用户名: 密码: 验证码:
约束刻蚀剂层技术(CELT)用于金属材料表面复杂三维微结构的加工研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微机电系统(MEMS)和微光机电系统(MOEMS)是当今科学技术的热点研究领域之一。微机电系统,泛指体积微小、集微型机械、微型传感器、微型信号处理器、微型执行器、直至接口、通讯和电源等于一体,具有多种功能的系统。微机电系统不但通过微型化和集成化达到节省空间、时间、材料和能源的目的,并且具有小惯性、易控制、高速度、高功能密度、高信息密度、高互联密度等特点,更重要的还在于它可以完成大尺寸系统所不能完成的任务,延拓人们认识自然的视野,开辟新的技术领域和产业。
     微纳米尺度的微结构加工技术是今日微机电系统和微光机电系统技术的关键部分。微机电系统和微光机电系统的制造需要高深宽比的复杂三维微结构,当今的主导微加工技术,即以光刻工艺为基础的IC工艺和LIGA技术,虽然可以达到较高深宽比,但它们都难于完成复杂三维微结构的加工。许多新研究的方法在这方面也存在困难。鉴于现有的微加工技术在加工复杂三维微结构方面存在许多局限性,尤其在加工金属材料方面,存在更多不足,1992年,田昭武院士等提出了约束刻蚀剂层技术(Confined Etchant Layer Technique,简称CELT),该技术是一种可用于三维超微图形复制加工的新型技术,原则上它能同时满足微系统加工技术中的三个要求,即,微纳米级的分辨率、真正的复杂三维微结构和微结构的批量复制加工。
     本论文进行了用约束刻蚀剂层技术对金属材料进行复杂三维微结构加工研究,实现了在Cu、Ni、Ti、Al、Mg和Cd等金属材料上进行亚微米级分辨率的复杂三维微结构的电化学刻蚀加工,将模板上的微结构通过“电化学—化学”联合作用的加工方式复制到上述材料表面,或对上述材料进行微米尺度的通孔或盲孔加工,达到微米或亚微米级分辨率。这一技术弥补了现行的MEMS加工方法的不足。论文对电化学刻蚀机理进行了一定的探讨。论文主要研究了如下几个方面内容:
     1.关于金属铜的约束刻蚀加工
     以FeCl_2为产生刻蚀剂Fe~(3+)的前驱体,以SnCl_2和抗坏血酸为捕捉剂,并添加络合剂2,2-联吡啶,或者,以NaNO_2为产生刻蚀剂HNO_3的前驱体,以NaOH为捕捉剂,并辅助以络合剂柠檬酸,成功实现了在金属铜表面进行微孔加工和复杂三维微结构的复制加工。复制加工分辨率为亚微米级。提出了初步的刻蚀加工工艺,采用恒电流电解方式,典型的工艺参数为:电流密度I=1×10~(-2)~2.5×10~(-2)A/cm~2,温度T=35~40℃。
     研究了Fe~(3+)刻蚀体系的反应机理。通过循环伏安曲线对络合剂和捕捉剂的特性和作用进行了分析。研究了刻蚀剂的产生速度对刻蚀表面形态的影响,刻蚀剂的生成速度越快,越容易得到均匀腐蚀的刻蚀表面,但电流密度过高则会降低刻蚀加工分辨率,还会产生氧气析出,干扰扩散层。
     研究了不同络合剂对刻蚀表面形态的影响。加入不同的络合剂,由于络合物的空间构型不一样,空间位阻不一样,在腐蚀过程中,Fe~(3+)的进攻方式也会不一样,导致刻蚀表面腐蚀形态存在较大差异。
     2.关于金属镍的约束刻蚀加工
     研究了NaNO_2体系的约束刻蚀机理,通过循环伏安曲线、Ip—v~(1/2)曲线等分析了捕捉剂NaOH的加入对HNO_2电化学氧化生成刻蚀剂HNO_3的电极过程的影响,并讨论了进行CELT加工时工艺参数选择问题。
     设计以NaNO_2为产生刻蚀剂HNO_3的前驱体,以NaOH为捕捉剂,并加入Ni的络合剂酒石酸以及其它添加剂,成功实现了在镍表面进行复杂三维微结构的复制加工,加工分辨率达到亚微米级。
     实现了在镍箔(厚度50μm)上进行通孔加工。对于直径为89μm的圆孔,单边加工误差约为4μm。该误差与仪器的重复定位精度有关。
     研究了刻蚀电解液中各成分浓度以及电流密度等因素对加工分辨率的影响。
     提出了对于对金属镍进行CELT微加工的基本工艺。电流密度i=5×10~(-3)A/cm~2~2.5×10~(-2)A/cm~2,室温。
     3.关于金属钛的约束刻蚀加工:
     在全面分析金属钛的腐蚀特性基础上,设计了以“NaNO2—NaClO_3”为产生H~+的先驱物,与设计加入到溶液中的另一组分NaF中的F~-结合形成刻蚀剂HF酸,并辅助以其它添加剂,来刻蚀金属钛,并设计以NaOH作为捕捉剂来约束刻蚀剂层的厚度。
     研究了“NaNO_2—NaClO_3—NaF—NaOH”体系的刻蚀过程机理。研究了NaNO_2与NaClO_3之间的相互作用以及NaNO_2与NaClO_3浓度对刻蚀分辨率的影响。实验表明,NaNO_2自身就有一定的约束作用。
     使用“NaNO_2—NaClO_3—NaF—NaOH”刻蚀体系成功地实现了在钛表面进行微孔加工和复杂三维微结构的复制加工,加工分辨率达到亚微米级。
     分析了表面活性剂的作用,研究了表面活性剂对刻蚀加工金属钛的分辨率的影响。
     提出了合适的刻蚀加工工艺。电流密度i=1.25×10~(-2)~5.0x10~(-2)mA/cm~2,温度T=35~45℃。
     4.关于金属铝、镁和镉的约束刻蚀加工:
     研究了以NaNO_2为产生刻蚀剂的先驱物、以NaOH为捕捉剂,在酒石酸及缓蚀剂硅酸钠或多聚磷酸钠等存在下刻蚀金属铝的机理。应用该约束刻蚀体系,实现了在铝表面进行复杂三维微结构的复制加工。加工分辨率在亚微米级。
     研究了在NO_2~-氧化的电极过程中,表面pH的变化情况,以及电流密度对H~+扩散层厚度的影响。分析了用NaOH作为捕捉剂刻蚀铝的局限性和解决问题的方法。通过腐蚀速度测定、电极表面pH测定以及线性扫描伏安曲线测定并结合刻蚀实验,对镁的一些刻蚀体系进行了分析和筛选。应用NaNO_2为产生刻蚀剂的先驱物、以NaOH为捕捉剂,在硅酸纳等添加剂的存在下对金属镁的约束刻蚀加工进行了初步研究,复制加工出阵列立方体微结构,加工分辨率也可达到亚微米级。
     应用NaNO2为产生刻蚀剂的先驱物、以NaOH为捕捉剂,辅助以NH_4Cl,完成了在金属镉表面进行刻蚀加工的初步研究。并取得初步成效。
     综合研究还表明,要取得高刻蚀分辨率和高加工质量,生成的刻蚀剂对被加工材料应有很高的腐蚀速度,在刻蚀剂的电化学产生过程中,电极(模板)上最好没有伴随气体副产物产生,当不可避免地有气体产生时,应添加适当及适量的表面活性剂。
The research on microelectromechanical system(MEMS)has received more and more attention in recent years.The development of novel techniques to fabricate the micro-or nano-structures is one of the key problems for the advance of MEMS.At present,the dominant techniques to fabricate microstructures,such as IC and LIGA,all are based on the photolithography.However,they are suitable only for the fabrication of some simple microstructures since the cross sections of different depth of these structures perpendicular to the light beam are similar to the 2-dimensional mask used.Hence these structures are limited to "2.5-dimensional" and are different from the structures of truly "3-dimensional"(3D).Therefore,many extremely complex,arbitrary 3D micro-devices are still not available in batch fabrication and with a low cost.Electrochemical methods represent a significant contribution to the process of 3D micromachining and have resulted in a variety of techniques.Among these methods,two distance-sensitive techniques based on a 3D mold have been developed recently.Schuster and his co-workers invented a technique that is termed electrochemical micromachining,in which the microelectrode behaves as a milling cutter to engrave the workpiece electrode when an ultra-short voltage pulse is applied to it,and produces a 3D structure.
     Our group led by Professor Z.W.Tian proposed and developed another effective electrochemical technique for 3D micromachining,which is named as confined etchant layer technique(CELT).The working principle is described as follows.An active etchant is generated electrochemically at the surface of a mold electrode(the working electrode) with a 3D microstructure in a three-electrode cell.As the solution contains a designed scavenger,the etchant is consumed rapidly during its diffusion away from the surface of the mold electrode into the solution because of its rapid reaction with the scavenger.
     Therefore,the etchant is confined within an extremely thin diffusion layer around the surface,thus the contour of the etchant layer profile can keep the shape of the microstructure of the mold with a high resolution.A complete negative copy of the 3D microstructure of the mold can be fabricated if the mold is continuously approaching the substrate.
     Therefore,in principle,CELT can be applied to micromachine different kinds of substrates,including metals and semiconductors,regardless of the conductivity of the substrates.In this dissertation,Ⅰinvestigated how to fabricate the complex three-dimensional microstructures on several metallic materials with CELT.The research work can be described as follows:
     1.The micromachining of copper with CELT
     FeCl_2 was used as a precursor of generating etchant Fe~(3+)for the micromachining of copper.The SnCl_2 and ascorbicacid were used as scavengers.2,2-bipyridine was used as a useful additive for micromachining of Cu.We also developed another procedure in which NaNO_2 was used as a precursor of generating the etchant HNO_3 for etching copper. In this case,NaOH was used as scavenger.Citric acid was used as an additive to avoid forming Cu(OH)_2 precipitate in the micromachining processes.3D complex microstructures were replicated on copper surface successfully.The spatial resolution of this machining was about 0.95μm and the optimized processing condition was proposed: constant current method was employed,the current density i=1×10~(-2)~2.5×10~(-2)A/cm~2, temperature T=35~40℃.
     The reactive mechanism was investigated for the etching system including FeCl_2 and SnCl_2.The role of complex ligands and scavengers were analyzed in detail.The effects of generating rate of etchant on the morphology of the etched surface were studied.The faster the generating rate of etchant was,the easier to get uniform surface. However,the very high current density will cause the reduction of the spatial resolution of the etched morphology.Furthermore it could lead to evolution of oxygen,which will interfere the etchant's diffusion layer.
     The influences of ligands on the morphology of the etched surface were also investigated.When different ligands were used,the way in which the etchant aggress (etch)the copper atom of the substrate was very different owing to the different configurations of the complexes,and hence leading to different surface morphology.
     2.The micromachining of nickel with CELT
     The NaNO_2 was used as precursor of generating etchant HNO_3.The NaOH was used as a scavenger.The replication of 3-dimensional complex microstructure on nickel surface was successfully finished using this system with the addition of the ligand of tartaric acid.The etching resolution reached at sub-micrometer scale.
     The etching mechanism was investigated about the etching system containing NaNO_2.The effects of scavenger NaOH on the generation of etchant were studied through the cyclic voltammograms.
     The through-hole micromachining on a nickel foil with a thickness of 50μm was carried out.The etching error was around 4μm when the fabricated microhole was about 89μm in diameter.The high error was related to the repeating precision of the CELT instrument.
     The influences of concentration of different composition in the etching system and the current density on the micromachining resolution were investigated.The optimized processing condition was:current density i=5×10~(-3)A/cm~2~2.5×10~(-2)A/cm~2,at room temperature.
     3.The micromachining of titanium and its alloys with CELT
     HF was selected as an etchant for titanium,and the "etchant-scavenger" system was designed.Both NaNO_2 and NaClO_3 were used as precursors to generate protons.After initiating of electrolysis the generated H~+ associated with F~- that was supplied by fluoride (e.g.,NaF)in the solution to form HF acid for etching titanium.The NaOH was selected as the scavenger.
     The etching mechanism of "NaNO_2+NaClO_3+NaF+NaOH" system was also studied.The interaction between NaNO_2 and NaClO_3 was investigated.The influence of concentration of NaNO_2 and NaClO_3 on etching resolution was studied.The experiment results suggest that the NaNO_2 can prevent the diffusion of etchant to a certain extent.
     In the solution containing "NaNO_2+NaClO_3+NaF+NaOH",the microholes and 3D complex microstructure was fabricated on titanium surface successfully.The etching resolution reached at the sub-micrometer scale.The effect of surfactant on the resolution of etching titanium was investigated.Suitable operation conditions were suggested as follows:the current density i=1.25×10~(-2)~5.0×10~(-2)mA/cm~2,the temperature T=35~45℃.
     4.The micromachining of aluminum,magnesium and cadmium with CELT
     NaNO_2 was used as precursor of generating etchant HNO_3.NaOH was used as scavenger.Tartaric acid was used as a useful additive.Na_2SiO_3 or sodium polyphosphate was added as an inhibitor against spontaneous corrosion.3-dimensional complex microstructure on aluminum surface was replicated successfully.The etching resolution reached at the sub-micrometer scale.The etching mechanism was investigated.
     The pH change near the working electrode surface during the electro-oxidation of NO_2~- was explored.The effect of current density on the diffusion layer of H~+ was also investigated.The limitations of the etching system with NaOH as the scavenger were discussed.
     Available etching systems for magnesium were screened through the measurement on the change of the solution pH near the electrode surface and etching rate.Selecting NaNO_2 as precursor for electrochemically generating etchant HNO_3,NaOH as scavenger,and small amount of Na_2SiO_3 as inhibitor,we can replicate 3-D microstructure of the mold onto the magnesium alloy surface. Sub-micrometer scale resolution was obtained.
     The etching process on cadmium was studied by using NaNO_2 as a precursor of generating etchant and NaOH as a scavenger.The very preliminary result indicates that the micromachining on cadmium by CELT was feasible.
     Overall,the comprehensive study shows that in order to obtain the good quality and the high spatial resolution,the corrosion rate for the generated etchant must be sufficiently high.It is better to avoid generating the gas as the co-product at the etched surface,It is necessary to add some additives if the gas product is unavoidable in the process.
引文
1.丁衡高,微米/纳米技术——面向21世纪的军民两用技术[J].仪器仪表学报,1995,16(1):1-7.
    2.周兆英,叶雄英,胡敏,尤政,微机电系统的进展[J],仪器仪表学报,1996,17(1):20-26.
    3.Ivan Amato,Fomenting a revolution in miniature[J],Science,1998,282:402-405.
    4.王渭源,小如蚂蚁——半导体传感器与微电子机械系统[M].长沙:湖南科学技术出版社,1999.
    5.王立鼎,吴一辉,抓住机遇,推动我国微型机械的快速发展[J],中国机械工程,1999,10(2):121.
    6.章吉良,杨春生等,微机电系统及其相关技术[M].上海:上海交通大学出版社,1999.
    7.石庚辰,微机电系统技术[M].北京:国防工业出版社,2002.
    8.Menz W,Mohr J,Paul O著,王春海,于杰等译,微系统技术[M].北京:化学工业出版社,2003.
    9.梅涛,伍小平,微机电系统[M].北京:化学工业出版社,2003.
    10.王琪民,微型机械导论[M],合肥:中国科学技术大学出版社,2003.
    11.王振龙等,微细加工技术[M].北京:国防工业出版社,2005.
    12.Berns A,Buder U,Obermeier E,et al.AeroMEMS sensor array for high-resolution wall pressure measurements[J],Sensors and Actuators A-Physical,2006,132(1):104-111.
    13.Ni X Q,Wang M,Chen X X,et al.An optical fibre MEMS pressure sensor using dual-wavelength interrogation[J],Measurement Science & Technology,2006,17(9):2401-2404.
    14.Wang Y C,Huang C H,Lee Y C,et al.Development of a PVDF sensor array for measurement of the impulsive pressure generated by cavitation bubble collapse[J],Experiments in Fluids,2006,41(3):365-373.
    15.Van der Heyden F H J,Blom M T,Gardeniers J G E,et al.A low hydraulic capacitance pressure sensor for integration with a micro viscosity detector[J],Sensors and Actuators B-Chemical,2003,92(1-2):102-109.
    16.Jain M K,Grimes C A.A wireless magnetoelastic micro-sensor array for simultaneous measurement of temperature and pressure[J],IEEE Transactions on Magnetics,2001,37(4):2022-2024.
    17.Shen L P,Uchiyama T,Mohri K,et al.Sensitive stress-impedance micro sensor using amorphous magnetostrictive wire[J],IEEE Transactions on Magnetics,1997,33(5):3355-3357.
    18.De Brabander G N,Beheim G,Boyd J T,Integrated optical micromachined pressure sensor with spectrally encoded output and temperature compensation[J],Applied Optics,1998 37(15):3264-3267.
    19.Kim I S,Kim O S,Jeong Y J,et al.A study on the thermal behavior of fabrication processes for micro-accelerometer by SOI wafers[J],Journal of Materials Processing Technology,2002,130:680-684.
    20.Chae J,Kulah H,Najafi K,A CMOS-compatible high aspect ratio silicon-on-glass in-plane micro-accelerometer[J],Journal of Micromechanics and Microengineering,2005 15(2):336-345.
    21.Yee Y J,Bu J U,Chun K J,et al.An integrated digital silicon micro-accelerometer with MOSFET-type sensing elements[J],Journal of Micromechanics and Microengineering,2000,10(3):350-358.
    22.Xiao Z,Chen M,Wu G Y,et al.Silicon micro-accelerometer with rug resolution,high linearity and large frequency bandwidth fabricated with two mask bulk process[J],Sensors and Actuators A-Physical,1999,77(2):113-119.
    23.Lim M K,Du H,Su C,et al.A micromachined piezoresistive accelerometer with high sensitivity:design and modeling[J],Microelectronic Engineering,1999,49(3-4):263-272.
    24.Kromer O,High-Precision Readout Circuit for LIGA Acceleration Sensors[J],Sensors and Actuators A-Physical,1995,46:196.
    25.Lapadatu D,A double-sided capacitive miniaturized accelerometer based on photovoltaic etch-stop technique[J],Sensors and Actuators A-Physical,1996,53:261.
    26.Fang Q,Chetwynd D G,Covington J A,et al.Micro-gas-sensor with conducting polymers[J],Sensors and Actuators B-ChemicaL 2002,84(1):66-71.
    27.Guenat O T,Fiaccabrino G C,Morf W E,et al.Microfabricated chemical analysis systems for environmental applications[J],Chimia,1999,53(3):87-90.
    28.Van Steenkiste F,Baert K,Debruyker D,et al.A microsensor array for biochemical sensing[J],Sensors and Actuators B-Chemical,1997,44(1-3):409-412.
    29.Feng Y,Wang M,Micro hydrogen sensor based on Pd-Ag nanofilm[J],Rare Metal Materials and Engineering,Suppl.,2006,35:25-28.
    30.Norlin P,Ohman O,Ekstrom B,et al.A chemical micro analysis system for the measurement of pressure,flow rate,temperature,conductivity,UV-absorption and fluorescence[J],Sensors and Actuators B-Chemical,1998,49(1-2):34-39.
    31.Zhang W P,Chen W Y,Zhao X L,et al.The study of an electromagnetic levitating micromotor for application in a rotating gyroscope[J],Sensors and Actuators A-Physical,2006,132(2):651-657.
    32.Lu H W,Zhu J G,Guo Y G,Development of a slotless tubular linear interior permanent magnet micromotor for robotic applications[J],IEEE Transactions on Magnetics,2005,41(10):3988-3990.
    33.Nagle S E,Livermore C,Frechette L G,et al.An electric induction micromotor[J],Journal of Microelectromechanical Systems,2005,14(5):1127-1143.
    34.Herz P R,Chen Y,Aguirre A D,et al.Micromotor endoscope catheter for in vivo,ultrahigh-resolution optical coherence tomography[J],Optics Letters,2004,29(19):2261-2263.
    35.Friend J,Nakamura K,Ueha S,A piezoelectric micromotor using in-plane sheafing of PZT elements[J],IEEE-ASME Transactions on Mechatronics,2004,9(3):467-473.
    36.Dong S X,Lira S P,Lee K H,et al.Piezoelectric ultrasonic micromotor with 1.5 mm diameter[J],IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control 2003,50(4):361-367.
    37.Barbic M,Mock J J,Gray A P,et al.Electromagnetic micromotor for microfiuidics applications[J],Applied Physics Letters,2001,79(9):1399-1401.
    38.Carotenuto R,Iula A,Pappalardo M,et al.A piezoelectric micromotor based on acoustic precessional waveguide[J],Applied Physics Letters,1999,75(7):1015-1017.
    39.Honda T,Yamasaki J,Fabrication of a micromotor driven by electromagnetic vibration[J],Journal of Applied Physics,1998,83(11):7115-7117.
    40.Chuang WH,Fettig RK,Ghodssi R,An electrostatic actuator for fatigue testing of low-stress LPCVD silicon nitride thin films[J],Sensors and Actuators A-Physical,2005,121(2):557-565.
    41.Wu X T,Hui J,Young M,et al.Electrostatic micromembrane actuator arrays as motion generator[J],Applied Physics Letters,2004,84(22):4418-4420.
    42.Van der Wijngaart W,Ask H,Enoksson P,et al.A high-stoke,high-pressure electrostatic actuator for valve applications[J],Sensors and Actuators A-Physical.2002,100(2-3):264-271.
    43.Sattler R,Plotz F,Fattinger G,et al.Modeling of an electrostatic torsional actuator:demonstrated with an RF MEMS switch[J],Sensors and Actuators A-PhysicaL 2002,97-8:337-346.
    44.Byun J K,Park I H,Hah S Y,Topology optimization of electrostatic actuator using design sensitivity[J],IEEE Transactions on Magnetics,2002,38(2):1053-1056.
    45.Kim B H,Chun K J,Fabrication of an electrostatic track-following micro actuator for hard disk drives using SOI wafer[J],Journal of Micromechanics and Microengineering,2001,11(1):1-6.
    46.Chan E K,Dutton R W,Electrostatic micromechanical actuator with extended range of travel[J],Journal of Microelectromechanical Systems,2000,9(3):321-328.
    47.Yeh J L A,Jiang H R,Tien N C,Integrated polysilicon and DRIE bulk silicon micromachining for an electrostatic torsional actuator[J],Journal of Microelectromechanical Systems,1999,8(4):456-465.
    48.Lee H,Jeong Y,Shin J,et al.Package embedded heat exchanger for stacked multi-chip module[J],Sensors and Actuators A-Physical,2004,114(2-3):204-211.
    49.Rachkovskij D A,Kussul E M,Talayev S A,Heat exchange in short microtubes and micro heat exchangers with low hydraulic losses[J],Microsystem Technologies,1998,4(3):151-158.
    50.孙立宁,孙绍云,荣伟彬,蔡鹤皋,微操作机器人的发展现状[J],机器人,2002,24(2):184-187.
    51.谢晖,孙立宁,荣伟彬,陈立国,MEMS微装配机器人系统的研究[J],机械与电子,2005,(3):7-10.
    52.Motamedi M E,Wu M C,Pister K S J.Micro-opto-electro-mechanical devices and on-chip optical processing[J].Optical Engineering,1997,36:1282.
    53.Wu M C.Micromachining for optical and Optoelectronic systems[C].Proceeding of IEEE,1997,85:1883。
    54.A.Azzam Yasseen,Joseph N.Mitchell,James F.Klemic,et al,A rotary electrostatic micromotor 1×8 optical switch[J],IEEE Journal of Selected Topics in Quantum Electronics,1999,5(1):26-32.
    55.Simard M,Khalid Z,Kirk A G,Digital optical space switch based on micromotor grating scanners[J],IEEE Photonics Technology Letters,2006,18(1-4):313-315.
    56.Kanamori Y,Aoki Y,Sasaki M,et al,Fiber-optical switch using cam-micromotor driven by scratch drive actuators[J],Journal of Micromechanics and Microengineering,2005,15(1):118-123.
    57.Luo Z P,Sun Y L,An K N,An optical spin micromotor[J],Applied Physics Letters,2000,76(13):1779-1781.
    58.Letartre X,Mouette J,Leclercq J L,et al,Switching devices with spatial and spectral resolution combining photonic crystal and MOEMS structures[J],Journal of Lightwave Technology,2003,21(7):1691-1699.
    59.Klavs Jensen,Small,faster chemistry[J].Nature,1998,393:735-737.
    60.Martin U.Kopp,Andrew J.de Mello,Andreas Manz,Chemical amplification:continuous-flow PCR on a chip[J].Science,1998,280:1046-1048.
    61.Mark A.Burns,Brian N.Johnson,Sundaresh N.Brahmasandra,et al,An integrated nanoliter DNA analysis device[J].Science,1998,282:484-487.
    62.Manz A,Becket H,Eds.Microsystem technology in chemistry and life Science[M].Berlin:Springer,1998.
    63.Hartmut Gau,Stephen Herminghaus,Peter Lenz,et al,Liquid morphologies on structured surfaces:from microchannels to microchips[J].Science,1999,283:46-49.
    64.John T.Santini Jr,Michael J Cima,& Robert Langer,A controlled-release microchip[J]. Nature,1999,397:335-338.
    65.Roy D.Rocklin,Roswitha S.Ramsey,and J.Michael Ramsey,A microfabricated fluidic device for performing two-dimensional liquid-phase separation[J].Anal.Chem.2000,72:5244-5249.
    66.马立人,生物芯片[J],现代科学发器,1999,3:3-8.
    67.王立鼎,刘冲,微机电系统科学于技术的发展趋势[J].大连理工大学学报,2000,40(5):505-508.
    68.田中群,微系统与电化学[J],电化学,2000,6(1):1-9.
    69.K.A.杰克逊主编,屠海令,万群等译,半导体工艺[M],北京:科学出版社,1999.
    70.蒋欣荣,微细加工技术[M],北京:电子工业出版社,1990.
    71.刘明,谢长青,王丛舜,微细加工技术[M].北京:化学工业出版社,2004.
    72.黄庆安,硅微机械加工技术[M],北京:科学出版社,1996.
    73.Datta M.Fabrication of an array of precision nozzles by through-mask electrochemical micromachining[J].J.Electrochem.Soc.,1995,142(11):3801-3805.
    74.Shenoy R V,Datta M,Romankiw L T.Investigation of island formation during through-mask electrochemical micromachining[J].J.Electrochem.Soc.,1996,143(7):2305-2309.
    75.Datta M,Microfabrication by electrochemical metal removal[J],IBM Journal of Research and Development,1998,42(5):655-669.
    76.Datta M,Landolt D,Fundamental aspects and applications of electrochemical microfabrication[J],Electrochimica Acta,2000,45(15-16):2535-2558.
    77.O.Zinger,P.-F.Chauvy,D Landolt,Scale-Resolved Electrochemical Surface Structuring of Titanium for Biological Applications[J],J.Electrochem.Soc.,2003,150(11):B495-B503.
    78.哈尔滨工业大学机械制造工艺教研室编,电解加工技术[M],北京:国防工业出版社1979.
    79.范植坚,王天诚,电解加工技术及研究方法[M],北京:国防工业出版社 2004.
    80.E.W.Becket,W.Ehrfeld,P.Hagmann,A.Maner,D.Munchmeyer,Fabrication of microstructures with high aspect ratios and great structural heights by synchrotron radiation lithography galvanoforming and plastic moulding(LIGA process)[J],Microelectron.Eng.,1986,4:35.
    81.Romankiw L T,A path:from electroplating through lithographic mask in electronics to LIGA in MEMS[J],Electrochimica Acta,1997,42(20-22):2985-3005.
    82.Ledworuski R,Lehr H,Niederfeld G,et al.A new ultrasonic catheter system with LIGA geared micromotor[J],Microsystem Technologies,2002,9(1-2):133-136.
    83.Yi F,Peng L,Zhang J,et al.A new process to fabricate the electromagnetic stepping micromotor using LIGA process and surface sacrificial layer technology[J],Microsystem Technologies,2001 7(3):103-106.
    84.Lee K C,Lee S S,Deep X-ray mask with integrated actuator for 3D microfabrication[J],Sensors and Actuators A-Physical,2003,108(1-3):121-127.
    85.Makarova O V,Mancini D C,Moldovan N,et al.Microfabrication of freestanding metal structures using graphite substrate[J],Sensors and Actuators A-Physical,2003,103(1-2):182-186.
    86.Takahata K,Shibaike N,Guckel H,High-aspect-ratio WC-Co microstructure produced by the combination of LIGA and micro-EDM[J],Microsystem Technologies,2000,6(5):175-178.
    87.Malek C K,Saile V,Applications of LIGA technology to precision manufacturing of high-aspect-ratio micro-components and -systems:a review[J],Microelectronics Journal,2004,35(2):131-143.
    88.陈迪,李昌敏,章吉良,伊福廷,周狄,郭晓芸,LIGA技术X光深层光刻工艺研究[J],微细加工技术,2000,(2):66-70.
    89.刘刚,田扬超,张新夷,LIGA技术制作微反应器的研究[J],微细加工技术,2002,(2):68-71.
    90.Jing X M,Chen D,Fang D M,et al.Multi-layer microstructure fabrication by combining bulk silicon micromachining and UV-LIGA technology[J],Microelectronics Journal,2007,38(1):120-124.
    91.Cheng C H,Chen S C,Chen Z S,Multilevel electroforming for the components of a microdroplet ejector by UV LIGA technology[J],Journal of Micromechanics and Microengineering,2005,15(4):843-848.
    92.Yang C R,Hsieh G W,Hsieh Y S,et al.Microstructuring characteristics of a chemically amplified photoresist synthesized for ultra-thick UV-LIGA applications[J],Journal of Micromechanics and Microengineering,2004,14(8):1126-1134.
    93.Wilbur J L,Kumar A,Biebuyck H A,Whitesides G M,et al.Microcontaet printing of self-assembled monolayers:Applications in microfabrication[J],Nanotechnology,1996,7(4):452-457.
    94.Yan L,Huck W T S,Whitesides G M,Self-assembled monolayers(SAMS)and synthesis of planar micro- and nanostructures[J],Journal of Macromolecular Science-Polymer Reviews,2004,44(2):175-206.
    95.Wolfe D B,Love J C,Gates B D,et al.Fabrication of planar optical waveguides by electrical microcontact printing[J],Applied Physics Letters,2004,84(10):1623-1625.
    96.Odom T W,Love J C,Wolfe D B,et al.Improved pattern transfer in soft lithography using composite stamps[J],Langmuir,2002,18(13):5314-5320.
    97.Jeon N L,Choi I S,Whitesides G M,et al.Patterned polymer growth on silicon surfaces using microcontact printing and surface-initiated polymerization[J],Applied Physics Letters,1999,75(26):4201-4203.
    98. Lahiri J, Ostuni E, Whitesides G M, Patterning ligands on reactive SAMs by microcontact printing[J], Langmuir, 1999,15 (6): 2055-2060.
    99. Goetting L B, Deng T, Whitesides G M, Microcontact printing of alkanephosphonic acids on aluminum: Pattern transfer by wet chemical etching[J], Langmuir, 1999, 15 (4): 1182-1191.
    100. A. Cohen, SPIE 1999 Symposium on Micromachining and microfabrication[C]. Proc, Santa Clora, CA, September 22, 1999.
    101. Schuster R, Kirchner V, Allongue P, ErtI G. Electrochemical micromachining[J] Science, 2000,289:98-101.
    102. Schuster R, Electrochemical microstructuring with short voltage pulses[J], Chemphyschem, 2007, 8(1): 34-39.
    103. Trimmer A L, Maurer J J, Schuster R, Zangari G, Hudson J L, All-electrochemical synthesis of submicrometer Cu structures on electrochemically machined p-Si substrates[J], Chemistry of Materials, 2005,17 (26): 6755-6760.
    104. Allongue P, Jiang P, Kirchner V, Trimmer A L, Schuster R, Electrochemical micromachining of p-type silicon[J], Journal of Physical Chemistry B, 2004,108 (38): 14434-14439.
    105. M. Kock, V. Kirchner, R. Schuster, Electrochemical micromachining with ultrashort voltage pulses_a versatile method with lithographical precision[J], Electrochimica Acta, 2003, 48 (20-22): 3213-3219.
    106. Mandler D., Bard A. J. Scanning electrochemical microscopy: the application of the feedback mode for high resolution copper etching[J]. J. Electrochem. Soc, 1989,136 (10): 3143-3144.
    107. Husser O E, Craston D H, Bard A J. Scanning electrochemical microscopy: high-resolution deposition and etching of metals[J]. J. Electrochem. Soc, 1989, 136 (11): 3222-3229.
    108. Erich Ammann and Daniel Mandler, Local deposition of gold on silicon by the scanning electrochemical microscope, J. Electrochem. Soc, 2001,148 (8): C533-C539.
    109. Stroscio J A, Eigler D M. Atomic and molecular manipulation with the scanning tunneling microscope[J]. Science, 1991,254: 1319-1326
    110. Schuster R, Kirchner V, Xia X H, et al. Nanoscale electrochemistry[J]. Phys. Rev. Lett., 1998, 80 (25): 5599-5602.
    111. Lebreton C, Wang Z Z. Critical humidity for removal of atoms from the gold surface with scanning tunneling microscopy[J]. J. Vac. Sci. technoi, 1996, B14: 1356-1359.
    112. Sugimura H, Uchida T, Kitamura N, et al. Scanning tunneling microscope tip-introduced anodization for nanofabrication of titanium[J]. J. Phys. Chem., 1994, 98: 4352-4357.
    113. Xie Z X, Kolb D M. Spatially confined copper dissolution by an STM tip: a new type of electrochemical reaction?[J]. Journal of Electroanalytical Chemistry, 2000,481 (2): 177-182.
    114. Liu G Y, Xu S, Qian Y L, Nanofabrication of self-assembled monolayers using scanning probe lithography[J], Accounts of Chemical Research, 2000, 33 (7): 457-466.
    115.Khomutov G B,Kislov V V,Antipina M N,et al.Interfacial nanofabrication strategies in development of new functional nanomaterials and planar supramolecular nanostructures for nanoelectronics and nanotechnology[J],Microelectronic Engineering,2003,69(2-4):373-383.
    116.Zhang LB,Shi JX,Yuan JL,et al.The advancement of SPM-based nanolithography[J],Materials Science Forum,2004,471-472:353-357.
    117.Tian Z W,Feng Z D,Tian Z Q,et al.Confined etchant layer technique for two-dimensional lithography at high resolution using electrochemical scanning tunneling microscopy[J].Faraday Discuss,1992,94:37-44.
    118.1.田昭武,田中群,林仲华,谢兆雄,罗瑾,毛秉伟,谢雷,苏连永,复杂三维超微图形的复制加工技术的困难及对策[J],仪器仪表学报,1996,17:14-19.
    119.2.祖延兵,约束刻蚀剂层技术研究,厦门大学博士后研究工作报告,1998.120.3.孙建军,微系统中的电化学微加工技术研究—约束刻蚀剂层技术研究,厦门大学博士后研究工作报告,2001.
    121.4.黄海苟,约束刻蚀剂层技术用于砷化镓三维规整细微图形的复制加工,厦门大学理学硕士论文,2001.
    122.Zu Y B,Xie L,Mao B W,Tian Z W.Studies on silicon etching using the confined etchant layer technique[J].Electrochimica Acta,1998,43:1683-1990.
    123.Sun J J,Huang H G,Tian Z Q,et al.Three-dimensional micromachining for microsystems by confined etchant layer technique[J].Electrochimica Acta,2001,47:95-101.
    124.Tian Z W,Lin H X,Sun J J,et al.The development of microsystems and new applications of electrochemistry[J].Electrochemistry(in Chinese),2001,7:1-9.
    125.Palchetti I,Marrazza G,Mascini M.New procedures to obtain electrochemical sensors for heavy metal detection[J].Analytical Letters,2001,34:813-824.
    126.Chienliu Chang and Peizen Chang.Innovative micromachined microwave switch with very low insertion loss[J],Sensors and Actuators A:Physical,2000,79(1):71-75.
    127.Serre C,Yaakoubi N,Martinez S,et al.Electrochemical deposition of Cu and Ni/Cu multilayers in Si Microsystem Technologies[J],Sensors and Actuators A:Physical,2005,123-124:633-639.
    128.Furukawa S,Roy S,Miyajima H,et al.Nickel surface micromachining[C].Proceedings of Sixth international symposium on micro machine and human science,IEEE.1995,161-162.
    129.Chung C K,Fung P K,Hong Y Z,et al.A novel fabrication of ionic polymer-metal composites(IPMC)actuator with silver nano-powders[J],Sensors and Actuators B-Chemical,2006,117(2):367-375 Sp.Iss.
    130.Guan S,Nelson B J,Vollmers K,Electrochemical codeposition of magnetic particle-ferromagnetic matrix composites for magnetic MEMS actuator applications[J],J.Electrochem.Soc.,2004,151(9):C545-C549.
    131.Lai Y J,Bordatchev E V,Nikumb S K,et al.Performance characterization of in-plane electro-thermally driven linear microactuators[J],Journal of lntelligent Material Systems and Structures,2006,17(10):919-929.
    132.Hsu C P,Hsu W Y,Design and characterization of an electrothermally driven monolithic long-stretch microdrive in compact arrangement[J],Journal of Microelectromechanical Systems,2006,15(4):935-944.
    133.Arias F,Oliver S R J,Xu B,Holmlin R E,et al.Fabrication of metallic heat exchangers using sacrificial polymer mandrils[J].J.Microelectromechan.Sys.,2001,10:107-112.
    134.Cagatay S,Koc B,Uchino K,A 1.6-mm,metal tube ultrasonic motor[J],IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control,2003,50(7):782-786.
    135.Yang C S,Zhao X L,Ding G F,et al.An axial flux electromagnetic micromotor[J],Journal of Micromechanics and Microengineering,2001,11(2):113-117.
    136.Ho C H,Chin K P,Yang C R,et al.Ultrathick SU-8 mold formation and removal,and its application to the fabrication of LIGA-like micromotors with embedded roots[J],Sensors and Actuators A-Physical,2002,102(1-2):130-138.(Nickel).
    137.Wang S A,Li X H,Wakabayashi K,et al.Deep reactive ion etching of lead zirconate titanate using sulfur hexafiuoride gas[J].J.Am.Ceramic Soc.,1999,82:1339-1341.
    138.Suh H J,Bharathi P,Beeble D J,et al.Dendritic material as a dry-release sacrificial layer[J].J.Microelectromechan.Sys.,2000,9:198-205.
    139.Li X H,Abe T,Esashi M.Deep reactve ion etching of Pyrex glass using SF_6 plasma[J].Sensors and Actuators A,2001,87:139-145.
    140.Takeuchi S,Shimoyama I.A three-dimensional shape memory alloy microelectrode with clipping structure for insect neural recording[J].J.Microelectromachan.Sys.,2000,9:24-31.
    141.Surganov V,Mozalev A,Boksha V.Planarized aluminum submicron structure formation for interconnection of ULSI by laser lithography and electrochemical anodizing[J].Microelectronic Engineering,1997,37/38:335-340.
    142.Moreno O A,McHatten R C,Paonessa R S,et al.In Principles of Electronic Packaging (edited by Seraphim D P,Lasky R C and Li C Y)[M].McGraw-Hill Book Company,New York,1989.
    1.Stephen A.Ampbell,曾莹,严利人等译,The science and Engineering of Microelectronic Fabrication(微电子制造科学原理与工程技术)[M],北京:电子工业出版社,2003.
    2.唐伟忠,薄膜材料制备原理、技术及应用[M],北京:冶金工业出版社,2003.
    3.田民波,薄膜技术与薄膜材料[M],北京:清华大学出版社,2006.
    4.北京创微纳科技有限公司,JS2S-80D溅射台使用说明书,2002.
    5.刘品宽,孙立宁,荣伟彬,蒋利民等,新型智能电化学微加工系统研究[J],高技术通讯,2002,12(6):83-87.
    6.哈尔滨工业大学机器人研究所,超精密微细电化学加工系统使用手册,2000.
    7.廖乾初,蓝芬兰,扫描电镜原理及应用技术[M],北京:机械工业出版社,1990.
    8.周玉,武高辉,材料分析测试技术[M],哈尔滨:哈尔滨工业大学出版社,1998.
    9.王中林,纳米材料表征,北京:化学工业出版社,2005.
    10.白春礼,扫描隧道显微技术及应用[M],上海科学技术出版社,上海,1994.
    11.严佳伟,厦门大学理学博士论文,2001.
    12.汤儆,厦门大学理学博士论文,2002.
    13.谢兆雄,厦门大学博士学位论文,1995.
    1.Q.Luo,D.R.Campbell,S.V.Babu,Chemical-mechanical polishing of copper in alkaline media[J],Thin Solid Films,1997,311(1-2):177-182.
    2.P.C.Andricacos,C.Uzoh,J.O.Dukovic,et al.Damascene copper electroplating for chip interconnections[J],IBM Journal of Research and Development,1998,42(5):567-574.
    3.P.C.Andricacos,Copper on-chip interconnections:A breakthrough in electrodeposition to make better chips[J],Interface,1999,8:32.
    4.G.C.Schwartz and P.M.Schaible,Reactive ion etching of copper films[J],J.Electrochem.Soc., 1983, 130(8): 1777-1782.
    5. B. J. Howard, S. K. Wolterman, W. J. Yoo, et al, Mater. Res. Soc. Symp. Proc.[C], 1991, 201: 129.
    6. L. Chen, T. J. Chuang, G. S. Mathad, U.S. Patent No. 4 490 210, December 1984; L. Chen, T. J. Chuang, G. S. Mathad, U.S. Patent No. 4 490 211[P], December 1984.
    7. H. F. Winters, J. Vac. Sci. technol. B, 1985,3 (1): 9.
    8. W. Sesselmann, E. E. Marinero, and T. J. Chuang, Laser-induced desorption and etching processes on chlorinated Cu and solid CuCl surfaces[J], Appl. Phys. A, 1986,41(3): 209.
    9. J. Farkas, K. M. Chi, M. J. Hampden-Smith, et al, Etching of copper and copper oxide at high rates via generation of volatile copper species[J], Mater. Sci. Eng. B, 1993,17(1-3): 93-96.
    10. M. A. George, D. W. Hess, S. E. Beck, et al, Reaction of 1,1,1,5,5,5- Hexafluoro-2, 4-pentanedione (H+hfac) with CuO, Cu20, and Cu Films[J], J. Electrochem. Soc, 1995, 142(3): 961.
    11. Ajay Jain, T. T. Kodas, M. J. Hampden-Smith, Thermal dry-etching of copper using hydrogen peroxide and hexafluoroacetylacetone[J], Thin Solid Films, 1995, 269 (1-2): 51-56.
    12. H.L. Nigg, L.P. Ford, R.I. Masel, The surface chemistry of l,l,l-trifluoro-2,4-pentanedione on clean and oxygen pre-covered Cu(210)- A comparison with 1,1,1,5,5,5- hexafluoro- 2,4-pentanedione and 2,4-pentanedione surface chemistry on the same surfaces[J], Surface Science, 1999, 419 (2-3): 97-103.
    13. R. C. Alkire, H. Deligianni, The role of mass transport on anisotropic electrochemical pattern etching[J], J. Electrochem. Soc, 1988,135 (5): 1093-1100.
    14. R. V. Shenoy, M. Datta, L. T. Romankiw, Application of chemical and electrochemical micromachining in the electronics industry[J], J. Electrochem. Soc, 1989,136 (6): 285C-292C.
    15. A. C. West, C. Madore, M. Matlosz, et al, Shape changes during through-mask electrochemical micromachining of thin metal films[J], J. Electrochem. Soc, 1992, 139 (2): 499-506.
    16. M. Datta, Fabrication of an array of precision nozzles by through-mask electrochemical micromachining[J], J. Electrochem. Soc, 1995,142 (11): 3801-3805.
    17. R. V. Shenoy, M. Datta. L. T. Romankiw, Investigation of island formation during through-mask electrochemical micromachining[J], J. Electrochem. Soc, 1996, 143 (7): 2305-2309.
    18. Y. Fukunaka, Y. Konishi, Y. Tomii, et al, Electrochemical interfacial phenomena under microgravity: Part I. Anodic dissolution of copper in drop shaft[J], Metallurgical and Materials Transactions B -Process Metallurgy and Materials Processing Science, 1999, 30 (1): 99-105.
    19. M. C. Baykul, Materials Preparation of sharp gold tips for STM by using electrochemical etching method[J], Material Science and Engineering B-Solid State Materials for Advanced Technology, 2000, 74 (1-3): 229-233.
    20. H.K. Kuiken, J.J. Kelly, P.H.L. Notten, Etching Profiles at Resist Edges[J], J. Electrochem. Soc., 1986, 133 (6): 1217-1226.
    21. M. Georgiadou, R. Alkire, Anisotropic Chemical Etching of Copper Foil[J], J. Electrochem. Soc, 1993,140(5): 1340-1347.
    22. M. Georgiadou, R. Alkire, Anisotropic Chemical Etching of Copper FoiI[J], J. Electrochem. Soc, 1993,140 (5): 1348-1355.
    23. M. Georgiadou, R. Alkire, Anisotropic Chemical Pattern Etching of Copper Foil[J], J. Electrochem. Soc, 1994,141 (3): 679-689.
    24. H.K. Kuiken, R.P. Tijuburg, Centrifugal Etching: A Promising New Tool to Achieve Deep Etching[J], J. Electrochem. Soc, 1983, 130(8): 1722-1729.
    25. Q. Luo, D. R. Campbell, S. V. Babu, Proceedings of the 1st International VMIC Specialty Conference on CMP Planarization[J], p. 145, Santa Clara, CA, February 1996.
    26. Q. Luo, D. R. Campbell, S. V. Babu, Stabilization of Alumina Slurry for Chemical-Mechanical Polishing of Copper[J], Langmuir, 1996, 12 (15): 3563-3566.
    27. Z. Stavreva, D. Zeidler, M. Plotner, et al, Chemical mechanical polishing of copper for multilevel metallization[J], Appl. Surf. Sci., 1995, 91 (1-4): 192-196.
    28. H. Hirabayashi, M. Higuchi, M. Kinoshita, et al, Proceedings of the 1st International VMIC Specialty Conference on CMP Planarization[C], p. 119, Santa Clara, CA, February 1996.
    29. R. J. Gutmann, J. M. Steigerwald, L. You, et al, Chemical-mechanical polishing of copper with oxide and polymer interlevel dielectrics[J], Thin Solid Films, 1995, 270 (1-2): 596-600.
    30. M. Wadsak, M.Schreiner, T. Aastrup, A comparison of preparation methods of copper surfaces for in situ scanning force microscopy investigations[J], Applied Surface Science, 2000, 157 (1-2): 39-46.
    31. R. Jairath, J. Farkas, C. K. Huang, et al, Solid State Tech., 1994, 7:71.
    32. P. Wrschka, J. Hernandez, GS. Oehrlein, et al, Chemical Mechanical Planarization of Copper Damascene Structures[J], J. Electrochem. Soc, 2000, 147 (2): 706-712.
    33. Y. Homma, S. kondo, N. Sakuma, et al, Control of Photocorrosion in the Copper Damascene Process[J], J. Electrochem. Soc, 2000, 147 (3): 1193-1198.
    34. C. Serre, N. Yaakoubi, S. Martinez, A. Perez-Rodriguez, J.R. Morante, J. Esteve and J. Montserrat, Electrochemical deposition of Cu and Ni/Cu multilayers in Si Microsystem Technologies[J], Sensors and Actuators A: Physical, 2005, 123-124: 633-639.
    35. Pan C T, Polymeric magnetic microactuator with efficient permalloy loop design[J], Microsystem Technologies - Micro-and Nanosystems-Information Storage and Processing Systems, 2005,11(1): 1-10.
    36. Kohlmeier T, Seidemann V, Buttgenbach S, et al. An investigation on technologies to fabricate microcoils for miniaturized actuator systems[J],Microsystem Technologies-Micro-and Nanosystems-Information Storage and Processing Systems,2004,10(3):175-181.
    37.Bordatchev E V,Nikumb S K,Electro-thermally driven microgrippers for micro- electro-mechanical systems applications[J],Journal of Microlithography Microfabrication and Microsystems,2005,4(2):Art.No.023011.
    38.Yang C S,Zhao X L,Ding G F,et al.An axial flux electromagnetic micromotor[J],Journal of Micromechanics and Microengineering,2001,11(2):113-117.
    39.Koc B,Bouchilloux P,Uchino K,Piezoelectric micromotor using a metal-ceramic composite structure[J],IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control,2000,47(4):836-843.
    40.Cagatay S,Koc B,Moses P,et al.A piezoelectric micromotor with a stator of phi=1.6 mm and 1=4 mm using bulk PZT[J],Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers,2004,43(4A):1429-1433.
    41.Cagatay S,Koc B,Uchino K,A 1.6-mm,metal tube ultrasonic motor[J],IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control,2003,50(7):782-786.
    42.John A.Rogers,Rebecca J.Jackman,and George M.Whitesides,Constructing Single- and Multiple-Helical Microcoils and Characterizing Their Performance as Components of Microinductors and Microelectromagnets[J],Journal of Microelectromechanical Systems,1997,6(3):184-192.
    43.A Maciossek,B.Lochel,H.J.Quenzer,et al,Galvanoplating and sacrificial layers for surface micromachining[J],Microelectron.Eng.,1995,27(1-4):503-508.
    44.L.S.Johansen,M.Ginnerup,J.T.Ravnkilde,et al,Electroforming of 3D microstructures on highly structured surfaces[J],Sensors and Actuators A- Physical,2000,83(1-3):156-160.
    45.朱元保,沈子琛,张传福等,电化学数据手册[M],湖南 长沙:湖南科学技术出版社,1985.
    46.田昭武,电化学研究方法[M],北京:科学出版社,1984.
    47.Tian Z W,Feng Z D,Tian Z Q,et al.Confined etchant layer technique for two-dimensional lithography at high resolution using electrochemical scanning tunneling microscopy[J].Faraday Discuss.1992.94:37-44.
    1.L.D.Nguyen,A.S.Brown,M.A.Thompson,et al,50-nm self-aligned-gate pseudomorphic AlInAs/GaInAs high electron mobility transistors[J],IEEE Trans.Electron.Dev.,1992,39(9):2007-2014.
    2.G.M.Metze,S.McPhilmy,P.Laux,The effects of electrochemically-induced etching non-uniformities on microwave field effect transistors[J],IEEE Electron.Dev.Lett.,1995,16(1):23-25.
    3.D.Xu,T.Enoki,Y.Ishii,Impact of recess-etching-assisting resist-openings on the shapes of gate grooves for short gate length InAIAs/InGaAs heterojunction FET's[J],IEEE Trans.Electron.Dev.,1999,46(5):833-839.
    4.T.Morimoto,T.Ohguro,H.S.Momose,et al,Self-aligned nickel-mono-silicide technology for high-speed deep submicrometer logic CMOS ULSI[J],IEEE Trans.Electron.Dev.,1995,42(5):915-922.
    5.P.S.Lee,D.Mangelinck,K.L.Pey,et al,On the Ni-Si phase transformation with/without native oxide[J],Microelectronic Engineering,2000,51-2:583-594.
    6.M.Qin,M.C.Poon,C.Y.Yuen,A study of nickel silicide film as a mechanical material[J],Sensors and Actuators A-Physical,2000,87(1-2):90-95.
    7.J.Han,B.Moon,W.S.Yang,et al,Growth characteristics of carbon nanotubes by plasma enhanced hot filament chemical vapor deposition[J],Surface and Caotings Technology,2000,131(1-3):93-97.
    8.K.Hashimoto,Recent advances in the catalytic properties of metastable materials[J],Materials Science and Engineering A,1997,226-228:891-899.
    9.D.E.Brown,M.N.Mahmood,M.C.M.Man,et al,Preparation and characterization of low overvoltage transition metal alloy electrocatalysts for hydrogen evolution in alkaline solutions[J],Electrochim.Acta,1984,29(11):1551-1556.
    10.J.A.Walker,K.J.Gabriel,Thin-film processing of TiNi shape memory alloy[J],Sensors and Actuators A,1990,21(1-3):243-246.
    11.T.Mineta,T.Mitsui,Y.Watanabe,et al,Batch fabricated flat meandering shape memory alloy actuator for active catheter[J],Sensors and Actuators A-Physical,2001,88(2):112-120.
    12.C.C.Yao,D.G.Hasko,W.Y.Lee,et al,Pseudo-Hall effect and anisotropic magnetoresistance in a micronscale Ni80Fe20 device[J],IEEE Transactions on Magnetics,1999,35(5):3616-3618.
    13.L.T.Romankiw,A path:from electroplating through lithographic masks in electronics to LIGA in MEMS[J],Electrochim.Acta,1997,42(20-22):2985-3005.
    14.D.Sadler,W.Zhang,C.H.Ahn,et al,Micro-machined semi-encapsulated spiral inductors for microelectromechanical systems(MEMS)applications[J],IEEE Trans.Magn.,1997,33(5):3319-3321.
    15.B.Lochel,A.Maciossek,Electrodeposited magnetic alloys for surface micromachining[J],J.Electrochem.Soc.,1996,143(10):3343-3348.
    16.B.Lochel,A.Maciossek,H.J.Quenzer,et al,Magnetically driven microstructures fabricated with multiplayer electroplating[J],Sensors.Actuators A,1995,46/47(1-3):98-103.
    17.C.H.Ahn,M.G.Allen,"Micromachined planar inductors with electroplated nickel-iron permalloy cores(spiral type,solenoid type,and toroidal-meander type)," in Proc.Electrochem.Soc.4th Int.Symp.Magnetic Materials,Processes,and Devices[C],Chicago,IL,1995,vol.95-18,pp.411.
    18.J.W.Judy,R.S.Muller,H.H.Zappe,Magnetic microactuation of polysilicon exure structures[J],IEEE J.Microelectromech.Syst.,1995,4(4):162-169.
    19.J.Gobet,F.Cardot,J.Bergqvist,and F.Rudolf,Electrodeposition of 3D microstructures on silicon[J],J.Micromech.Microeng.,1993,3(3):123-130.
    20.A.L.Syrkin,J.M.Bluet,J.Camassel,et al,Reactive ion etching of 6H-SiC in an ECR plasma of CF4-O2- mixtures using both Ni and Al masks[J],Materials Science and Engineering B-Solid State Materials for Advanced Technology,1997,46(1-3):374-378.
    21.X.Li,T.Abe,M.Esashi,Deep reactive ion etching of Pyrex glass using SF6 plasma[J],Sensors and Actuators A,2001,87(3):139-145.
    22.S.L.Xu,Z.W.Sun,X.Y.Qian,et al,Characteristics and mechanism of etch process sensitivity to chamber surface condition[J],J.Vac.Sci.Technol.B,2001,19(1):166-171.
    23.J.Ufheil,EM.Boldt,M.Borsch,et al,Microstructuring of solid-supported lipid layers using SAM pattern generation by scanning electrochemical microscopy and the chemical lens[J],Bioelectrochemistry,2000,52(1):103-110.
    24.H.K.Chang,Y.K.Kim,UV-LIGA process for high aspect ratio structure using stress barrier and C-shaped etch hole[J],Sensors and Actuators A-Physical,2000,84(3):342-350.
    25.J.W.Park,J.Y.Park,Y.H.Joung,et al.Fabrication of high current and low profile micromachined inductor with laminated Ni/Fe core[J],IEEE Transactions on Components and Packaging Technologies,2002,25(1):106-111.
    26.L.S.Stephens,K.W.Kelly,D.Kountouris,et al,A pin fin microheat sink for cooling macroscale conformal surfaces under the influence of thrust and frictional forces[J],Journal of Microelectromechanical Systems,2001,10(2):222-231.
    27.R.H.Liu,M.J.Vasile,D.J.Beebe,The fabrication of nonplanar spin-on glass microstructures[J],Journal of Microelectromechanical Systems,1999,8(2):146-151.
    28. S.D. Leith, D.T. Schwartz, High-rate through-mold electrodeposition of thick (> 200 mu m) NiFe MEMS components with uniform composition[J], Journal of Microelectromechanical Systems, 1999, 8 (4): 384-392.
    29. N. Rajan, M. Mehregany, C.A. Zorman, et al, Fabrication and testing of micromachined silicon carbide and nickel fuel atomizers for gas turbine engines[J], Journal of Microelectromechanical Systems, 1999, 8 (3): 251-257.
    30. E. Mazza, S. Abel, J. Duel, Experimental determination of mechanical properties of Ni and Ni-Fe microbars[J], Microsyst. Tech., 1996, 2 (4): 197-202.
    31. K. J. Hemker, H. Last, Microsample tensile testing of LIGA nickel for MEMS applications[J], Materials Science and Engineering A, 2001, 319-321: 882-886.
    32. A. Jansson, G. Thornell, S. Johansson, High Resolution 3D Microstructures Made by Localized Electrodeposition of Nickel[J], J. Electrochem. Soc, 2000,147 (5): 1810-1817.
    33. P. Seriburi, D. Kercher, M.G. Allen, An experimental study of microfabricated spark gaps: wear and erosion characteristics[J], Journal of Micromechanics and microengineering, 2001, 11 (3): 165-174.
    34. F. Arias, S.R.J. Oliver, B. Xu, Fabrication of metallic heat exchangers using sacrificial polymer mandrils[J], Journal of Microelectromechanical Systems, 2001, 10 (1): 107-112.
    35. H.J. Suh, P. Bharathi, D.J. Beebe, Dendritic material as a dry-release sacrificial layer[J], Journal of Microelectromechanical systems, 2000, 9 (2): 198-205.
    36. E.D. Fabrizio, M. Gentili, L. Mastrogiacomo, Fabrication of self-standing, size-adjustable nickel structures with nanometer resolution[J], Microelectronic Engineering, 1999,46 (1-4): 161-164.
    37. L.S. Johansen, M. Ginnerup, J.T. Ravnkilde, et al, Electroforming of 3D microstructures on highly structured surfaces[J], Sensors and Actuators A-Physical, 2000, 83 (1-3): 156-160.
    38. S.W. Chung, J.W. Shin, Y.K. Kim, Design and fabrication of micromirror supported by electroplated nickel posts[J], Sensors and Actuators A-Physical, 1996, 54 (1-3): 464-467.
    39. Guan S, Nelson B J, Vollmers K, Electrochemical codeposition of magnetic particle-ferromagnetic matrix composites for magnetic MEMS actuator applications[J], Journal of the Electrochemical Society, 2004,151 (9): C545-C549.
    40. Lai Y J. Bordatchev E V, Nikumb S K, et al. Performance characterization of in-plane electro-thermally driven linear microactuators[J], Journal of Intelligent Material Systems and Structures, 2006, 17(10): 919-929.
    41. Hsu C P, Hsu W Y, Design and characterization of an electrothermally driven monolithic long-stretch microdrive in compact arrangement[J], Journal of Microelectromechanical Systems, 2006, 15 (4): 935-944.
    42. Zeman M J F, Bordatchev E V, Knopf G K, Design, kinematic modeling and performance testing of an electro-thermally driven microgripper for micromanipulation applications[J], Journal of Micromechanics and Microengineering,2006,16(8):1540-1549.
    43.Tsai L N,Cheng Y T,Hsu W S,et al.Ni-carbon nanotubes nanocomposite for robust microelectromechanical systems fabrication[J],Journal of Vacuum Science & Technology B,2006,24(1):205-210.
    44.Guan S,Nelson B J,Vollmers K,Electrochemical codeposition of magnetic particle ferromagnetic matrix composites for magnetic MEMS actuator applications[J],Journal of the Electrochemical Society,2004,151(9):C545-C549.
    45.Gill J J,Ho K,Carman G P,Three-dimensional thin-film shape memory alloy microactuator with two-way effect[J],Journal of Microelectromechanical Systems,2002,11(1):68-77.
    46.Pan C T,Polymeric magnetic microactuator with efficient permailoy loop design[J],Microsystem Technologies- Micro-and Nanosystems-Information Storage and Processing Systems,2005,11(1):1-10.
    47.Ho C H,Chin K P,Yang C R,et al.Ultrathick SU-8 mold formation and removal,and its application to the fabrication of LIGA-like micromotors with embedded roots[J],Sensors and Actuators A-Physical,2002,102(1-2):130-138.
    48.Yi F,Peng L,Zhang J,et al.A new process to fabricate the electromagnetic stepping micromotor using LIGA process and surface sacrificial layer technology[J],Microsystem Technologies,2001,7(3):103-106.
    49.Yasseen A A,Mitchell J N,Klemic J F,et al.A rotary electrostatic micromotor 1×8 optical switch[J],IEEE Journal of Selected Topics in Quantum Electronics,1999,5(1):26-32.
    50.Samper V D,Sangster A J,Wallrabe U,et al.Advanced LIGA technology for the integration of an electrostatically controlled bearing in a wobble micromotor[J],Journal of Microelectromechanical Systems,1998,7(4):423-427.
    51.H.L.Nigg,R.I.Masel,Temperature-programmed desorption study of the etching of Ni(110)with 2,4-pentanedione[J],J.Vac.Sci.Technol.A,1998,16(4):2581-2584.
    52.朱元保,沈子琛,张传福等,电化学数据手册,长沙:湖南科学技术出版社,1985.
    53.田昭武,电化学研究方法,北京:科学出版社,1984:230-234.
    54.Tian Z W,Feng Z D,Tian Z Q,et al.Confined etchant layer technique for two-dimensional lithography at high resolution using electrochemical scanning tunneling microscopy[J].Faraday Discuss,1992,94:37-44.
    55.A.J.Bard,L.R.Faulkner著,邵元华,朱果逸,董献堆等译,电化学方法-原理和应用,北京:化学工业出版社,2005:(1).71-72;(2).67-68,(3).83-84.
    1.D.Xu,T.Enoki,Y.Ishii,Impact of recess-etching-assisting resist-openings on the shapes of gate grooves for short gate length InAIAs/InGaAs heterojunction FET's[J],IEEE Trans.Electron.Dev.,1999,46(5):833-839.
    2.T.P.Chow,A.J.steckl,Refractory metal silicides:Thin-film properties and processing technology[J],IEEE Trans.Electron.Dev.,1983,30(11):1480-1497.
    3.J.Hui,S.Wong,J.Moll,Specific contact resistivity of TiSi_2 to P~+ and n~+ junctions[J],IEEE Electron.Dev.Lett.,1985,6(9):479-481.
    4.F.J.Lai,J.Y.Sun,S.H.Dhong,Design and characteristics of a lightly doped drain(LDD)device fabricated with self-aligned titanium disilicide[J],IEEE Trans.Electron.Dev.,1986,33(3)345-353.
    5.G.B.Kim,J.S.Kwak,H.K.Baik,et al,Ex situ formation of oxide- interlayer- mediated- epitaxial CoSi_2 film using Yi capping[J],J.Vac.Sci.Technol.B,1999,17(1):162-165.
    6.T.Mineta,T.Mitsui,Y.Watanabe,et al,Batch fabricated flat meandering shape memory alloy actuator for active catheter[J],Sensors and Actuators A-Physical,2001,88(2):112-120.
    7.J.A.Walker,K.J.Gabriel,Thin-film processing of TiNi shape memory alloy[J],Sensors and Actuators A,1990,21(1-3):243-246.
    8.J.J.Gill,K.Ho,G.P.Carman,Three-dimensional thin-film shape memory alloy microactuator with two-way effect[J],Journal of microelectromechanical systems,2002,11(1):68-77.
    9.L.P.Wang,K.Deng,L.Zou,R.Wolf,et al,Microelectromechanical systems(MEMS)accelerometers using lead zirconate titanate thick films[J],IEEE Electron Device Letters,2002,23(4):182-184.
    10.G.M.Rebeiz,J.B.Muldavin,RF MEMS switches and switch circuits[J],IEEE Microwave Magazine,2001,2(4):59-71.
    11.P.Glynne-Jones,S.P.Beeby,N.M White,Towards a piezoelectric vibration-powered microgenerator[J],IEE Proceedings-Science Measurement and Technology,2001,148(2):68-72.
    12.Friend J,Nakamura K,Ueha S,A piezoelectric micromotor using in-plane shearing of PZT elements[J],IEEE-ASME Transactions on Mechatronics,2004,9(3):467-473.
    13. Dong S X, Lim S P, Lee K H, et al. Piezoelectric ultrasonic micromotor with 1.5 mm diameter[J], IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 2003, 50 (4): 361-367.
    14. Koc B, Bouchilloux P, Uchino K, Piezoelectric micromotor using a metal-ceramic composite structure[J], IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 2000, 47 (4): 836-843.
    15. Suzuki Y, Tani K, Sakuhara T, Development of a new type piezoelectric micromotor[J], Sensors and Actuators A-Physical, 2000, 83 (1-3): 244-248.
    16. S. Koganezawa, T. Hara, Y. Uematsu, Effect of dual-stage actuator on positioning accuracy in 10k rpm magnetic disk drives[J], IEEE Transactions on Magnetics, 2001, 37 (2): 955-958.
    17. J.S. Burdess, B.J. Harris, D. Wood, et al, A system for the dynamic characterization of microstructures[J], Journal of microelectromechanical systems, 1997, 6 (4): 322-328.
    18. K.R. Williams, R.S. Muller, Etch rates for micromachining processing[J], Journal of microelectromechanical systems, 1996, 5 (4): 256-269.
    19. O. Zinger, P.-F. Chauvy, and D. Landolt, Scale-Resolved Electrochemical Surface Structuring of Titanium for Biological Applications[J], Journal of The Electrochemical Society, 2003, 150 (11): B495-B503.
    20. M. Winkelmanna, J. Goldb, R. Hauertc, et al, Chemically patterned, metal oxide based surfaces produced by photolithographic techniques for studying protein- and cell- surface interactions I: Microfabrication and surface characterization, Biomaterials, 2003, 24: 1133-1145.
    21. W. Qu, W. Wlodarski, M. Austin, Microfabrication and reliability study of sapphire based Ti/Pt-electrodes for thin-film gas sensor applications, Microelectronics Journal, 2000, 31: 561-567.
    22. K. Hashimoto, Recent advances in the catalytic properties of metastable materials[J], Materials Science and Engineering A, 1997, 226-228: 891-899.
    23. O. De Nora, P. Gallone, C. Traini, and G. Meneghini, On the mechanism of anodic chlorate oxidation[J], J. Electrochem. Soc, 1969, 116(1): 146-151.
    24. Takashi Osuga, shojiro Fujii, Kiichiro Sugino and Taro Sekine, Electrolytic production of perchlorate by lead dioxide anode[J], 1 Electrochem. Soc, 1969,116 (2): 203-207.
    1.C.Shearwood,C.B.Williams,P.H.Meller,et al,Levitation of a micromachined rotor for application in a rotating gyroscope[J],Electronics letters,1995,31(21):1845-1846.
    2.Williams C.B.,Shearwood C.,Mellor P.H.et al,Modelling and testing of a frictionless levitated micromotor[J],Sensors and Actuators A-Physical,1997,61(1-3):469-473.
    3.K.Lian,B.Stark,A.M.Gundlach,et al,Aluminium passivation for TMAH based anisotropic etching for MEMS applications[J],Electronics letters,1999,35(15):1266-1267.
    4.A.Pandy,L.M.Landsberger,B.Nikpour,et al,Experimental investigation of high Si/Al selectivity during anisotropic etching in tetra-methyl ammonium hydroxide[J],J.Vac.Sci.Technol.A,1998,16(2):868-872.
    5.W.Wright,D.Hutchins,D.Jansen,et al,Air-coupled lamb wave tomography[J],IEEE Transactions on Ultrasonics,Ferroelectrics,and Frequency control,1997,44(1):53-59.
    6.Chienliu Chang and Peizen Chang.Innovative micromachined microwave switch with very low insertion loss[J],Sensors and Actuators A:Physical,2000,79(1):71-75.
    7.Garra J,Brida S,Ferrario L,et al.Application of dual-doped TMAH silicon etchant in the fabrication of a micromachined aluminum flexing beam actuator[J],Sensors and Materials,2001,13(6):351-358.
    8.S.W.Chung,J.W.Shin,Y.K.Kim,Design and fabrication of micromirror supported by electroplated nickel posts[J],Sensors and Actuators A,1996,54(1-3):464-467.
    9.M.Fischer,M.Nagele,D.Eichner et al,Integration of surface-micromachined polysilicon mirrors and a standard CMOS process[J],Sensors and Actuators A:Physical,1996,52(1-3):140-144.
    10.L.J.Hornbeck.Tech.Digest,IEDM '93[C],Washington,DC,USA,1993:381-384.
    11.刘正,张奎,曾小勤,镁基轻质合金理论基础及其应用(M),2002,机械工业出版社,北京.
    12.黎文献,镁及镁合金(M),2005,中南大学出版社,长沙.
    13.张津,章宗和等,镁合金及应用(M),2004,化学工业出版社,北京.
    14.宋光铃,镁合金腐蚀与防护(M),2006,化学工业出版社,北京.
    15.陈振华,变形镁合金(M),2005,化学工业出版社,北京.
    16.C.A.Hampel,The Encyclypedia of electrochemistry,1964,New York,Reinhold:341.
    17.曹楚南,腐蚀电化学原理(M)(第二版),2004,化学工业出版社,北京.
    18.J.W.Choi,A.Bhupathirajua,M.A.Hasan,John M.Lannonb,Stoichiometry,morphology and structure of CdS layers grown on InP(100)from atomic sulfur beam generated from H_2S gas and thermally evaporated Cd usingmolecular beam epitaxy[J],Journal of Crystal Growth,2003,255(1-2):1-7.
    19.褚君浩,窄禁带半导体物理学(M),2005,科学出版社,北京,年4月。
    20.X.B.Zhang and S.K.Hark,Structural and optical properties of organometallic vapor phase epitaxial grown CdSe epilayers on(001)InP and(001)GaAs substrates[J],Journal of Crystal Growth,2002,234(2-3):373-378.
    21.Daiji Noda,Toru Aoki,Yoichiro Nakanishi,Yoshinori Hatanaka,Epitaxiai growth of CdSeTe films by remote plasma enhanced metal organic chemical vapor deposition[J],Vacuum,2000,59(2-3):701-707.
    22.林寅,张瀛洲,周绍民,CdSe的电化学形成[J],夏门大学学报(自然科学版),1986,25 (4):441-448;
    23.D.lincot,A.Kampmann,B.Mokili,et al,Epitaxiai electrodeposition of CdTe films on InP from aqueous solution:Role of a chemically deposited CdS intermediate layer[J],Appl.Phys.Lett.,1995,67(16):2355-2357.
    24.H.Cachet,R.Cortes,M.Froment and A.Etcheberry,Electrodeposition of epitaxial CdSe on(111)gallium arsenide[J],Thin Solid Films,2000,361(2):84-87
    25.王维波,林瑞峰,林原等,电化学沉积CdSe纳晶薄膜的性能及沉积机理[J],感光科学与光化学,1998,16(2):177-181.
    26.Thierry Pauporte,Daniel Lincot,Electrodeposition of semiconductors for optoelectronic devices:results on zinc oxide[J],Electrochimica Acta,2000,45(20):3345-3353.
    27.Yuval Golan,Evgeny Ter-Ovanesyan,Yishay Manassen,et al,Electrodeposited quantum dots Ⅳ.Epitaxial short-range order in amorphous semiconductor nanostructures[J],Surface Science 1996,350(1-3):277-284.
    28.R.K.Jain,R.C.Lind,Degenarate four-wave mixing in semiconductor-doped glass,J.Opt.Soc.Am.,1983,73(5):647-653.
    29.20.L.M.Jiang,Z.Q.Tian,B.Ren,Structures and Their Influence Factors of Three Dimensional Fractal Cadmium Layer Formed by Electrodeposition[J],Chinese J.Chem.,2001,19(12):1184.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700