备高活性TiO_2光催化剂:[硕士学位论文].上海:同济大学,2004.
    [29] Nakano K., Obuchi E., Takagi S., et al. Photocatalytic treatment of water containing dinitrophenol and city water over TiO_2/SiO_2 [J]. Separation and Purification Technology, 2004, 34:67-72.
    [30] Robert D., Piscopo A., Heintz O., et al. Photocatalytic detoxification with TiO_2 supported on glass-fibre by using artificial and natural light [J]. Catalysis Today, 1999, 54:291-296.
    [31] Feitz A. J., Boyden B. H., Waite T. D.. Evaluation of two solar pilot scale fixed-bed photocatalytic reactors [J]. Water Research, 2000, 34 (16):3927-3932.
    [32] Wyness P., Klausner. J. F., Goswami D. Y., et al. Performance of non-concentrating solar photocalytic oxidation reactors, Part Ⅰ: flat-plate configuration [J]. Solar Energy Engineering, 1994, 116:2-7.
    [33] Bockelmann D., Weichgrebe D., Goslich R., et al. Concentrating vs. non-concentrating reactors for solar water detoxification [J]. Solar Energy Materials and Solar Cells, 1995, 38: 441-451.
    [34] Goslich R., Dillert R., Bahnemann D.W..Solar water treatment: principles and reactors [J]. Water Science Technology, 1997, 35:137-148.
    [35] Bekbolet M., Lindner M., Weichgrebe D., et al. Photocatalytic detoxification with the thin-film fixed-bed reactor (TFFBR): clean-up of highly polluted landfill effluents using a novel TiO_2-photocatalyst [J]. Solar Energy, 1996, 56 (5):455-469.
    [36] Raquel F. P., Wilson F.. TiO_2-fixed-bed reactor for waterdecontamination using solar light. Solar Energy, 1996, 56(5): 471-477.
    [37] McLoughlin O. A., Kehoe S. C., McGuigan K.G., et al. Solar disinfection of contaminated water: a comparison of three small-scale reactors [J]. Solar energy, 2004, 77: 657-664.
    [38] Chan H. C. A., Chan K. C., Barford P. J., et al. Solar photocatalytic thin film cascade reactor for treatment of benzoic acid containing wastewater [J]. Water Research, 2003, 37:1125-1135.
    [39] Guillard C., Disdier J., Monnet C., et al. Solar efficiency of a new deposited titania photocatalyst: chlorophenol, pesticide and dye removal applications [J]. Applied Catalysis B: Environmental, 2003, 46:319-332.
    [40] 曹跟华,罗人明,任宝山.光催化反应器在污水处理中的研究现状与发展趋势[J].环境污染治理技术与设备,2003,4(1):73-76.
    [41] 王怡中,胡春等.在TiO_2催化剂上苯酚光催化氧化反应研究[J].环境科学学报,1998,18(3):260-264.
    [42] 王怡中,符雁.多相光催化反应中太阳光与电光源效率比较,太阳能学报,1998,19(1):36-40
    [43] Dillert R., Alberto Cassano E., Goslich R., et al. Large scale studies in solar catalytic wastewater treatment [J]. Catalysis Today, 1999, 54:267-282.
    [44] Malato S., Blanco J., Vidal A., et al. Photocatalysis with solar energy at a pilot-plant scale: an overview [J]. Applied Catalysis B: Environmental, 2002, 37:1-15
    [45] Malato S., Blanco J., Maldonado M. I., et al. Engineering of solar photocatalytic colletors [J]. Solar Energy, 2004,77:513-524.
    [46] Pacheco J. E., Tyner C. E., Enhancement of processes for solar photocatalytic detoxification of water [J]. Solar Energy. 1990,163-169.
    [47] Anderson J.V., Link H., Bohn M. et al. Development of US solar detoxification technology: an introduction [J]. Solar Energy Material, 1991, 24:538-549.
    [48] Minero C., Pelizzetti E., Malato S., et al. Large solar plant photocatalytic water decontamination: degradation of pentachlorophenol [J]. Chemosphere, 1993, 26:2103-2119.
    [49] Alfano O. M., Bahnemann D.. Photocatalysis in water environments using artificial and solar light. Catalysis Today, 2000, 58: 199-230.
    [50] Mehos M. S., Turchi C. S.. Field testing solar photocatalytic detoxification on TCE-contaminated groundwater, Environmental Progress, 1993, 12(3): 194-199.
    [51] Malato S., Richter C., Blanco J., et al. Photocatalytic degradation of industrial residual waters, Solar Energy, 1996, 56(5): 401-410.
    [52] Freudenhammer H., Bahnemann D.. Detoxification and recycling of wastewater by solar-catalytic treatment. Water Science Technology, 1997, 35(4): 149-156.
    [53] Minero, C., Pelizzetti E., Malato, S., et al. Large solar plant photocatalytic water decontamination: effect of operational parameters. Solar Energy, 1996,56:421-428.
    [54] Curco D., Malato S., Blanco J., et al. Photocatalytic degradation of phenol: comparison between pilot-plant-scale and laboratory results [J]. Solar Energy, 1996, 56(5):387-400.
    [55] van Well M., Dillert R. H. G., Bahnemann D. W., et al. A novel non-concentrating reactor for solar water detoxification [J]. Joumal of Solar Energy Engineering, 1997, 119:114-119.
    [56] Blanco J., Malato S.. Compound parabolic concentrator technology development to commercial solar detoxification applications [J]. Solar Energy, 1999, 67 (426): 317-330.
    [57] Ajona J. I., Vidal A.. The use of CPC collectors for detoxification of contaminated water: design, construction and preliminary results [J]. Solar Energy, 1999, 67 (68): 109-120.
    [58] Malato S., Blanco J.. New large solar photocatalytic plant: set-up and preliminary results [J]. Chemosphere, 2002, 47: 235-240.
    [59] Rabl A., Goodman N., Winston R.. Practical design considerations for CPC solar collectors [J]. Solar Energy, 1979, 22:373-385.
    [60] Erick R. Bandala, Camilo A. Arancibia-Bulnes, Sayra L. Orozco, et al. Solar photoreactors comparison based on oxalic acid photocatalytic degradation [J]. Solar Energy, 2004,77: 503-512.
    [61] Vidal A., Diaz A. I., Hraiki A. El, et al. Solar photocatalysis for detoxification and disinfection of contaminated water: pilot plant studies [J]. Catalysis Today, 1999, 54: 283-290.
    [62] Herrmann Jean-Marie, Disdier Jean, Pichat Pierre, et al. TiO_2-based solar photocatalytic detoxification of water containing organic pollutants. Case studies of 2,4-dichlorophenoxyaceticacid(2,4-D) and of benzofuran [J]. Applied Catalysis B: Environmental, 1998, 17:15-23.
    [63] Wyness P., Klausner. J. F., Goswami D. Y., et al. Performance of non-concentrating solar photocalytic oxidation reactors, Part Ⅰ: flat-plate configuration. Solar Energy Engineering, 1994, 116:2-7.
    [64] Zhang L., Kanki T., Sano N., et al. Photocatalytic degradation of organic compounds in aqueous solution by a TiO_2-coated rotation drum reactor using solar light [J]. Solar energy, 2001, 70(4): 331-337.
    [65] Bird, R. E., Hulstrom, R. L., Lewis, L. J.. Terrestrial solar spectral data set [J]. Solar energy, 1983, 30:563-573.
    [66] 段小平,李田,刘华平.太阳能光催化反应器的研究进展与前景[J].给水排水,2004:30(11):104-109.
    [67] Hinterberger H., Winston R.. Efficient light coupler for threshold cerenkov counters [J]. Rev. Sci. Instr. 1966, 37:1094-1095.
    [68] Winston R. Principles of solar concentrators of a novel design [J]. Solar Energy. 1974,16:89-95
    [69] Winston R. Radiant energy concentration [P]. U.S. Letters patnet 3923381, 1976.
    [70] Winston R. Light collectors cyclindical geometry [P]. U.S. Letters patent 3957031,1976.
    [71] Winston R. Radiant energy concentration[P]. U. S. Letters patent 4003638,1977.
    [72] Winston R. Cylindrical concentrators for solar energy [P]. U.S. Letters patent 4002 499, 1977.
    [73] 威尔福德W.T.,维恩斯顿R..非成像聚光器光学[M].科学出版社.1987:190-192.
    [74] Rabek J. F. Experimental Methods in Photochemistry and Photophysics (Part 2)[M]. New York: John Wiley & Sons Inc, 1982.
    [75] Steven L. M. Handbook of Photochemistry[M]. New York: Marcel Dekker Inc, 1973.
    [76] 康锡惠,刘梅清.光化学原理与应用[M].天津:天津大学出版社,1995.
    [77] Malato S., Blanco J., Richter C., et al. Solar photocatalytic mineralization of commercial pesticides: Oxamyl [J]. Solar Energy Materials & Solar Cells, 2000, 64:1-14.
    [78] Renewable Resource Data Center (RReDC). Reference solar spectrallrradiance:ASTMG-173[OL].http://rredc.nrel.gov/solar/spectra/aml.5/ASTMG173/ASTMG173.html.
    [79] Malato S., Blanco J., Richter C., et al. Low-concentration CPC collectors for photocatalytic water detoxification: comparison with a medium concentrating solar collector [J]. Wat. Sci. Tech, 1997, 35(4): 157-164.
    [80] Curco D., Malato S., Blanco J., et al. Photocatalysis and radiation absorption in a solar plant [J]. Solar Energy Materials and Solar Cells, 1996, 44:199-217.
    [81] 赵成文,戚奎华,顾长立.草酸铁钾化学光量计的化学分析[J].分析化学,1992,20(7):865.
    [82] 国家环境保护总局.水和废水检测分析方法(第四版)[M].北京:中国环境科学出版社.2002.
    [83] Blazkova A., Csolleova I., Brezova V.. Effect of light sources on the phenol degradation using Pt/TiO_2 photocatalysts immobilized on glass fibres [J]. Journal of Photochemistry and Photobiology A: Chemistry, 1998, 113:251-256.
    [84] Italo Mazzarino, Paola Piccini. Photocatalytic oxidation of organic acids in aqueous media by a supported catalyst [J]. Chemical Engineering Science, 1999, 54:3107-3111.
    [85] McMurray T. A., Byrne J. A., Dunlop P. S. M., et al. Intrinsic kinetics of photocatalytic oxidation of formic and oxalic acid on immobilized TiO_2 films [J]. Applied Catalysis A: General, 2004, 262:105-110.
    [86] Ollis D. F., Pelizzetti E., Schiavello M.. Photochemical Conversion and Storage of Solar Energy [M]. Dordreche: Kluwer Academic Publishers, 1990.
    [87] Okamoto K. Yamamoto Y., Tanaka H., et al. Kinetics of heterogeneous photocatalytic decomposition of phenol over anatase TiO_2 powder [J]. Bulletin of the Chemical Society of Japan, 1985, 58: 2023-2028.
    [88] Bahnemann D., Bockelmann D., Goslich R.. Mechanistic studies of water detoxification on illuminated TiO_2 suspensions [J]. Solar Energy Materials, 1991, 24: 564-583.
    [89] Korman C., Bahnemann D. W., Hoffmann M. R. Photolysis of chloroform and other organic molecules in aqueous TiO_2 suspensions [J]. Environmental Science & Technology, 1991, 25: 494-500.
    [90] 高廷耀,魏宏斌,徐迪民.二氧化钛膜光催化氧化苯酚的影响因素研究[J].中国给水排水,1998,14(4):14-16.
    [91] Mazzarino I., Piccinini P.. Photocatalytic oxidation of organic acids in aqueous media by a supported catalyst. Chemical Engineering Science, 1999, 54:3107-3111.
    [92] Shephard S. G., Stockenstrom S., Villiers de D., et al. Degradation of microcystin toxins in a falling film photocatalytic reactor with immobilized titanium dioxide catalyst. Water Research, 2002, 36:140-146.
    [93] Colemana H.M., Routledgeb E.J., Sumpter J.P. et al. Rapid loss of estrogenicity of steroid estrogens by UVA photolysis and photocatalysis over an immobilised titanium dioxide catalyst. Water Research 2004, 38: 3233-3240.
    [94] Hosseini S.N., Borghei S.M., Vossoughi M., et al. Immobilization of TiO_2 on perlite granules for photocatalyticn degradation of phenol. Applied Catalysis B: Environmental, 2007, 74: 53-62.
    [95] McMurray T.A., Dunlop P.S.M., Byme J.A. The photocatalytic degradation of atrazine on nanoparticulate TiO_2 films. Journal of Photochemistry and Photobiology A: Chemistry, 2006,182:43-51.
    [96] 李田,严煦世.实用型固定膜光催化氧化装置去除水中苯酚[J].同济大学学报,1995,23(4):393-397.
    [97] 葛元新,朱志良,陆雍森等.饮用水消毒的健康风险分析及评价[J].净水技术,2006.25(3):1-5.
    [98] Rincon A. G., Pulgarin C.. Bacterial action of illuminated TiO_2 on pure Escherichia coli and natural bacterial consortia: post-irradiation events in the dark and assessment of the effective disinfection time [J]. Applied Catalysis B: Environmental, 2004, 49: 99-112.
    [99] Fernandez P., Blanco J., Sichel C., et al. Water disinfection by solar photocatalysis using compound parabolic collectors [J]. Catalysis Today, 2005, 101: 345-352.
    [100] Rincon A. G., Pulgarin C.. Field solar E. coli inactivation in the absence and presence of TiO_2: is UV solar dose an appropriate parameter for standardization of water solar disinfection? [J]. Solar Energy, 2004, 77: 635-648.
    [101] McLoughlin O. A., Fernandez P., Gernjak W., et al. Photocatalytic disinfection of water using low cost compound parabolic collectors [J]. Solar Energy, 2004, 77: 625-633.
    [102] 郭世宜,沈星灿,郭俊怀等.超细纳米TiO_2光催化灭菌的研究[J].南开大学学报.2005,38(3):78-82.
    [103] 李佑稷,李效东,李君文,等.负载型TiO_2/活性炭光催化灭活大肠杆菌(E.coli)的研究[J].环境污染治理技术与设备,2005,6(12):37-41.
    [104] 曾炽涛,陈爱平,陈爱华等.负载型TiO_2/玻璃弹簧的光催化杀菌作用[J].催化学报.2003,24(7):520-524.
    [105] Kuhn K. P., Chabemy I. F., Massholder K., et al. Disinfection of surfaces by photocatalytic oxidation with titanium dioxide and UVA light. Chemosphere, 2003, 53:71-77.
    [106] Pfeifer G. P.. Formation and processing of UV photoproducts: effects of DNA sequence and chromatin environment [J]. Photochemistry & Photobiology, 1997, 65: 270-283.
    [107] Bogosian G., Sammons L., Morris P., et al. Death of the Escherichia coli K-12 strain W3110 in soil and water [J]. Applied Environmental Microbiology, 1996, 62:4114-4120.
    [108] 周群英,高廷耀.环境工程微生物学[M].北京:高等教育出版社.2002.
    [109] Harm W. Biological Effects of Ultraviolet Radiation [M]. New York: Cambridge University Press, 1980.
    [110] Mariana N., Fritz H. F.. Degradation of endocrine disrupting bisphenol A by 254nm irradiation in different water matrices and effect on yeast cells [J]. Water Research, 2006, 40:3745-3750.
    [111] Rosenfledt E. J., Linden K. C..Degradation of endocrine disrupting chemicals bisphenol A, ethylestradiol, and estradiol during UV photolysis and advanced oxidation processes [J]. Environmental Science & Technology. 2004, 38:5476-5483.
    [112] Ohko Yoshihisa., Ando Isao., Niwa Chisa., et al. Degradation of bisphenol A by TiO2 photocatalyst [J]. Environmental Science & Technolgy, 2001(35): 2365-2368.
    [113] Takashi Y., Akio Y., Hiroaki S. et al. Bisphenol A in hazardous waste landfill leachates [J]. Chemosphere, 2000, 42(4): 415-418.
    [114] Paris F., Balaguer P., Terouanne B., et al. Phenylphenols, biphenols, bisphenol-A and 4-tert-octylphenol exhibit α and β estrogen activities and antiandrogen activity in reporter cell lines [J]. Molecular and Cellular Endocrinology, 2002, 193: 43-49.
    [115] Kanki T., Hamasaki S., Sano N., et al. Water purification in a fluidized bed photocatalytic reactor using TiO_2-coated ceramic particles [J]. Chemical Engineering Journal, 2005, 108:155-160.
    [116] Kaneco S., Rahman M. A., Suzuki T., et al. Optimization of solar photocatalytic degradation conditions of bisphenol A in water using titanium dioxide[J]. Joumal of Photochemistry and Photobiology A: Chemistry, 2004, 16: 419-424.
    [117] Yeo M-K, Kang M.. Photodecomposition of bisphenol A on nanometer-sized TiO_2 thin film and the associated biological toxicity to zebrafish (Danio rerio) during and after photocatalysis[J]. Water research, 2006, 40: 1906-1914.
    [118] 展漫军,杨曦,杨洪生等.天然水体腐殖质对双酚A光降解影响的研究[J].环境科学学报,2005,25(6):816-820.
    [119] 展漫军,杨曦,鲜启鸣等.双酚A在硝酸根溶液中的光解研究[J].中国环境科学,2005,25(4):487-490.
    [120] Fukahori S., Ichiura H., Kitaoka T., et al. Capturing of bisphenol A photodecomposition intermediates by composite TiO_2-zeolite sheets [J]. Applied Catalysis B: Environmental, 2003, 46: 453-462.
    [121] Chiang K., Lim T. M., Tsen L., et al. Photocatalytic degradation and mineralization of bisphenol A by TiO_2 and plantinized TiO_2[J]. Applied Catalysis: General, 2004, 261:225-237.
    [122] Watanabe N., Horikoshi S., Kawabe H., et al. Photodegradation mechanism for bisphenol A at the TiO_2/H_2O interfaces [J]. Chemosphere, 2003, 52:851-859.
    [123] Angela G. R., Cesar P., Nevenka A., et al. Interaction between E. coli inactivation and DBP-procursors-dihydroxybenzene isomers-in the photocatalytic process of drinking-water disinfection with TiO_2 [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2001, 139: 233-241.
    [124] 李田,严煦世,黄伟星.固定膜光催化氧化反应器深度净化自来水研究[J].中国给水排水,1996,12(3):7-10.
    [125] 李田,陈正夫.城市自来水光催化氧化深度净化效果[J].环境科学学报,1998,18(2):167-171.
    [126] 李田,陈超鹏.活性炭吸附-光催化氧化深度净水工艺试验研究[J].上海环境科学,2002,21(6):342-349.
    [127] Vidal A., Diaz A. I, Hraiki A. E., et al. Solar photocatalysis for detoxification and disinfection of contaminated water: pilot plant studies. Catalysis Today, 1999, 54: 283-290.
    [128] 李田.光化学氧化法的类型及研究进程[J].环境污染与防治.1993,15(1):31-34.
    [129] 吴源.大孔径树脂富集水中有机物的技术环节[J].环境与健康杂志,2004,21(5):332-334.
    [130] 黄瑾辉,刘萍,曾光明等.饮用水中微量有机污染物质的GC/MS分析[J].湖南大学学报,2004,31(5):36-40.
    [131] Richard J. Watts, Sungho Kong, Margaret P. Orr, et al. photocatalytic inactivation of coliform bacteria and viruses in secondary wastewater effluent [J]. Water research, 1995, 29(1):95-100.
    [132] Melian H. J. A., Rodriguez D. J. M., Suarez V. A., et al. The photocatalytic disinfection of urban waste waters [J]. Chemosphere, 2000, 41:323-327.
    [133] Wist J., Sanabria J., Dierolf C., et al. Evaluation of photocatalytic disinfection of crude water for drinking-water production [J]. Joumal of photochemistry and photobiology A: Chemistry, 2002, 147:241-246.
    [134] Rincon A. G., Pulgarin C.. Bacterial action of illuminated TiO_2 on pure Escherichia coli and natural bacterial consortia: post-irradiation events in the dark and assessment of the effective disinfection time [J].Applied Catalysis B: Environmental, 2004,
    [135] 徐志通,王颖.饮用水的紫外线消毒[J].给水排水,1999,25(4):58-61.
    [136] 张欣.污水消毒中的紫外线消毒技术[J].给水排水,2002,28(11):31-34..

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700