用户名: 密码: 验证码:
大π共轭的三聚吲哚及寡聚噻吩衍生物的合成与双光子性质
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机双光子材料是光功能材料领域的一个重要分支,合成大的双光子吸收和发射截面的大π共轭型有机化合物,并研究其结构-性质关系是本论文研究的出发点。
     本工作以三聚吲哚、寡聚噻吩为π共轭体和给电子体,二米基硼(米基即2,4,6-三甲基苯基)为吸电子基,变换共轭链长度和取代基位置,设计合成了一系列八极分子和四极分子,测得了部分化合物的单晶结构,以及它们的单光子和双光子性质。主要结果如下:
     1.化合物的合成和表征
     首次合成了11个以三聚吲哚为母体的具有强荧光的稳定的八极分子化合物。合成了6个具有寡聚噻吩链四极分子化合物,其中4个为首次合成。它们的结构和编号如下:图1.本论文中合成的八极分子
     .图2.本论文中合成的四极分子
     2.化合物的晶体结构
     在常温或低温下用X射线衍射法测定了12个新晶体的结构,其中8个晶体结构为四极和八极分子。
     三聚吲哚衍生物的结构数据表明:a.三聚吲哚母体具有良好的C3对称性和平面性,连接中间苯环和外围苯环的C-C键长明显短于普通的C-C单键键长,说明整个分子具有良好的共轭性;b.2,7,12-位取代的三聚吲哚的这种C-C键长短于其3,8,13-取代异构体的相应C-C键长,说明2,7,12-异构体具有更好的共轭性。
     图3.2-SiT和3-SiT的晶体结构图
     在寡聚噻吩类化合物的结构中,噻吩环交错排列,避免了噻吩环上硫原子的孤电子对的互相排斥,从而保证了整个共轭链的平面性。化合物4V分子中,所有噻吩共平面。化合物5B的共轭链有所扭曲。B原子和共轭链之间的BC键长比B与米基之间的BC键长要短,表明B原子和噻吩共轭链之间有较强的共轭作用。
     图4.化合物4V(上)和5B(下)的晶体结构图
     3.线性光学性质
     2,7,12-取代的三聚吲哚化合物的吸收和发射峰较3,8,13-取代的相应异构体红移。对于寡聚噻吩类化合物,随着噻吩环数量的增加,吸收谱和荧光谱不断红移,但是当超过4个噻吩环的时候,红移不再明显。这些化合物都具有较高的荧光量子产率。
     4.非线性光学性质
     用参比法测试和研究了大部分目标化合物双光子吸收谱和上转换荧光性质。结果表明,大部分化合物的双光子(峰值)吸收截面大于1000 GM甚至2000 GM,部分化合物的上转换荧光发射截面大于1000 GM。
     图5.部分化合物的双光子吸收谱(上图溶剂为THF,下图为甲苯)
     关于三聚吲哚衍生物的结构与双光子性能的关系,有如下启示:
     (1).实测结果和理论计算结果均表明:2,7,12-取代的三聚吲哚衍生物的双光子性能显著优于3,8,13-取代的化合物,2,7,12-位化合物较强的双光子截面对应于其晶体结构中更好的π共轭性,2,7,12-位化合物的双光子吸收谱及上转换荧光谱较其3,8,13-位异构体红移,这与上述线型光学的结论一致。
     (2).乙烯桥化合物的双光子吸收截面优于乙炔桥化合物,但后者的上转换荧光发射截面可以大于前者,这是由于较高的荧光量子产率,例如2-BYT它的荧光上转换荧光的发射截面达到1100 GM。
     对于寡聚噻吩类化合物,随着噻吩链的延长,双光子吸收谱逐渐增强,吸收峰渐次红移,当共轭链增长到一定程度时,整个谱带虽然增强,但吸收峰值不再变大。
Organic two-photon absorption (2PA) material is one of the important branches of optical functional materials. In this thesis, we focus on the designing and synthesis of high fluorescent conjugated organic compounds with large 2PA cross section.
     We take triindole, oligothiophene as the electron donor cores, dimesitylboryl as the electron acceptor, and a series of qudrapolar and octapolar molecules were synthesized. The one and two-photon properties were measured, the main results are as following: 1. The synthesis and characterization of organic compounds.
     11 of new triindole derivated octupolar compounds with strong fluorescence were reported in this thesis. We also report 6 oligothiophene based quadropolar compounds, The structures and codes of these compounds are as following: Figure 2. Quadrapolar oligothiophene derivatives reported in this thesis.
     2. The crystal structures determined.
     New crystal structures of 11 compounds were reported, and 12 crystal structures were newly determined,8 of which are complicated octpoles and quadrupoles.
     The crystal structure data of the triindole derivatives show that:a. Triindole derivatives are C3 symmetric and has good planerity. The C-C single bonds connected the inner and out benzene rings in triindole are much shorter than normal C-C single bonds, indicating that the triindole core has good conjuctivity. b. The C-C single bonds connected the inner and out benzene rings in 2,7,12-trisubstituted triindole crystal structure is shorter than that in 3,8,13-trisubstituted triindole, indicating that the 2,7,12-trisubstituted triindole is better conjugated.
     In the crystal structures of oligothiophene derivatives, any two connected thiophene rings direct to opposite direction. In the structure of 4V, all the thiophene rings in are on the same plane. Figure 4. The crystal structure of 4V (up) and 5B (down).
     3. Linear photo physical properties.
     The absorption and emission maximum of 2,7,12-trisubstituted triindoles have red shifts from their 3,8,13-trisubstituted isomers. Along with there are more and more thiophene rings, the absorption and emission spectra of oligothiophenes have more and more red shifts, and when there are more than 4 thiophenes, the redshift become neglectable. All target compounds are highly fluorescent.
     4. Nonlinear photo physical properties.
     The 2PEF of most target compounds are reported, and also the 2PA cross section. The 2PA spectra we got were as figure 5. Most of the compounds have 2PA cross section larger than 1000 GM and some even 2000 GM. The active cross section of 2-BYT and 2-BET are as large as 1100 GM and 1000 GM. Figuer 5.2PA spectra of some compounds. (THF was used in the left spectra, and toluene in the right)
     The structure-two-photon property relationships of our compounds are as following:
     1. The 2PA cross sections of alkenes are larger than the alkynes. The active two-photon cross section is as large as 1100 GM, as it has the largest quantum yield. This is also the largest two-photon active cross section reported in this thesis.
     2. The calculations and measurements shows that, the two-photon properties of 2,7,12-trisubstituted triindoles are larger than their 3,8,13-trisubstituted analogues. The larger 2PA cross sections in 2,7,12-anologues are corresponding to the better conjugated structures in their crystal structures. The 2PA spectra of 2,7,12- trisubsituted triindoles is red shift from their 3,8,13-anologues.
     The energy of the peaks of 2PA bands of oligothiophenes are higher than that of the S1 bands, which is the characteristic of the 2PA spectra of quadrupoles. Along with the oligothiophene chain become longer and longer, the maximum of 2PA become stronger and stronger, and the spectra have red shift. However, when there are more than 4 thiophenes, the whole 2PA band become stronger, but the peak value stays the same.
引文
1. N. Bohr,On the Constitution of Atoms and Molecules. [J]. Philos. Mag.1913,26,1-24.
    2. M. Goppert-Mayer, Elementary processes with two quantum transitions. [J]. Ann. Phys.1931,9,273-294
    3. W. Kaiser, C. G. B. Garret, Two-Photon Exitation in CaF2:Eu2+. [J]. Phys. Rev. Let.1961,7,229-231.
    4. a). B. Strehmel, V. Strehmel, Two-photon Physical, Oranic, and Plymer Chemistry:Theory, Techniques, Chromophore Design, and Applications. [J]. Adv. Photochem.2007,29,111-354; b). T. Kogej, D. Beljonne, F. Meyers, J. W. Perry, S. R. Marder, J. L. Bredas, Mechanisms for enhancement of two-photon absorption in donor-acceptor conjugated chromophores. [J]. Chem. Phys. Lett.,1998,298,1-6.
    5. C. Huang, J. Qu, J. Qi, M. Yan, G.Xu, Dicyanostilbene-Derived Two-Photon Fluorescence Probe for Free Zinc Ions in Live Cells and Tissues with a Large Two-Photon Action Cross Section. [J]. Org. Lett.,2011, 13,1462-1465.
    6. W. Denk, J. H. Strickler, W. W. Webb, Two-photon laser scanning fluorescence microscopy. [J]. Science, 1990,248,73-76.
    7. G. C. R. Ellis-Davies, Two-Photon Microscopy for Chemical Neuroscience. [J]. ACS Chem. Neurosci. 2011,2,185-197.
    8. D. A. Parthenopoulos, P. E. Rentzepis, Three-Dimensional Optical Storage Memory. [J]. Science,1989, 245,843-845.
    9. S. Kawata, Y. Kawata, Three-Dimensional Optical Data Storage Using Photochromic Materials. [J]. Chem. Rev.,2000,100,1777-1788.
    10. G. S. He, G. C. Xu, P. N. Prasad, B. A. Reinhardt, J. C. Bhatt, A. G. Dillard, Two-photon absorption and optical-limiting properties of novel organic compounds. [J]. Opt. Lett.,1995,20,435-437.
    11. B. A. Reinhardt, L. L. Brott, S. J. Clarson, R. Kannon and, A. G. Dombroskie, Optical power limiting in solution via two-photon absorption:new aromatic heterocyclic dyes with greatly impoved performance. [J]. Proc. SPIE Int. Soc. Opt. Eng.,1997,3146,2.
    12. B. A. Reinhardt, L. L. Brott, S. J. Clarson, R. Kannon, A. G. Dillard, Design and synthesis of new organic molecules with large two-photon absorption cross-sections ofr optical limiting applications. [J]. Mater. Res. Soc. Symp. Proc.,1997,479,3-8.
    13. J. D. Bhawalkar, N. D. Kumar, C. F. Zhao, P. N. Prasad, Two-photon photodynamic therapy. [J]. J. Clin Laser Med Surg,1997,15,201-204.
    14. C. K. N. Patelm, P. A. Fleur, R. E. Slusher, H. L. Frisch, Multiphoton Plasma Production and Stimulated Recombination Radiation in Semiconductors. [J]. Phys. Rev. Lett.,1966,971-974.
    15. G. S. He, C. F. Zhao, J. D. Bhawalkar, P. N. Prasad, Two-photon pumped cavity lasing in novel dye doped bulk matrix rods. [J]. Appl. Phys. Lett.,1995,67,3703-3705.
    16. G.S. He, J. D. Bhawalkar, C. F. Zhao, C. K. Park, P. N. Prasad 2-photon-pumped cavity lasing in a dye-solution-filled hollow-fiber system. [J]. Opt. Lett.,1995,20,2393-2395.
    17. U. Keller, Recent developments in compact ultrafast lasers. [J]. Nature,2003,424,831-838.
    18. B. Strehmel, V. Strehmel, Two-photon Physical, Oranic, and Plymer Chemistry:Theory, Techniques, Chromophore Design, and Applications. [J]. Adv. Photochem.2007,29,111-354.
    19. M. Rumi, S. Barlow, J. Wang, J. W. Perry, S. R. Marder, Two-Photon Absorbing Materials and Two-Photon-Induced Chemistry. [J]. Adv. Polym.Sci.2008,213,1-95.
    20. G. S. He, L.-S. Tan, Q. Zheng, P. N. Prasad, Multiphoton Absorbing Materials:Molecular Designs, Characterizations, and Applications. [J]. Chem. Rev.2008,108,1245-1330.
    21. F. Terenziani, C. Katan, E. Badaeva, K. Tretiak, M. Blanchard-Desce, Enhanced Two-Photon Absorption of Organic Chromophores:Theoretical and Experimental Assessments. [J]. Adv. Mater.2008, 20,4641-4678.
    22. H. M. Kim, B. R. Cho, Two-photon materials with large two-photon cross sections. Structure-property relationship. [J]. Chem. Commun.,2009,153-164.
    23. M. Pawlicki, H. A. Collins, R. G. Denning, H. L. Anderson, Two-Photon Absorption and the Design of Two-Photon Dyes. [J]. Angew. Chem., Int. Ed,2009,48,3244-3266.
    24. T.-C. Lin, G. S. He, P. N. Prasad, L.-S. Tan, Degenerate nonlinear absorption and optical power limiting properties of asymmetrically substituted stilbenoid chromophores. [J]. J. Mater. Chem.2004,14,982-991.
    25. B. Strehmel, A. M. Sarker, H. Detert, The Influence of σ and π Acceptors on Two-Photon Absorption and Solvatochromism of Dipolar and Quadrupolar Unsaturated Organic Compounds. [J]. ChemPhysChem. 2003,4,249-259.
    26. M. Albota, D. Beljonne, J.-L. Bredas, J. E. Ehrlich, J.-Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Rockel, M. Rumi, G. Subramaniam, W. W. Webb, X.-L. Wu, C. Xu, Design of Organic Molecules with Large Two-Photon Absorption Cross Sections. [J]. Science,1998,281,1653-1656.
    27. Z.-Q. Liu, Q. Fang, D.-X. Cao, D. Wang, G.-B. Xu, Triaryl Boron-Based A-π-A vs Triaryl Nitrogen-Based D-π-D Quadrupolar Compounds for Single- and Two-Photon Excited Fluorescence. [J]. Org. Lett.,2004,6,2933-2936.
    28. S. J. K. Pond, M. Rumi, M. D. Levin, T. C. Parker, D. Beljonne, M. W. Day, J.-L. Bredas, S. R. Marder, J. W. Perry, One- and Two-Photon Spectroscopy of Donor-Acceptor-Donor Distyrylbenzene Derivatives: Effect of Cyano Substitution and Distortion from Planarity. [J]. J. Phys. Chem. A,2002,106, 11470-11480.
    29. C. D. Entwistle, J. C. Collings, A. Steffen, L.-O. Palsson, A. Beeby, D. Albesa-Jove, J. M. Burke, A. S. Batsanov, J. A. K. Howard, J. A. Mosely, S.-Y. Poon, W.-Y. Wong, F. Ibersiene, S. Fathallah, A. Boucekkine, J.-F. Halet, T. B. Marder, Syntheses, structures, two-photon absorption cross-sections and computed second hyperpolarisabilities of quadrupolar A-π-A systems containing E-dimesitylborylethenyl acceptors. [J]. J. Mater. Chem.,2009,19,7532-7544.
    30. M. G Silly, L. Porres, O. Mongin, P.-A. Chollet, M. Blanchard-Desce, Optical limiting in the red-NIR range with soluble two-photon absorbing absorbing molecules. [J]. Chem. Phys. Lett.2003,379,74-80.
    31. L. Ventelon, S. Charier, L. Moreaux, J. Mertz, M. Blanchard-Desce, Nanoscale Push-Push Dihydrophenanthrene Derivatives as Novel Fluorophores for Two-Photon-Excited Fluorescence. [J]. Angew. Chem. Int. Ed.2001,40,2098-2101.
    32. K. D. Belfield, M. V. Bondar, C. O. Yanez, F. E. Hernandez, O. V. Przhonska, Two-Photon absorption and lasing properties of new fluorene derivatives. [J]. J. Mater. Chem.2009,19,7498-7502.
    33. H. M. Kim, Y. O. Lee, C. S. Lim, J. S. Kim, B. R. Cho, Two-Photon Absorption Properties of Alkynyl-Conjugated Pyrene Derivatives. [J]. J. Org. Chem.,2008,73,5127-5130.
    34. S.-J. Chung, S. Zheng, T. Odani, L. Beverina, J. Fu, L. A. Padilha, A. Biesso, J. M. Hales, X. Zhan, K. Schmidt, A. Ye, E. Zojer, S. Barlow, D. J. Hagan, E. W. V. Stryland, Y. Yi, Z. Shuai, G. A. Pagani, J.-L. Bredas, J. W. Perry, S. R. Marder, Extended Squaraine Dyes with Large Two-Photon Absorption Cross-Sections. [J]. J. Am. Soc. Chem.,2006,128,14444-14445.
    35. S.-J. Chung, K.-S. Kim, T.-C. Lin, G. S. He, J. Swiatkiewicz, P. N. Prasad, Cooperative Enhancement of Two-Photon Absorption in Multi-branched Structures.[J]. J. Phys. Chem. B,1999,103,10741-10745.
    36. P. Macak, Y. Luo, P. Norman, H. Agren, Electronic and vibronic contributions to two-photon absorption of molecules with multi-branched structures. [J]. J. Chem. Phys.,2000,113,7055-7061.
    37. D. Beljonne, W. Wenseleers, E. Zojer, Z. Shuai, H. Vogel, S. J. K. Pond, J. W. Perry, S. R. Marder, J.-L. Bredas, Role of Dimensionality on the Two-Photon Absorption Response of Conjugated Molecules:The Case of Octupolar Compounds. [J]. Adv. Funct. Mater,2002,12,631-641.
    38. J. C. Collings, S.-Y. Poon, C. L. Droumaguet, M. Chrlot, C. Katan, L.-O. Palsson, A. Beeby, J. A. Mosely, H. M. Kaiser, D. Kaufmann, W.-Y. Wong, M. Blanchard-Desce, T. B. Marder, The Synthesis and One-and Two-Photon Optical Properties of Dipolar,Quadrupolar and Octupolar Donor-Acceptor Molecules Containing Dimesitylboryl Groups. [J]. Chem. Eur. J.2009,15,198-208.
    39. J. Shao, Z. Guan, Y. Yan, C. Jiao, Q.-H. Xu, C. Chi, Synthesis and Characterizations of Star-Shaped Octupolar Triazatruxenes-Based Two-Photon Absorption Chromophores. [J].J. Org. Chem.,2011,76, 780-790.
    40. A. Bhaskar, G. Ramakrishna, Z. Lu, R. Twieg, J. M. Hales, D. J. Hagan, E. V. Stryland, T. Goodson III, Investigation of Two-Photon Absorption Properties in Branched Alkene and Alkyne Chromophores. [J]. J. Am. Chem. Soc.,2006,128,11840-11849.
    41. Y.-Z. Cui, Q. Fang, Z.-L. Huang, G. Xue, G.-B. Xu, W.-T. Yu, Frequency up-conversion of s-triazine derivatives via two photon absorption and second-harmonic generation. [J]. J. Mater. Chem.,2004,14, 2443-2449.
    42. H. C. Brown, V. H. Dodson, Studies in Stereochemistry XXII. The preparation and Reactions of Trimesitylborane. Evidence for the Non-localized Nature of the Odd Electron in Triarylborane Radical Ions and Related Free Radicals. [J].1957,79,2302-2306.
    43. P. J. Grisdale, J. L. R. Williams, M. E. Glogowsri and B. E. Babb, Boron Photochemistry. Ⅵ. The Possible Role of Bridged Intermediatesin the Photolysis of Borate Complexes. [J]. J. Org. Chem.1971,36, 544-549.
    44. C. D. Entwistle and T. B. Marder. Applications of three-coordinate organoboron compounds and polymers in optoelectronics. [J]. Chem. Mater.2004,16,4574-4785.
    45. Z. Yuan, N. J. Taylor, T. B. Marder, I. D. Williams, S. K. Kurtz and L. T. Cheng. Three Coordinate Phosphorus and Boron as π-Donor and π-Acceptor Moieties Respectively, in Conjugated Organic Molecules for Nonlinear Optics:Crystal and Molecular Structures of E-Ph-CH=CH-B(mes)2, E-4-MeO-C6H4-CH=CH-B(mes)2, and E-Ph2P-CH=CH-B(mes)2 [mes= 2,4,6-Me3C6H2]. [J]. Chem. Commun.,1990,1489-1492.
    46. Z. Yuan, N. J. Taylor, Y. Sun and T. B. Marder, Synthesis and second-order NLO properties of three coordinate organoboranes with diphenylphosphino and ferrocenyl groups as electron donors:crystal and molecular structures of (E)-D-CH=CH-B(mes)2 and D-C=C-B(mes)2 [D= P(C6H5)2, (η-C6H5)Fe(η-C6H4); mes= 2,4,6-(CH3)3C6H2]. [J]. J. Organomet. Chem.,1993,449,27-37.
    47. C. Branger, M. Lequan, R. M. Lequan, M. Barzoukas and A. Fort, Boron derivatives containing a bithiophene bridge as new maretials for non-linear optics. [J]. J. Mater. Chem.,1996,6,555-558.
    48. S. Yamaguchi, T. Shirasaka, K. Tamao, Tridurylboranes Extended by Three Aryethynyl Groups as a New Family of Boron-Based π-Electron Systems. [J]. Org. Lett.,2000,2,4129-4132.
    49. E. Sakuda, Y. Ando, A. Ito, N. Kitamura, Extremely Large Dipole Moment in the Excited Singlet State of Tris {[p-(N,N-dimethylamino)phenylethynyl] duryl} borane. [J]. J. Phys. Chem. A.,2010,114, 9144-9150.
    50. C.-H. Zhao, A. Wakamiya, Y. Inukai, S. Yamaguchi, Highly Emissive Organic Solids Containing 2,5-Diboryl-1,4-phenylene Unit. [J]. J. Am. Chem. Soc.,2006,128,15934-15935.
    51. T. Noda, Y. Shirota,5,5'-Bis(dimesitylboryl)-2,2'-bithiophene and 5,5"-Bis(dimesitylboryl)-2,2':5',2"-terthiophene as a Novel Familiy of Electron-Trans porting Amorphous Molecular Materials. [J]. J. Am. Chem. Soc.,1998,120,9714-9715.
    52. H. Doi, M. Kinoshita, K. Okumoto, Y. Shirota, A Novel Class of Emitting Amorphous Molecular Materials with Bipholar Character for Electroluminescence. [J]. Chem. Mater.,2003,15,1080-1089.
    53. J. Bergman, N. Eklund, Synthesis of 2,2'-Biindolyls By Coupling Reactions. [J]. Tetrahedron,1980,36, 1439-1443.
    54. M.A. Eissenstat, M. R. Bell, T. E. D'Ambra, E. Thomas, E. J. Alexander, J. S. Daum, J. H. Ackerman, M. D. Gruett, V. Kumar, K. G. Estep, Aminoalkylindoles:Structure-Activity Relationships of Novel Cannabinoid Mimetics. [J]. J. Med. Chem.,1995,38,3094-3105.
    55. N. Robertson, S. Parsons, E. J. MacLean, R. A. Coxall, A. R. Mount, Preparation, X-ray structure and properties of a hexabrominated, symmetric indole trimer and its TCNQ adduct:a new route to functional molecular systems. [J]. J. Mater. Chem.,2000,10,2043-2047.
    56. W.-Y. Lai, R. Zhu, Q.-L. Fan, L.-T. Hou, Y. Cao, W. Huang, Monodisperse Six-Armed Triazatruxenes: Microwave-Enhanced Synthesis and Highly Efficient Pure-Deep-Blue Electroluminesence. [J]. Macromolecules,2006,39,3707-3709.
    57. W.-Y. Lai, Q.-Y. He, R. Zhu, Q.-Q. Chen, W. Huang, Kinked Star-Shaped Fluorene/Triazatruxene Co-oligomer Hybrids with Enhanced Functional Properties for High-Performance, Solution-Processed, Blue Organic Light-Emitting Diodes. [J]. Adv. Funct. Mater.,2008,18,265-276.
    58. B. Gomez-Lor, B. Alonso, A. Omenat, J. L. Serrano, Electroactive C3 symmetric dichotic liquid-crystalline triindoles. [J]. Chem. Commun.,2006,5012-5014.
    59. J. Luo, B. Zhao, J. Shao, K. A. Lim, H. S. O. Chan, C. Chi, Room-temperature discotic liquid crystals based on oligothiophenes- attached and fused triazatruxenes. [J]. J. Mater. Chem.,2009,19,8327-8334.
    60. B. Zhao, B. Liu, R. Q. Png, K. Zhang, K. A. Lim, J. Luo, J. Shao, P. K. H. Ho, C. Chi, J. Wu, New Discotic Mesogens Based on Triphenylene-Fused Triazatruxenes:Synthesis, Physical Properties and Self-Assembly. [J]. Chem. Mater.,2010,22,435-449.
    61. S. Ikeda, H. Kumagai, H. Ooi, K. Konishi, H. Hiyoshi, T. Wada, Precise determination of the first hyperpolarizability of a fluorescent triindole derivative with dicyanovinyl groups by the deconvolution method. [J]. Chem. Phys. Lett.,2008,458,337-340.
    62.山东大学袁茂森博士学位论文(2008年).
    63. L. Ji, Q. Fang, M.-S. Yuan, Z.-Q. Liu, Y.-X. Shen, H.-F. Chen, Switching High Two-Photon Efficiency: From 3,8,13-Substituted Triindole Derivatives to Their 2,7,12-Isomers. [J]. Org. Lett.,2010,12, 5192-5195.
    64. J. Shao, Z. Guan, Y. Yan, C. Jiao, Q.-H. Xu, C. Chi, Synthesis and Characterizations of Star-Shaped Octupolar Triazatruxenes-Based Two-Photon Absorption Chromophores. [J]. J. Org. Chem.,2011,76, 780-790.
    65. A. N. Sobolev, V. K. Belsky, I. P. Romm, N. Yu. Chernikova, E. N. Guryanova, Structural investigation of the triaryl derivatives of the Group V elements. IX. Structure of triphenylamine, C18H15N. [J]. Acta Cryst.,1985, C41,967-971.
    66. Z. Fang, T.-L. Teo, L. Cai, Y.-H. Lai, A. Samoc, M. Samoc, Bridged Triphenylamine-Based Dendrimers: Tuning Enhanced Two-Photon Absorption Performance with Locked Molecular Planarity. [J]. Org. Lett., 2009,11,1-4.
    67. Z. Jiang, Y. Chen, C. Yang, Y. Cao, Y. Tao, J. Qin, D. Ma, A Fully Diarylmethylene-Bridged Triphenylamine Derivative as Novel Host for Highly Efficient Green Phosphorescent OLEDs. [J]. Org. Lett.,2009,11,1503-1506.
    1. A. N. Sobolev, V. K. Belsky, I. P. Romm, N. Yu. Chernikova, E. N. Guryanova, Structural investigation of the triaryl derivatives of the Group Ⅴ elements. Ⅸ. Structure of triphenylamine, C18H15N. [J]. Acta Cryst.,1985, C41,967-971.
    2.山东大学袁茂森博士学位论文(2008年)
    3. T. Mizoroki, K. Mori, A. Ozaki, Arylation of Olefin with Aryl Iodide Catalyzed by Palladium. [J]. Bull. Chem. Soc. Jpn.,1971,44,581.
    4. R. F. Heck, J. P. Nolley, Palladium-catalyzed vinylic hydrogen substitution reactions with aryl, benzyl, and styryl halides. [J]. J. Org. Chem.,1972,14,2320-2322.
    5.I. P. Beletskaya, A. V. Cheprakov, The Heck Reaction as a Sharpening Stone of Palladium Catalysis. [J]. Chem. Rev.,2000,100,3009-3066.
    6. D. Milstein, J. K. Stille, A General, Selective, and Facile Method for Ketone Synthesis from Acid Chlorides and Organotin Compounds Catalyzed by Palladium. [J]. J. Am. Chem. Soc.,1978,100, 3636-3638.
    7. T. N. Mitchell, Palladium-Catalysed Reactions of Organotin Compounds. [J]. Synthesis,1991,803-815.
    8. N. Miyaura, A. Suzuki, Stereoselective Synthesis of Arylated (E)-Alkenes by the reaction of Alk-1-enylboranes with Aryl Halides in the Presence of Palladium Catalyst. [J]. J. C. S. Chem. Comm.,1979, 866-867.
    9. T. Ishiyama, M. Murata, N. Miyaura, Palladium(0)-Catalyzed Cross-Coupling Reaction of Alkoxydiboron with Haloarenes:A Direct Procedure for Arylboronic Esters. [J]. J. Org. Chem.,1995, 60,7508-7510.
    10. H. A. Diek, F. R. Heck, Palladium catalyzed synthesis of aryl, heterocyclic and vinylic acetylene derivatives. [J]. J. Organomet. Chem.,1975,93,259-263
    11. L. Cassar, Synthesis of aryl- and vinyl-substituted acetylene derivatives by the use of nickel and palladium complexes. [J]. J. Organomet. Chem.,1975,93,253-257.
    12. K. Sonogashira, Y. Tohda, N. Hagihara, A convenient synthesis of acetylenes:catalytic substitutions of acetylenic hydrogen with bromoalkenes, iodoarenes and bromopyridines. [J]. Tetrahedron Lett.,1975, 16,4467-4470.
    13. R. Chinchilla, C. Najera, The Sonogashira Reaction:A Booming Methodology in Synthetic Organic Chemistry. [J]. Chem. Rev.,2007,107,874-922.
    14. J. C. Collings, S.-Y. Poon, C. L. Droumaguet, M. Chrlot, C. Katan, L.-O. Palsson, A. Beeby, J. A. Mosely, H. M. Kaiser, D. Kaufmann, W.-Y.Wong, M. Blanchard-Desce, T. B. Marder, The Synthesis and One- and Two-Photon Optical Properties of Dipolar, Quadrupolar and Octupolar Donor-Acceptor Molecules Containing Dimesitylboryl Groups. [J]. Chem. Eur. J.2009,15,198-208.
    15. W.-L. Jia, D. Song, S.Wang, Blue Luminescent Three-Coordinate Organoboron Compounds with a 2,2'-Dipyridylamino Functional Group. [J].J. Org. Chem.,2003,68,701-705.
    16. S.-B. Zhao, P. Wucher, Z.M.Hudson, T. M. McCormick, X.-Y. Liu, S.Wang, X.-D. Feng, Z.-H. Lu, Impact of the Linker on the Electronic and Luminescent Properties of Diboryl Compounds: Molecules with Two-BMes2 Groups and the Peculiar Behavior of 1,6-(BMes2)2pyrene. [J]. Organometallics,2008,27,6446-6456.
    17. N. Wang, Z. M. Hudson, S. Wang, Reactivity of Aryldimesitylboranes under Suzuki-Miyaura Coupling Conditions. [J]. Organometallics,2010,29,4007-4011.
    18. T. Zhao, Z. Liu, Y. Song, W. Xu, D. Zhang, D. Zhu, Novel Diethynylcarbazole Macrocycles: Synthesis and Optoelectronic Properties. [J]. J. Org. Chem.,2006,71,7422-7432.
    19. J.-X. Yang, X.-T. Tao, C. X. Yuan, Y. X. Yan, L. Wang, Z. Liu, Y. Ren, M. H. Jiang, A Facile Synthesis and Properties of Multicarbazole Molecules Containing Multiple Vinylene Bridges. [J]. J. Am. Chem. Soc., 2005,127,3278-3279.
    20. A. Tomkeviciene, J. V. Grazulevicius, V. Jankauskas, High Hole Mobilities in the Amorphous Films of 2,7-Di(9-carbazolyl)-9-(2-ethylhexyl)carbazole. [J]. Chem. Lett.,2008,37,344-345.
    21. J.-Y. Shen, X.-L. Yang, T.-H. Huang, J. T. Lin, T.-H. Ke, L.-Y. Chen, C.-C. Wu, M.-C. P. Yeh, Ambipolar Conductive 2,7-Carbazole Derivatives for Electroluminescent Devices. [J]. Adv. Funct. Mater., 2007,17,983-995.
    1. N. Robertson, S. Parsons, E. J. MacLean, R. A. Coxall, A. R. Mount, Preparation, X-ray structure and properties of a hexabrominated, symmetric indole trimer and its TCNQ adduct:a new route to functional molecular systems. [J]. J. Mater. Chem.,2000,10, 2043-2047.
    2. E. M. Garcia-Frutos, B. Gomez-Lor, A. Monge, E. Gutierrez-Puebla, I. Alkorta, Synthesis and Preferred All-syn Conformations of C3-Symmetrical N-(Hetero)arylmenthyl Triindoles. [J]. Chem. Eur. J.,2008,14,8555-8561.
    3. M.-S. Yuan, Q. Fang, Z.-Q. Liu, J.-P. Guo, H.-Y. Chen, W.-T. Yu, G. Xue, D.-S. Liu, Acceptor or Donor (Diaryl B or N) Substituted Octupolar Truxene:Synthesis, Structure, and Charge-Transfer-Enhanced Fluorescence. [J]. J. Org. Chem.,2006,71,7858-7861.
    4. Purification of Laboratory Chemicals (Sixth Edition), W.L.F. Armarego, C.L.L. Chai, Elsevier Inc.,2009
    1. W. Kaiser, C. G. B. Garret, Two-Photon Exitation in CaF2:Eu2+. [J]. Phys. Rev. Let.1961,7, 229-231.
    2.18. B. Strehmel, V. Strehmel, Two-photon Physical, Oranic, and Plymer Chemistry:Theory, Techniques, Chromophore Design, and Applications. [J]. Adv. Photochem.2007,29,111-354.
    3. J. P. Hermann, J. Ducuing, Absolute measurement of two-photon cross sections. [J]. Phys. Rev., 1972, A5,2557-2568.
    4. A. J. Twarowski, D. S. Kliger, Multiphoton absorptionspectra using thermal blooming. [J]. Chem. Phys.,1977,20,259-264.
    5. M. Sheik-Bahae, A. A. Said, T. Wei, D. Hagan, E. W.Van Stryland, Sensitive measurement of optical nonlinearitiesusing a single beam. [J]. IEEE J. Quantum Electron.,1990,26,760-769.
    6. C. Xu, W. W. Webb, Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm. [J]. J. Opt. Soc. Am. B.,1996,13,481-491.
    7. A. Bhaskar, G. Ramakrishna, Z. Lu, R. Twieg, J. M. Hales, D. J. Hagan, E. V. Stryland, T. Goodson Ⅲ, Investigation of Two-Photon Absorption Properties in Branched Alkene and Alkyne Chromophores. [J]. J. Am. Chem. Soc.,2006,128,11840-11849.
    8. V. Hrobarikova, P. Hrobarik, P. Gajdos, I. Fitilis, M. Fakis, P. Persephonis, P. Zahradnik, Benzothiazole-Based Fluorophores of Donor-π-Acceptor-π-Donor Type Displaying High Two-Photon Absorption. [J]. J. Org. Chem.,75,2010,3053-3068.
    9.山东大学袁茂森博士学位论文(2008年).
    1.M.Albota, D. Beljonne, J.-L. Bredas, J. E. Ehrlich, J.-Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder,D. McCord-Maughon, J. W. Perry,H. Rockel,M. Rumi,G. Subramaniam, W.W.Webb, X.-L. Wu, C. Xu, Design of Organic Molecules with Large Two-Photon Absorption Cross Sections. [J]. Science,1998,281,1653-1656.
    2. S.-J. Chung, S.Zheng, T. Odani, L. Beverina, J. Fu, L.A. Padilha, A. Biesso, J. M. Hales, X. Zhang, K.Schmidt, A. Ye, E. Zojer, S. Barlow, D. J. Hagan, E. W. V. Stryland, Y. Yi, Z. Shuai, G.A. Pagani, J.-L. Bredas, J. W. Perry, S. R. Marder, Extended Squaraine Dyes with Large Two-Photon Absorption Cross-Sections. [J].J. Am. Chem. Soc.,2006,128,14444-14445.
    3. S. A. Odom, S.Webster, L. A. Padilha, D. Peceli, H. Hu, G. Nootz, S.-J. Chung, S. Ohira, J. D. Matichak, O. V. Przhonska, A. D. Kachkovski, S. Barlow, J.-L. Bredas, H. L. Anderson, D. J. Hagan, E. W. V. Stryland, S. R. Marder, Synthesis and Two-Photon Spectrum of a Bis (Porphyrin)-Substituted Squaraine. [J].J.Am. Chem. Soc.,2009,131,7510-7511.
    4. Z.-Q. Liu, Q. Fang, D.-X. Cao, D.Wang, G.-B. Xu, Triaryl Boron-Based A-π-A vs Triaryl Nitrogen-Based D-π-D Quadrupolar Compounds for Single- and Two-Photon Excited Fluorescence. [J].Org.Lett.,2004,6,2933-2936.
    5. S. J. K. Pond, M. Rumi, M. D. Levin, T. C. Parker, D. Beljonne, M. W. Day, J.-L. Bredas, S. R. Marder, J. W. Perry, One- and Two-Photon Spectroscopy of Donor-Acceptor-Donor Distyrylbenzene Derivatives:Effect of Cyano Substitution and Distortion from Planarity. [J]. J. Phys. Chem. A,2002, 106,11470-11480.
    6. J. C. Collings, S.-Y. Poon, C. L. Droumaguet, M. Chrlot, C. Katan, L.-O. Palsson, A. Beeby, J. A. Mosely, H. M. Kaiser, D. Kaufmann, W.-Y. Wong, M. Blanchard-Desce, T. B. Marder, The Synthesis and One- and Two-Photon Optical Properties of Dipolar, Quadrupolar and Octupolar Donor-Acceptor Molecules Containing Dimesitylboryl Groups. [J]. Chem. Eur. J.2009,15,198-208.
    7. C. D. Entwistle, J. C. Collings, A. Steffen, L.-O. Palsson, A. Beeby, D. Albesa-Jove, J. M. Burke, A. S. Batsanov, J. A. K. Howard, J. A. Mosely, S.-Y. Poon, W.-Y. Wong, F. Ibersiene, S. Fathallah, A. Boucekkine, J.-F. Halet, T. B. Marder, Syntheses, structures, two-photon absorption cross-sections and computed second hyperpolarisabilities of quadrupolar A-π-A systems containing E-dimesitylborylethenyl acceptors. [J]. J. Mater. Chem.,2009,19,7532-7544.
    8. N. Wang, Z. M. Hudson, S. Wang, Reactivity of Aryldimesitylboranes under Suzuki-Miyaura Coupling Conditions. [J]. Organometallics,2010,29,4007-4011.
    1.C.D. Entwistle, J. C. Collings, A. Steffen, L.-O. Palsson, A. Beeby, D. Albesa-Jove, J. M. Burke, A. S. Batsanov, J. A. K. Howard, J. A. Mosely, S.-Y. Poon, W.-Y. Wong, F. Ibersiene, S. Fathallah, A. Boucekkine, J.-F. Halet, T. B. Marder, Syntheses, structures, two-photon absorption cross-sections and computed second hyperpolarisabilities of quadrupolar A-π-A systems containing E-dimesitylborylethenyl acceptors. [J]. J. Mater. Chem.,2009,19,7532-7544.
    2. C. Xu, W. W. Webb, Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm. [J]. J. Opt. Soc. Am. B.,1996,13,481-491.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700