用户名: 密码: 验证码:
毛细管气相色谱法研究离子液体中有机溶剂的热力学分配行为
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
沸点相近或易形成共沸物的有机溶剂难以用常规精馏法分离,现有萃取剂又存在选择性低、污染大、回收难等问题,利用离子液体的不挥发性和可设计性可能可以有效解决这些问题,关键是有机溶剂在离子液体中热力学分配基础数据的测定。气相色谱法快捷方便,可快速测定大量有机溶剂在离子液体中的热力学数据,为有机溶剂体系筛选合适的离子液体萃取剂。本文利用毛细管柱柱效高、分离性能好,应用于热力学数据测定领域将比填充柱拥有更高的测量精度,提出使用毛细管气相色谱法测定有机溶剂在离子液体中热力学数据的新思路。
     毛细管柱在分析领域使用广泛,但在热力学数据测定领域却乏人问津,原因是其制备工艺为商业机密,鲜有报道,而且柱中的固定相量和载气流速较小,难以准确测量。因此本文首先摸索离子液体毛细管柱的制备方法,实践表明,用氯化钠微晶颗粒对毛细管进行粗糙化处理可有效增加离子液体在毛细管内表面的粘附力,采用静态涂渍法不仅可以得到柱效高、稳定性好的毛细管柱,而且还能准确计算固定相膜厚。通过改进毛细管柱中热力学分配参数的计算方程,本文成功避开了难以准确测量的固定相量和载气流速,将测定误差从7%降到3%。在解决毛细管柱制备和方程改进这两个关键性问题后,成功使毛细管柱成为热力学测定领域的首选柱型。
     首先选用了已被广泛研究的[bmim][PF6]作为研究对象,测定了有机溶剂在其中的热力学分配参数,并与文献中用填充柱气相色谱等方法测定的数据进行比较,结果验证了毛细管气相色谱法测定热力学分配参数的可靠性。研究了结构种类各异的55种有机溶剂在其中的热力学分配,拓宽了[bmim][PF6]中的热力学基础数据。研究表明,有机溶剂在[bmim][PF6]上的吸附作用导致它们在4根不同膜厚的毛细管柱中的VN/VL(保留体积/固定相体积)不同,因此尽管毛细管柱中溶质吸附效应比填充柱小,仍需要对分配进行吸附校正。有机溶剂在[bmim][PF6]中的分配趋势与其它许多离子液体相同:醇>芳烃>炔烃>环烯烃>环烷烃>烯烃>烷烃。采用线性溶剂化能模型(LSER)拟合得到了[bmim][PF6]的性质,结果显示偶极作用力和氢键碱性是[bmim][PF6]最主要的作用力。考虑到[bmim][PF6]会水解产生剧毒氟化氢气体,实际应用价值不大,因此未对该离子液体作为萃取剂的分离选择性进行深入讨论。
     选择了黏度低、价格低廉的阴离子含氰基离子液体作为研究对象,首先测定了60种有机溶剂在[bmim][dca]中的热力学分配行为。研究表明[dca]与醇类有着较强的作用力,该作用力已被证实是醇与[bmim][dca]特别是阴离子的强氢键作用,醇类在[bmim][dca]中的吸附几乎为0(全为分配)。LSER拟合参数表明[bmim][dca]是一种氢键碱性较强的离子液体。然后,本文通过总结文献已有的阴离子含氰基离子液体的热力学数据,归纳了阴离子种类[dca],[SCN]、阳离子种类[bmim],[bmpyr]、阳离子碳链长度[emim],[bmim],[hmim]、阳离子是否含氰基[bmim],[CPmim]对有机溶剂体系分离选择性的影响。研究表明阴离子含氰基的各种离子液体对有机溶剂体系的选择性明显优于常规萃取剂及其它离子液体,对极性有机溶剂如醇、芳烃有着较好的溶解度,但对极性较弱的有机溶剂如烯烃的溶解度则较小。对于弱极性有机溶剂,增加咪唑阳离子碳链长度可以增加溶解度;但对于醇等极性溶剂,碳链长度≤4时,溶解度随阳离子碳链长度增加而增加,碳链长度>4时则相反;但增加阳离子碳链长度对选择性都是不利的。在阴离子含氰基离子液体的阳离子中也引入氰基能够进一步提高选择性,但对溶解度不利。阴离子含氰基离子液体对含醇有机溶剂体系同时有着很高的溶解度和选择性,非常有望成为含醇体系的最佳离子液体萃取剂。
     选择了阳离子含氰基的新型离子液体作为研究对象,测定了[(CP)2im][NTf2](实验室自行合成)在不同温度下的密度和黏度以及有机溶剂在该离子液体中的热力学分配,结果表明阳离子中含两个庞大对称氰丙基的[(CP)2im][NTf2]黏度很大(25℃时达到977.2mPa-s),对非极性和极性有机溶剂的溶解度均较[bmim][PF6]和[bmim][dca]小。LSER拟合表明[(CP)2im][NTf2]具有较强的氢键酸性,阴离子氢键碱性存在以下规律:[dca]>[NTf2]>[PF6]。同时,本文总结了文献已有的其它离子液体的热力学数据,研究了阳离子中是否含氰基[bmim][NTf2]、含氰基的个数[CPmim][NTf2]、阴离子含氰基[bmim][dca]等因素对有机溶剂体系分离选择性的影响。研究表明,阳离子含氰基能增加对有机溶剂体系的选择性,但会降低溶解度。阳离子含单个氰丙基与含双个对称氰丙基对离子液体的影响有一定差别,这可能与庞大的双氰丙基对咪唑环作用位点有所阻挡有关。在阳离子中引入双氰基[(CP)2im][NTf2]与在阴离子中引入双氰基[bmim][dca]对不含醇有机溶剂体系的选择性和溶解度影响规律基本一致。[(CP)2im][NTf2]对含乙腈或丙酮共沸体系的溶解度和选择性均很大,但[(CP)2im][NTf2]的实际应用可能受到其高黏度的影响。
Organic solvent mixtures with similar boiling point or may easily form azeotrope are difficult to separate using conventional distillation. Extraction or extractive distillation is often applied. Traditional volatile entrainers usually suffer from vapor pollution, low selectivity and recycling difficulties. Ionic liquids (IL), which are nonvolatile and designable, may be used as effective and superior entrainers for the separation of organic mixtures. The key to this application is thermodynamic partition properties of organic solvents in IL. Gas chromatography (GC) is the most fast and convenient method to determine partition for a large number of organic compounds in IL, hence enables the rapid screening of suitble IL. Capillary columns with better column efficiency and separation performence than packed columns should provide higher measurement accuracy of thermodynamic data. Therefore, author focuses on using capillary column GC to study partion behavior of organic compound in IL.
     The most popular GC column type in the field of chemical analysis is capillary column. But the situation in thermodynamic measurement field is the oppsite. Due to commercial reasons, there are very few reports on the preparation technology of capillary column. Besides, the low carrier gas flow rate (U) and the small stationary phase (SP) amount (n2) in capillary columns may raise large errors in the determination of thermodynamic data. So at first, author explores the preparation method for IL capillary column. Experiment results show that Surface roughening by sodium chloride microcrystalline deposition can effectively increase the adhesion of IL to the inner wall of capillary. Columns coated by static method will have high efficiency and stability. Also the SP film thickness can be directly and accurately determined. By rationally revising the thermodynamic equations for capillary column, we observed that U and n2are not necessarily needed and the resulting error could be remarkably reduced from7%to3%. By solving the mentioned preparation and equation problems, capillary column straightly becomes the superior column type for thermodynamic measurements with improved accuracy.
     The widely researched [bmim][PF6] has been chosen as our first IL. The partion behavior of organic solvent in [bmim][PF6] was studied by capillary column GC. The obtained thermodynamic data are compared with previously reported values obtained via other techniques such as packed column GC. Results show the consistency of our values with literature, which proves the credibility of our revised equation. The partition data of55organic solvents with different kind and structures in [bmim][PF6] broaden the database of IL. It was found that VN/VL values in4[bmim][PF6] capillary columns with different SP film thickness are different. This is caused by the adsorption of organic solvent on [bmim][PF6]. Therefore, in spite of the lower interfacial adsorption effect than packed column, capillary column still need to correct for adsorption. The partition of organic solvents in [bmim][PF6] are similar with many other IL: alcohol> aromatics> alkynes> cycloolefin>cycloalkane> olefin> alkane. The linear free energy (LSER) approach was apllied to characterize [bmim][PF6] and results show that the leading force for [bmim][PF6] are dipole and hydrogen-bond basidity. Considering the hydrolysis of [bmim][PF6] to produce toxic HF, the industry application of [bmim][PF6] is unlikely. Therefore the separation selectivity of [bmim][PF6] as entrainers is not discussed specificly.
     ILs with cyano-contained anion which are cheap and have low viscosity were chosen. Thermodynamics partition of60organic solvents in [bmim][dca] is studied. It was found that alcohol interact strongly with [bmim][dca], which has been proved to attribute to the strong hydrogen bonding interaction of alcohol to [bmim][dca] especially to the [dca] anion. The adsorption of alcohol in [bmim][dca] is almost zero, which means the retention is totally caused by partition. Fitting parameters of LSER show that the basidity of [bmim][dca] is strong. How the species of anion ([dca],[SCN]), cation ([bmim],[bmpyr]), the carbon chain length of cation ([emim],[bmim],[hmim]), and wether containing of cyano in cation ([bmim],[CPmim]), affect the selectivity of IL is investigated. Thermodynamic data for other ILs except [bmim][dca] with cyano-contained anion were obtained form literature. Compared to conventional entrainers and other ILs, ILs with cyano-contained anion have better selectivities for organic solvents. They have large solubilities for polar organic solvents such as alcohols or aromatics, but have small solubilities for nonpolar ones such as olefins. For organic compound with weak polarity, increasing the carbon chain length on imidazolium cation can increase the solubility; But for a polar compound such as alcohol, when the cationic carbon chain length is less than4, the solubility increases with the increase of carbon chain length, when carbon chain length is larger than4, result is the opposite; but increasing cationic carbon chain length is always unfavourable for selectivity. Introducing cyano group to the cation of an IL with cyano-containing anion can further improve the selectivity, but bad for solubility. ILs with cyano-containing anion have both high solubility and selective for organic solvent mixtures containing alcohol, hence they are promising IL entrainers for alcohol containing mixtures.
     New type of IL with cyano-contained cation was chosen. The density and viscosity of [(CP)2im][NTf2] which was synthesized in our lab were measured at different temperatures. Results show that the new IL with two large and symmetry cyanopropyl groups has a very high value of viscosity (977.2mPa-s at25℃). Partition study shows that [(CP)2im][NTf2] have smaller solubility for organic compounds than [bmim][PF6] and [bmim][dca]. LSER result shows [(CP)2im][NTf2] is an acid IL and the basidity for anion follows:[dca]>[NTf2]>[PF6]. How the number of cyano contained in cation (0,1,2) and where the cyano is (in cation or anion) affect the selectivity of IL is investigated. Other thermodynamic data for ILs were obtained from literature. Introducing the cyano to cation will increase the selectivities for organic solvents, but will reduce the solubility. Containing1or2cyanopropyl group in cation has different effect on IL. This may due to the block effect of two large cyanopropyl groups for the imidazolium ring. Introducing two cyanopropyl groups to cation or anion affect similaly for the selectivity and solubility in non-alcohol containing organic mixtures.[(CP)2im][NTf2] have large selectivity and solubility for azeotropes containing acetonitrile or acetone, but the industry application of [(CP)2im][NTf2] may be hindered by its high viscosity.
引文
[1]Holbrey J D, Seddon K R. Ionic liquids. Clean Prod. Proc.,1999,1:223-236.
    [2]何潮洪,冯霄.化工原理.北京:科学出版社,2001:689.
    [3]Walden P. Uber die molekulargrosse und elektrisehe leitfahigkeit einiger gesehmolzenen salze. Buletinul Academiei Of Imperial Science (St. Petersburg),1914:405-422.
    [4]Wang C M, Luo X Y, Luo H M, et al. Tuning the basicity of ionic liquids for equimolar CO2 capture. Angew. Chem., Int. Ed.,2011,50(21):4918-4922.
    [5]王均凤,张锁江,陈慧萍等.离子液体的性质及其在催化反应中的应用.过程工程学报,2003,3(2):177-185.
    [6]Rogers R D, Seddon K R. Ionic liquids-Solvents of the future? Science,2003,302(5646):792-793.
    [7]Wasserscheid P. Chemistry-volatile times for ionic liquids. Nature,2006,439(7078):797.
    [8]邓有全.离子液体—性质、制备与应用.北京:中国石化出版社,2006.
    [9]石家华,孙逊,杨春和等.离子液体研究进展.化学通报,2002,4:243-250.
    [10]张锁江,吕兴梅.离子液体—从基础研究到工业应用.北京:科学出版社,2006.
    [11]Wilkes J S, Levisky J A, Wilson R A, et al. Dialkylimidazolium chloroaluminate melts-a new class of room-temperature ionic liquids for electrochemistry, spectroscopy, and synthesis. Inorg. Chem., 1982,21(3):1263-1264.
    [12]韩金玉,黄鑫,王华.绿色溶剂离子液体的性质和应用研究进展.化学工业与工程,2005(1):62-66.
    [13]Gu Z Y, Brennecke J F. Volume expansivities and isothermal compressibilities of imidazolium and pyridinium-based ionic liquids. J. Chem. Eng. Data,2002,47(2):339-345.
    [14]Bonhote P, Dias A P, Papageorgiou N, et al. Hydrophobic, highly conductive ambient-temperature molten salts. Inorg. Chem.,1996,35(5):1168-1178.
    [15]Malham I B, Turmine M. Viscosities and refractive indices of binary mixtures of 1-butyl-3-methylimidazolium tetrafluoroborate and 1-butyl-2,3-dimethylimidazolium tetrafluoroborate with water at 298 K. J. Chem. Thermodyn,2008,40(4):718-723.
    [16]Ngo H L, Lecompte K, Hargens L, et al. Thermal properties of imidazolium ionic liquids. Thermochim. Acta,2000,357:97-102.
    [17]Fan W, Zhou Q, Sun J, et al. Density, excess molar volume, and viscosity for the methyl methacrylate+l-butyl-3-methylimidazolium hexafluorophosphate ionic liquid binary system at atmospheric pressure. J. Chem. Eng. Data,2009,54(8):2307-2311.
    [18]Seoane R G, Corderi S, Gomez E, et al. Temperature dependence and structural influence on the thermophysical properties of eleven commercial ionic liquids. Ind. Eng. Chem. Res.,2012,51(5):2492-2504.
    [19]Harris K R, Kanakubo M, Woolf L A. Temperature and pressure dependence of the viscosity of the ionic liquids 1-hexyl-3-methylimidazolium hexafluorophosphate and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. J. Chem. Eng. Data,2007,52(3):1080-1085.
    [20]Domanska U, Laskowska M. Effect of temperature and composition on the density and viscosity of binary mixtures of ionic liquid with alcohols. J. Solution Chem.,2009,38(6):779-799.
    [21]Zhang S J, Sun N, He X Z, et al. Physical properties of ionic liquids:database and evaluation. J. Chem. Eng. Data,2006,35(4):1475-1517.
    [22]Fredlake C P, Crosthwaite J M, Hert D G, et al. Thermophysical properties of imidazolium-based ionic liquids. J. Chem. Eng. Data,2004,49(4):954-964.
    [23]Crosthwaite J M, Muldoon M J, Dixon J K, et al. Phase transition and decomposition temperatures, heat capacities and viscosities of pyridinium ionic liquids. J. Chem. Thermodyn.,2005,37(6):559-568.
    [24]Huddleston J G, Visser A E, Reichert W M, et al. Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chem., 2001,3(4):156-164.
    [25]Earle M J, Seddon K R. Ionic liquids. Green solvents for the future. Pure Appl. Chem., 2000,72(7):1391-1398.
    [26]Anthony J L, Maginn E J, Brennecke J F. Solution thermodynamics of imidazolium-based ionic liquids and water. J. Phys. Chem. B,2001,105(44):10942-10949.
    [27]C赖卡特.有机化学中的溶剂效应//北京:化学工业出版社,1987:47-51.
    [28]杨绮琴,方北龙.常温熔盐体系.化学通报,1993,5:14-18.
    [29]Swatloski R P, Spear S K, Holbrey J D, et al. Dissolution of cellose with ionic liquids. J. Am. Chem. Soc.,2002,124(18):4974-4975.
    [30]Fukaya Y, Hayashi K, Wada M, et al. Cellulose dissolution with polar ionic liquids under mild conditions:required factors for anions. Green Chem.,2008,10(1):44-46.
    [31]顾彦龙,石峰,邓友全.室温离子液体浸取分离牛磺酸与硫酸钠固体混合物.化学通报,2004,62(5):532-536.
    [32]Reichardt C. Pyridinium N-phenoxide betaine dyes and their application to the determination of solvent polarities part 29-Polarity of ionic liquids determined empirically by means of solvatochromic pyridinium N-phenolate betaine dyes. Green Chem.,2005,7(5):339-351.
    [33]Wakai C, Oleinikova A, Ott M, et al. How polar are ionic liquids? Determination of the static dielectric constant of an imidazolium-based ionic liquid by microwave dielectric spectroscopy. J. Phys. Chem. B, 2005,109(36):17028-17030.
    [34]Kamlet M J, Taft R W. Solvatochromic comparison method.1. Beta-scale of solvent hydrogen-bond acceptor (HBA) basicities. J. Am. Chem. Soc.,1976,98(2):377-383.
    [35]Taft R W, Kamlet M J. Solvatochromic comparison method.2. Alpha-scale of solvent hydrogen-bond donor (HBD) acidities. J. Am. Chem. Soc.,1976,98(10):2886-2894.
    [36]Abraham M H, Grellier P L, Hamerton I, et al. Solvation of gaseous non-electrolytes. Faraday Discuss. Chem. Soc.,1988,85:107-115.
    [37]Abraham M H. Scales of solute hydrogen-bonding-their construction and application to physicochemical and biochemical processes. Chem. Soc. Rev.,1993,22(2):73-83.
    [38]Abraham M H, Andonianhaftvan J, Whiting G S, et al. Hydrogen-bonding.34. The factors that influence the solubility of gases and vapors in water at 298 K, and a new method for its determination. J. Chem. Soc., Perkin Trans.2,1994(8):1777-1791.
    [39]Abraham M H, Ibrahim A, Zissimos A M. Determination of sets of solute descriptors from chromatographic measurements. J. Chromatogr., A,2004,1037(1-2):29-47.
    [40]Abraham M H, Whiting G S, Andonianhaftvan J, et al. Hydrogen-bonding.19. The characterization of 2-poly(methylphenylsiloxane)s. J. Chromatogr.,1991,588(1-2):361-364.
    [41]Poole C F, Poole S K. Extraction of organic compounds with room temperature ionic liquids. J. Chromatogr., A,2010,1217(16):2268-2286.
    [42]Anderson J L, Ding J, Welton T, et al. Characterizing ionic liquids on the basis of multiple solvation interactions. J. Am. Chem. Soc.,2002,124(47):14247-14254.
    [43]Patel D D, Lee J M. Applications of ionic liquids. Chem. Rec.,2012,12(3):329-355.
    [44]Torimoto T, Tsuda T, Okazaki K, et al. New frontiers in materials science opened by ionic liquids. Adv. Mater.,2010,22(11):1196-1221.
    [45]Plechkova N V, Seddon K R. Applications of ionic liquids in the chemical industry. Chem. Soc. Rev.. 2008,37(1):123-150.
    [46]Zhu A L, Liu R X, Li L J, et al. Dual functions of N,N-dimethylethanolamnium-based ionic liquids for the knoevenagel reactions at room temperature. Catal. Today,2013,200:17-23.
    [47]Qin G, Song Y H, Jin R, et al. Gas-liquid acetylene hydrochlorination under nonmercuric catalysis using ionic liquids as reaction media. Green Chem.,2011,13(6):1495-1498.
    [48]Zhao C, Bond A M. Photoinduced oxidation of water to oxygen in the ionic liquid bmimBF4 as the counter reaction in the fabrication of exceptionally long semiconducting silver-tetracyanoquinodimethane nanowires. J. Am. Chem. Soc.,2009,131(12):4279-4287.
    [49]Mehdi H, Bodor A, Lantos D, et al. Imidazolium ionic liquids as solvents for cerium(IV)-mediated oxidation reactions. J. Org. Chem.,2007,72(2):517-524.
    [50]Malhotra S V, Xiao Y. Enantioselective Friedel-Crafts reactions of aromatic amines with ethyl glyoxylate in pyridinium-based ionic liquids. Aust. J. Chem.,2006,59(7):468-472.
    [51]Lin J H, Zhang C P, Zhu Z Q, et al. A novel pyrrolidinium ionic liquid with 1,1,2,2-tetrafluoro-2-(1,1,2,2-tetrafluoroethoxy)ethanesulfonate anion as a recyclable reaction medium and efficient catalyst for Friedel-Crafts alkylations of indoles with nitroalkenes. J. Fluorine Chem., 2009,130(6):604.
    [52]Roy S R, Chakraborti A K. Supramolecular assemblies in ionic liquid catalysis for aza-michael reaction. Org. Lett.,2010,12(17):3866-3869.
    [53]Balalaie S, Poursaeed A, Khoshkholgh M J, et al. Zirconium oxide (NP)-ionic liquid as an efficient media for the domino knoevenagel hetero Diels-Alder reaction with unactivated alkynes. C. R. Chim., 2012,15(4):283-289.
    [54]Jin Y D, Fang S H, Chai M, et al. Properties and application of ether-functionalized trialkylimidazolium ionic liquid electrolytes for lithium battery. J. Power Sources,2013,226:210-218.
    [55]Rehman A, Zeng X Q. Ionic liquids as green solvents and electrolytes for robust chemical sensor development. Acc. Chem. Res.,2012,45(10SI):1667-1677.
    [56]Zhang D, Zhang C Z, Mu D B, et al. Review on lithium-air batteries. Prog. Chem., 2012,24(12):2472-2482.
    [57]Schubert T J S. Ionic liquids and nanomaterials-an interesting symbiosis. Chem. Ing. Tech., 2011,83(9SI):1468-1475.
    [58]Zhou Y. Recent Advances in ionic liquids for synthesis of inorganic nanomaterials. Curr. Nanosci., 2005,1(1):35-42.
    [59]Blanchard L A, Hancu D, Beckman E J, et al. Green processing using ionic liquids and CO2. Nature, 1999,399(6731):28-29.
    [60]Yu C H, Huang C H, Tan C S. A review of CO2 capture by absorption and adsorption. Aerosol Air Qual. Res.,2012,12(5):745-769.
    [61]Zhou Z M, Jing G H, Zhou L J. Characterization and absorption of carbon dioxide into aqueous solution of amino acid ionic liquid [N-1111][Gly] and 2-amino-2-methyl-l-propanol. Chem. Eng. J., 2012,204:235-243.
    [62]Sharma P, Park S D, Baek I H, et al. Effects of anions on absorption capacity of carbon dioxide in acid functionalized ionic liquids. Fuel Process. Technol.,2012,100:55-62.
    [63]Zhang Y Q, Zhang S J, Lu X M, et al. Dual amino-functionalised phosphonium ionic liquids for CO2 capture. Chem.-Eur. J.,2009,15(12):3003-3011.
    [64]Shannon M S, Hindman M S, Danielsen S, et al. Properties of alkylbenzimidazoles for CO2 and SO2 capture and comparisons to ionic liquids. Sci. China:Chem.,2012,55(8SI):1638-1647.
    [65]杨启炜.离子液体为介质萃取分离大然活性同系物[博士学位论文].杭州:浙江大学,2010.
    [66]Meindersma G W, Hansmeier A R, de Haan A B. Ionic liquids for aromatics extraction, present status and future outlook. Ind. Eng. Chem. Res.,2010,49(16):7530-7540.
    [67]Anjan S T. Ionic liquids for aromatic extraction:Are they ready? Chem. Eng. Prog.,2006,102(12):30-39.
    [68]Parmentier D, Metz S J, Kroon M C. Tetraalkylammonium oleate and linoleate based ionic liquids: promising extractants for metal salts. Green Chem.,2013,15(1):205-209.
    [69]Jin Z, Xie D X, Zhang X B, et al. Bifunctional fluoroionphore-ionic liquid hybrid for toxic heavy metal ions:improving its performance via the synergistic extraction strategy. Anal. Chem.,2012,84(10):4253-4257.
    [70]Lee J M. Extraction of noble metal ions from aqueous solution by ionic liquids. Fluid Phase Equilib., 2012,319:30-36.
    [71]Hawkins C A, Garvey S L, Dietz M L. Structural variations in room-temperature ionic liquids:Influence on metal ion partitioning modes and extraction selectivity. Sep. Purif. Technol.,2012,89:31-38.
    [72]Hirayama N. Chelate Extraction of metals into ionic liquids. Solvent Extr. Res. Dev., Jpn.,2011,18:1-14.
    [73]Fischer L, Falta T, Koellensperger G, et al. Ionic liquids for extraction of metals and metal containing compounds from communal and industrial waste water. Water Res.,2011,45(15):4601-4614.
    [74]Tang B, Bi W, Tian M, et al. Application of ionic liquid for extraction and separation of bioactive compounds from plants. J. Chromatogr., B:Anal. Technol. Biomed. Life Sci.,2012,904:1-21.
    [75]Dong K, Cao Y F, Yang Q W, et al. Role of hydrogen bonds in ionic-liquid-mediated extraction of natural bioactive homologues. Ind. Eng. Chem. Res.,2012,51 (14):5299-5308.
    [76]Cao Y F, Xing H B, Yang Q W, et al. Separation of soybean isoflavone aglycone homologues by ionic liquid-based extraction. J. Agric. Food Chem.,2012,60(13):3432-3440.
    [77]Liu J F, Jonsson J A, Jiang G B. Application of ionic liquids in analytical chemistry. Trends Anal. Chem., 2005,24(1):20-27.
    [78]Meindersma G W, Podt A, de Haan A B. Selection of ionic liquids for the extraction of aromatic hydrocarbons from aromatic/aliphatic mixtures. Fuel Process. Technol.,2005,87(1):59-70.
    [79]Syamsul B A, Man Z, Ismail L, et al. An optimization study on the extraction of benzothiophene from model fuel using the ionic liquids 1-butyl-3-methylimidazolium octylsulfate. Res. J. Chem. Environ., 2011,15(2):510-518.
    [80]Kedra-Krolik K, Fabrice M, Jaubert J N. Extraction of thiophene or pyridine from n-heptane using ionic liquids, gasoline and diesel desulfurization. Ind. Eng. Chem. Res.,2011,50(4):2296-2306.
    [81]Armstrong D W, He L F, Liu Y S. Examination of ionic liquids and their interaction with molecules, when used as stationary phases in gas chromatography. Anal. Chem.,1999,71 (17):3873-3876.
    [82]Payagala T, Armstrong D W. Chiral ionic liquids:A compendium of syntheses and applications (2005-2012). Chirality,2012,24(1):17-53.
    [83]Zapadlo M, Krupcik J, Majek P, et al. Use of a polar ionic liquid as second column for the comprehensive two-dimensional GC separation of PCBs. J. Chromatogr., A,2010,1217(37):5859-5867.
    [84]Sun P, Armstrong D W. Ionic liquids in analytical chemistry. Anal. Chim. Acta,2010,661(1):1-16.
    [85]Siegler W C, Crank J A, Armstrong D W, et al. Increasing selectivity in comprehensive three-dimensional gas chromatography via an ionic liquid stationary phase column in one dimension. J. Chromatogr., A,2010,1217(18):3144-3149.
    [86]Reid V R, Crank J A, Armstrong D W, et al. Characterization and utilization of a novel triflate ionic liquid stationary phase for use in comprehensive two-dimensional gas chromatography. J. Sep. Sci., 2008,31(19):3429-3436.
    [87]Huang K, Han X, Zhang X, et al. PEG-linked geminal dicationic ionic liquids as selective, high-stability gas chromatographic stationary phases. Anal. Bioanal. Chem.,2007,389(7-8):2265-2275.
    [88]Li L B, Du H W, Yu H, et al. Application of ionic liquid as additive in determination of three beta-agonists by capillary electrophoresis with amperometric detection. Electrophoresis,2013,34(2):277-283.
    [89]Mu X Y, Qi L, Zhang H Z, et al. Ionic liquids with amino acids as cations:Novel chiral ligands in chiral ligand-exchange capillary electrophoresis. Talanta,2012,97:349-354.
    [90]Yue M E, Xu J, Li Q Q, et al. Analysis of bioactive flavonoid-o-glycosides in saussurea mongolica franch by capillary zone electrophoresis using ionic liquids as the additive. J. Food Drug Anal., 2011,19(2):146-150.
    [91]Zhou Y B, Li J, Han H F, et al. Polymeric ionic liquid as a background electrolyte modifier enhancing the separation of inorganic anions by capillary electrophoresis. Chem. Pap.,2011,65(3):267-272.
    [92]Li J, Han H F, Wang Q, et al. Polymeric ionic liquid-coated capillary for capillary electrophoresis. J. Sep. Sci.,2011,34(13):1555-1560.
    [93]Li J, Han H F, Wang Q, et al. Polymeric ionic liquid as a dynamic coating additive for separation of basic proteins by capillary electrophoresis. Anal. Chim. Acta,2010,674(2):243-248.
    [94]Jiang T F, Wang Y H, Lv Z H. Dynamic coating of a capillary with room-temperature ionic liquids for the separation of amino acids and acid drugs by capillary electrophoresis. J. Anal. Chem., 2006,61(11):1108-1112.
    [95]Polyakova Y, Koo Y M, Row K H. Application of ionic liquids as mobile phase modifier in HPLC. Biotechnol. Bioprocess Eng.,2006,11(1):1-6.
    [96]Wang Y, Tian M L, Bi W T, et al. Application of ionic liquids in high performance reversed-phase chromatography. Int. J. Mol. Sci.,2009,10(6):2591-2610.
    [97]Qiu H D, Liang X J, Sun M, et al. Development of silica-based stationary phases for high-performance liquid chromatography. Anal. Bioanal. Chem.,2011,399(10):3307-3322.
    [98]Bi W T, Zhou J, Row K H. Preparation and application of ionic liquid-modified stationary phases in high performance liquid chromatography. Sep. Sci. Technol.,2012,47(2SI):360-369.
    [99]Heo H J, Han D, Row K H. Effect of ionic liquids additive on the retention factor of different kinds of compounds. Asian J. Chem.,2012,24(2):601-606.
    [100]Petruczynik A. Effect of ionic liquid additives to mobile phase on separation and system efficiency for HPLC of selected alkaloids on different stationary phases. J. Chromatogr. Sci.,2012,50(4):287-293.
    [101]Flieger J, Czajkowska-Zelazko A, Rzadkowska M, et al. Usefulness of reversed-phase HPLC enriched with room temperature imidazolium based ionic liquids for lipophilicity determination of the newly synthesized analgesic active urea derivatives. J. Pharm. Biomed. Anal.2012,66:58-67.
    [102]Giaginis C, Tsantili-Kakoulidou A. The performance of 1-ethyl-3-methylimidazolium tetrafluoroborate ionic liquid as mobile phase additive in HPLC-based lipophilicity assessment. Biomed. Chromatogr., 2011,25(5):606-612.
    [103]Flieger J, Czajkowska-Zelazko A. Comparison of chaotropic salt and ionic liquid as mobile phase additives in reversed-phase high-performance liquid chromatography of biogenic amines. J. Sep. Sci., 2011,34(7):733-739.
    [104]Qiu H D, Jiang Q, Liu X, et al. Comparison of anion-exchange and hydrophobic interactions between two new silica-based long-chain alkylimidazolium stationary phases for LC. Chromatographia, 2008,68(3-4):167-171.
    [105]Qiu H D, Mallik A K, Takafuji M, et al. A new imidazolium-embedded C-18 stationary phase with enhanced performance in reversed-phase liquid chromatography. Anal. Chim. Acta,2012,738:95-101.
    [106]Qiu H D, Takafuji M, Liu X, et al. Investigation of pi-pi and ion-dipole interactions on 1-allyl-3-butylimidazolium ionic liquid-modified silica stationary phase in reversed-phase liquid chromatography. J. Chromatogr., A,2010,1217(32):5190-5196.
    [107]Bi W, Row K H. Novel bi-functional amino-imidazolium silica confined stationary phase for liquid chromatography. J. Liq. Chromatogr. Relat. Technol.,2010,33(15):1459-1475.
    [108]Arce A, Earle M J, Rodriguez H, et al. Separation of aromatic hydrocarbons from alkanes using the ionic liquid 1-ethyl-3-methylimidazolium bis{(trifluoromethyl) sulfonyl} amide. Green Chem.,2007,9(1):70-74.
    [109]Arce A, Earle M J, Rodriguez H, et al. Separation of benzene and hexane by solvent extraction with 1-alkyl-3-methylimidazolium bis{(trifluoromethyl)sulfonyl} amide ionic liquids:Effect of the alkyl-substituent length. J. Phys. Chem. B,2007,111(18):4732-4736.
    [110]Domanska U, Pobudkowska A, Krolikowski M. Separation of aromatic hydrocarbons from alkanes using ammonium ionic liquid C2NTf2 at T=298.15 K. Fluid Phase Equilib.,2007,259(2):173-179.
    [111]Letcher T M, Reddy P. Ternary (liquid plus liquid) equilibria for mixtures of 1-hexyl-3-methylimidazolium (tetrafluoroborate or hexafluorophosphate) plus benzene plus an alkane at T=298.2 K and p=0.1 MPa. J. Chem. Thermodyn.,2005,37(5):415-421.
    [112]Deenadayalu N, Letcher T M, Reddy P. Determination of activity coefficients at infinite dilution of polar and nonpolar solutes in the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imidate using gas-liquid chromatography at the temperature 303.15 K or 318.15 K. J. Chem. Eng. Data, 2005,50(1):105-108.
    [113]Heintz A, Kulikov D V, Verevkin S P. Thermodynamic properties of mixtures containing ionic liquids.2. Activity coefficients at infinite dilution of hydrocarbons and polar solutes in 1-methyl-3-ethyl-imidazolium bis(trifluoromethyl-sulfonyl) amide and in 1,2-dimethyl-3-ethyl-imidazolium bis(trifluoromethyl-sulfonyl) amide using gas-liquid chromatography. J. Chem. Eng. Data,2002,47(4):894-899.
    [114]Heintz A, Vasiltsova T V, Safarov J, et al. Thermodynamic properties of mixtures containing ionic liquids.9. Activity coefficients at infinite dilution of hydrocarbons, alcohols, esters, and aldehydes in trimethyl-butylammonium bis(trifluoromethylsulfonyl) imide using gas-liquid chromatography and static method. J. Chem. Eng. Data,2006,51(2):648-655.
    [115]Kato R, Gmehling J. Activity coefficients at infinite dilution of various solutes in the ionic liquids [MMIM]+[CH3SO4]-,[MMIM]+[CH3OC2H4SO4]-, [MMIM]+[(CH3)(2)PO4]-,[C5H5NC2H5]+[(CF3SO2)(2)N]-and [C5H5NH]+[C2H5OC2H4OSO3]-. Fluid Phase Equilib.,2004,226:37-44.
    [116]Heintz A, Kulikov D V, Verevkin S P. Thermodynamic properties of mixtures containing ionic liquids.1. Activity coefficients at infinite dilution of alkanes, alkenes, and alkylbenzenes in 4-methyl-n-butylpyridinium tetrafluoroborate using gas-liquid chromatography. J. Chem. Eng. Data,2001,46(6):1526-1529.
    [117]Domanska U, Krolikowski M. Determination of activity coefficients at infinite dilution of 35 solutes in the ionic liquid, 1-butyl-3-methylimidazolium tosylate, using gas-liquid chromatography. J. Chem. Eng. Data, 2010,55(11):4817-4822.
    [118]Domanska U, Marciniak A. Measurements of activity coefficients at infinite dilution of aromatic and aliphatic hydrocarbons, alcohols, and water in the new ionic liquid [EMIM][SCN] using GLC. J. Chem. Thermodyn.,2008,40(5):860-866.
    [119]Domanska U, Laskowska M. Measurements of activity coefficients at infinite dilution of aliphatic and aromatic hydrocarbons, alcohols, thiophene, tetrahydrofuran, MTBE, and water in ionic liquid [BMIM][SCN] using GLC. J. Chem. Thermodyn.,2009,41(5):645-650.
    [120]Domanska U, Krolikowski M, Acree W E. Thermodynamics and activity coefficients at infinite dilution measurements for organic solutes and water in the ionic liquid 1-butyl-1-methylpyrrolidinium tetracyanoborate. J. Chem. Thermodyn.,2011,43(12):1810-1817.
    [121]相宏伟,唐宏青,李永旺.煤化工工艺技术评述与展望Ⅳ.煤间接液化技术.燃料化学学报,2001,29(4):289-298.
    [122]Letcher T M, Deenadayalu N, Soko B, et al. Ternary liquid-liquid equilibria for mixtures of 1-methyl-3-octylimidazolium chloride plus an alkanol plus an alkane at 298.2 K and 1 bar. J. Chem. Eng. Data, 2003,48(4):904-907.
    [123]Letcher T M, Reddy P. Ternary liquid-liquid equilibria for mixtures of 1-hexyl-3-methylimidozolium (tetrafluoroborate or hexafluorophosphate) plus ethanol plus an alkene at T=298.2 K. Fluid Phase Equilib., 2004,219(2):107-112.
    [124]谷涛,于海明,田松柏.汽油高辛烷值添加组分的应用与发展.石化技术与应用,2005,23(1).
    [125]刘俊华,曹祖宾,赵德智,等.汽油抗爆剂的研究进展.辽宁石油化工大学学报,2004,24(3).
    [126]Domanska U, Zolek-Tryznowska Z, Tshibangu M M, et al. Separation of an alcohol and a tetrahydrofuran, methyl tert-butyl ether, or ethyl tert-butyl ether by solvent extraction with a hyperbranched polymer at T=298.15 K. J. Chem. Eng. Data,2010,55(8):2879-2885.
    [127]Arce A, Rodriguez H, Soto A. Effect of anion fluorination in 1-ethyl-3-methylimidazolium as solvent for the liquid extraction of ethanol from ethyl tert-butyl ether. Fluid Phase Equilib.,2006,242(2):164-168.
    [128]Arce A, Rodriguez H, Soto A. Use of a green and cheap ionic liquid to purify gasoline octane boosters. Green Chem.,2007,9(3):247-253.
    [129]Arce A, Rodriguez H, Soto A. Purification of ethyl tert-butyl ether from its mixtures with ethanol by using an ionic liquid. Chem. Eng. J.,2006,115(3):219-223.
    [130]Paduszynski K, Domanska U. Limiting activity coefficients and gas-liquid partition coefficients of various solutes in piperidinium ionic liquids:measurements and LSER calculations. J. Phys. Chem. B, 2011,115(25):8207-8215.
    [131]Domanska U, Marciniak A. Activity coefficients at infinite dilution measurements for organic solutes and water in the ionic liquid triethylsulphonium bis(trifluoromethylsulfonyl)imide. J. Chem. Thermodyn., 2009,41(6):754-758.
    [132]Tullo A H. Plastics additives steady evolution. Chem. Eng. News,2000,78(49):21-31.
    [133]李如龙.离子液体在乙烯/乙烷、1-己烯/正己烷分离中的应用基础研究[硕士学位论文].杭州:浙江大学,2012.
    [134]徐志康,刘振梅,戴清文.基于溶解扩散机理的聚合物膜分离烯烃/烷烃的研究进展.石油化工,2002,31(2):135-140.
    [135]Li R L, Xing H B, Yang Q W, et al. Selective extraction of 1-hexene against n-hexane in ionic liquids with or without silver salt. Ind. Eng. Chem. Res.,2012,51(25):8588-8597.
    [136]Lei Z G, Arlt W G, Wasserscheid P. Separation of 1-hexene and n-hexane with ionic liquids. Fluid Phase Equilib.,2006,241:290-299.
    [137]Revelli A L, Mutelet F, Jaubert J N. Partition coefficients of organic compounds in new imidazolium based ionic liquids using inverse gas chromatography. J. Chromatogr., A,2009,1216(23):4775-4786.
    [138]Mutelet F, Jaubert J N. Accurate measurements of thermodynamic properties of solutes in ionic liquids using inverse gas chromatography. J. Chromatogr., A,2006,1102(1-2):256-267.
    [139]Mutelet F, Jaubert J N, Rogalski M, et al. Activity coefficients at infinite dilution of organic compounds in 1-(meth)acryloyloxyalkyl-3-methylimidazolium bromide using inverse gas chromatography. J. Phys. Chem. B,2008,112(12):3773-3785.
    [140]Dallos A, Kresz R. Infinite dilution activity coefficients, specific retention volumes and solvation thermodynamics of hydrocarbons in C78H158 branched alkane solvent. Fluid Phase Equilib., 2006,248(1):78-88.
    [141]Dallos A, Kresz R, Kovats E S. Solvation properties and limiting activity coefficients of halogenated hydrocarbons in C78H158 branched saturated alkane solvent. Fluid Phase Equilib.,2003,210(1):57-67.
    [142]Pawlisch C A, Brie J R, Laurence R L. Solute diffusion in polymers.2. Fourier estimation of capillary column inverse gas-chromatography data. Macromolecules,1988,21(6):1685-1698.
    [143]Pawlisch C A, Macris A, Laurence R L. Solute diffusion in polymers.1. the use of capillary column inverse gas-chromatography. Macromolecules,1987,20(7):1564-1578.
    [144]Serna L V, Becker J L, Galdamez J R, et al. Elastic effects on solubility in semicrystalline polymers. J. Appl. Polym. Sci.,2008,107(1):138-146.
    [145]Yoo B, Afzal W, Prausnitz J M. Henry's constants and activity coefficients of some organic solutes in 1-butyl,3-methylimidazolium hydrogen sulfate and in 1-methyl,3-trimethylsilylmethylimidazolium chloride. J. Chem. Thermodyn.,2013,57:178-181.
    [146]Rosenboom J G, Afzal W, Prausnitz J M. Solubilities of some organic solutes in 1-ethyl-3-methylimidazolium acetate. Chromatographic measurements and predictions from COSMO-RS. J. Chem. Thermodyn.,2012,47:320-327.
    [147]Anderson J L, Armstrong D W. High-stability ionic liquids. A new class of stationary phases for gas chromatography. Anal. Chem.,2003,75(18):4851-4858.
    [148]Fredlake C P, Crosthwaite J M, Hert D G, et al. Thermophysical properties of imidazolium-based ionic liquids. J. Chem. Eng. Data,2004,49(4):954-964.
    [149]Van Wazer J R. Phosphorous and its compounds. New York:Wiley,1958.
    [150]Visser A E, Swatloski R P, Reichert W M, et al. Traditional extractants in nontraditional solvents: Groups 1 and 2 extraction by crown ethers in room-temperature ionic liquids. Ind. Eng. Chem. Res., 2000,39(10):3596-3604.
    [151]Gubicza L, Nemestothy N, Frater T, et al. Enzymatic esterification in ionic liquids integrated with pervaporation for water removal. Green Chem.,2003,5(2):236-239.
    [152]Grob K, Grob G, Grob K. J. Chromatogr.,1978,156:1-20.
    [153]Grob K, Grob G. Chromatographia,1971,4:422-424.
    [154]Everett D H. Trans. Faraday Soc.,1965,61:1637-1645.
    [155]Cruickshank A J B, Windsor M L, Young C L. Proc. R. Soc. A,1966,295:259-270.
    [156]Conder J R, Locke D C, Purnell J H. J. Phys. Chem.,1969,73:700-708.
    [157]Nikolov R N. Identification and evaluation of retention mechanisms in gas-liquid-chromatographic systems. J. Chromatogr.,1982,241(2):237-256.
    [158]Revelli A L, Mutelet F, Jaubert J N. Partition coefficients of organic compounds in new imidazolium based ionic liquids using inverse gas chromatography. J. Chromatogr., A,2009,1216(23):4775-4786.
    [159]Mutelet F, Jaubert J N, Rogalski M, et al. Activity coefficients at infinite dilution of organic compounds in 1-(meth)acryloyloxyalkyl-3-methylimidazolium bromide using inverse gas chromatography. J. Phys. Chem. B,2008,112(12):3773-3785.
    [160]Mutelet F, Jaubert J N. Accurate measurements of thermodynamic properties of solutes in ionic liquids using inverse gas chromatography. J. Chromatogr., A,2006,1102(1-2):256-267.
    [161]Letcher T M, Reddy P. Determination of activity coefficients at infinite dilution of organic solutes in the ionic liquid, tributylmethylphosphonium methylsulphate by gas-liquid chromatography. Fluid Phase Equilib., 2007,260(1):23-28.
    [162]Blahut A, Dohnal V, Vrbka P. Interactions of volatile organic compounds with the ionic liquid 1-ethyl-3-methylimidazolium tetracyanoborate. J. Chem. Thermodyn.,2012,47:100-108.
    [163]Meyer S L. Data analysis for scientists and engineers. New York:Wiley,1975.
    [164]Fan W, Zhou Q, Sun J, et al. Density, excess molar volume, and viscosity for the methyl methacrylate+l-butyl-3-methylimidazolium hexafluorophosphate ionic liquid binary system at atmospheric pressure. J. Chem. Eng. Data,2009,54(8):2307-2311.
    [165]Welton T. Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem. Rev., 1999,99(8):2071-2083.
    [166]Sheldon R. Catalytic reactions in ionic liquids. Chem. Commun.,2001(23):2399-2407.
    [167]West C, Lesellier E, Tchapla A. Retention characteristics of porous graphitic carbon in subcritical fluid chromatography with carbon dioxide-methanol mobile phases. J. Chromatogr., A,2004,1048(1):99-109.
    [168]Reid R C, Prausnitz J M, Sherwood T K. The Properties of Gases and Liquids.4th. New York: McGraw-Hill,1987.
    [169]http://www.knovel.com/web/portal/browse/display?_EXT_KNOVEL_DISPLAY_bookid=761&Vertical ID=0.
    [170]Lide D R. CRC Handbook of Chemistry and Physics.90th. Boca Raton:Taylor & Francis,2005.
    [171]Dymond J H, Marsh K N, Wilhoit R C, et al. Virial coefficients of pure gases and mixtures; Subvolume A:Virial coefficients of pure gases. New York:Springer,2002.
    [172]Meng L, Duan Y Y, Li L. Correlations for second and third virial coefficients of pure fluids. Fluid Phase Equilib.,2004,226:109-120.
    [173]Meng L, Duan Y Y, Wang X D. Binary interaction parameter k(ij) for calculating the second cross-virial coefficients of mixtures. Fluid Phase Equilib.,2007,260(2):354-358.
    [174]Berthod A, Kozak J J, Anderson J L, et al. Ionic liquid-alkane association in dilute solutions. Theor. Chem. Acc.,2007,117(1):127-135.
    [175]Domanska U, Pobudkowska A, Wisniewska A. Solubility and excess molar properties of 1,3-dimethylimidazolium methylsulfate, or 1-butyl-3-methylimidazolium methylsulfate, or 1-butyl-3-methylimidazolium octylsulfate ionic liquids with n-alkanes and alcohols:Analysis in terms of the PFP and FBT models. J. Solution Chem.,2006,35(3):311-334.
    [176]Mutelet F, Butet V, Jaubert J N. Application of inverse gas chromatography and regular solution theory for characterization of ionic liquids. Ind. Eng. Chem. Res.,2005,44(11):4120-4127.
    [177]Poole C F. Chromatographic and spectroscopic methods for the determination of solvent properties of room temperature ionic liquids. J. Chromatogr., A,2004,1037(1-2):49-82.
    [178]Letcher T M, Ramjugernath D, Krolikowski M, et al. Activity coefficients at infinite dilution measurements for organic solutes in the ionic liquid N-butyl-4-methylpyridinium tosylate using GLC at T= (328.15,333.15,338.15, and 343.15) K. Fluid Phase Equilib.,2009,276(1):31-36.
    [179]Heintz A, Kulikov D V, Verevkin S P. Thermodynamic properties of mixtures containing ionic liquids. Activity coefficients at infinite dilution of polar solutes in 4-methyl-N-butyl-pyridinium tetrafluoroborate using gas-liquid chromatography. J. Chem. Thermodyn.,2002,34(8):1341-1347.
    [180]Shimoyama Y, Hirayama T, Iwai Y. Measurement of infinite dilution activity coefficients of alcohols, ketones, and aromatic hydrocarbons in 4-methyl-N-butylpyridinium tetrafluoroborate and 1-butyl-3-methylimidazolium hexafluorophosphate by gas-liquid chromatography. J. Chem. Eng. Data, 2008,53(9):2106-2111.
    [181]Dobryakov Y G, Tuma D, Maurer G. Activity coefficients at infinite dilution of alkanols in the ionic liquids 1-butyl-3-methylimidazolium hexafluorophosphate, 1-butyl-3-methylimidazolium methyl sulfate, and 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl) amide using the dilutor technique. J. Chem. Eng. Data,2008,53(9):2154-2162.
    [182]Li S Y, Yan W D, Dong H. Determination of partial molar excess enthalpies at infinite dilution for the systems four alcohols+[bmim]PF6 at different temperatures by isothermal titration calorimeter. Fluid Phase Equilib.,2007,261 (1-2SI):444-448.
    [183]Meindersma G W, Podt A, de Haan A B. Selection of ionic liquids for the extraction of aromatic hydrocarbons from aromatic/aliphatic mixtures. Fuel Process. Technol.,2005,87(1):59-70.
    [184]Garcia S, Larriba M, Garcia J, et al. Liquid-liquid extraction of toluene from heptane using 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquids. J. Chem. Eng. Data, 2011,56(1):113-118.
    [185]Larriba M, Navarro P, Garcia J, et al. Liquid-Liquid extraction of toluene from heptane using [emim][DCA], [bmim][DCA], and [emim][TCM] ionic liquids. Ind. Eng. Chem. Res.,2013,52(7):2714-2720.
    [186]Marciniak A. Influence of cation and anion structure of the ionic liquid on extraction processes based on activity coefficients at infinite dilution. A review. Fluid Phase Equilib.,2010,294(1-2SI):213-233.
    [187]Seoane R G, Corderi S, Gomez E, et al. Temperature dependence and structural influence on the thermophysical properties of eleven commercial ionic liquids. Ind. Eng. Chem. Res.,2012,51(5):2492-2504.
    [188]Liu Q B, Janssen M, van Rantwijk F, et al. Room-temperature ionic liquids that dissolve carbohydrates in high concentrations. Green Chem.,2005,7(1):39-42.
    [189]Forsyth S A, Macfarlane D R, Thomson R J, et al. Rapid, clean, and mild O-acetylation of alcohols and carbohydrates in an ionic liquid. Chem. Commun.,2002(7):714-715.
    [190]Kulkarni P S, Branco L C, Crespo J G, et al. Capture of dioxins by ionic liquids. Environ. Sci. Techno], 2008,42:2570-2574.
    [191]Kulkarni P S, Crespo J G, Afonso C. Dioxins sources and current remediation technologies-A review. Environ. Int.,2008,34(1):139-153.
    [192]Kulkarni P S, Neves L A, Coelhoso I M, et al. Supported Ionic Liquid Membranes for Removal of Dioxins from High-Temperature Vapor Streams. Environ. Sci. Technol,2012,46(1):462-468.
    [193]Blahut A, Dohnal V. Interactions of volatile organic compounds with the ionic liquid 1-butyl-1-methylpyrrolidinium dicyanamide. J. Chem. Eng. Data,2011,56(12):4909-4918.
    [194]Mutelet F, Revelli A L, Jaubert J N, et al. Partition coefficients of organic compounds in new imidazolium and tetralkylammonium based ionic liquids using inverse gas chromatography. J. Chem. Eng. Data,2010,55(1):234-242.
    [195]Revelli A L, Mutelet F, Jaubert J N, et al. Study of ether-, alcohol-, or cyano-functionalized ionic liquids using inverse gas chromatography. J. Chem. Eng. Data,2010,55(7):2434-2443.
    [196]Domanska U. Thermophysical properties and thermodynamic phase behavior of ionic liquids. Thermochim. Acta,2006,448(1):19-30.
    [197]Mendez-Morales T, Carrete J, Cabeza O, et al. Molecular dynamics simulations of the structural and thermodynamic properties of imidazolium-based ionic liquid mixtures. J. Phys. Chem. B, 2011,115(38).11170-11182.
    [198]Anthony J L, Anderson J L, Maginn E J, et al. Anion effects on gas solubility in ionic liquids. J. Phys. Chem. B,2005,109(13):6366-6374.
    [199]Prasad B R, Senapati S. Explaining the differential solubility of flue gas components in ionic liquids from first-principle calculations. J. Phys. Chem. B,2009,113(14):4739-4743.
    [200]Pan W X, Qi Y Y, Wang R X, et al. Adsorption of TCDD with 1-butyl-3-methylimidazolium dicyanamide ionic liquid:A combined molecular dynamics simulation and quantum chemistry study. Chemosphere,2013,91(2):157-164.
    [201]Krummen M, Gmehling R. Measurement of activity coefficients at infinite dilution in N-methyl-2-pyrrolidone and N-formylmorpholine and their mixtures with water using the dilutor technique. Fluid Phase Equilib.,2004,215(2):283-294.
    [202]Mollmann C, Gmehling J. Measurement of activity coefficients at infinite dilution using gas-liquid chromatography.5. Results for N-methylacetamide,N,N-dimethylacetamide, N,N-dibutylformamide, and sulfolane as stationary phases. J. Chem. Eng. Data,1997,42(1):35-40.
    [203]Domanska U, Marciniak A, Krolikowska M, et al. Activity Coefficients at Infinite Dilution Measurements for Organic Solutes and Water in the Ionic Liquid 1-Hexyl-3-methylimidazolium Thiocyanate. J. Chem. Eng. Data,2010,55(7):2532-2536.
    [204]Krummen M, Wasserscheid P, Gmehling J. Measurement of activity coefficients at infinite dilution in ionic liquids using the dilutor technique. J. Chem. Eng. Data,2002,47(6):1411-1417.
    [205]Izgorodina E I, Maganti R, Armel V, et al. Understanding the effect of the C2 proton in promoting low viscosities and high conductivities in imidazolium-based ionic liquids:Part Ⅰ. weakly coordinating anions. J. Phys. Chem. B,2011,115(49):14688-14697.
    [206]Fei Z F, Zhao D B, Pieraccini D, et al. Development of nitrile-functionalized ionic liquids for C-C coupling reactions:Implication of carbene and nanoparticle catalysts. Organometallics, 2007,26(7):1588-1598.
    [207]Heintz A, Casas L M, Nesterov I A, et al. Thermodynamic properties of mixtures containing ionic liquids. 5. Activity coefficients at infinite dilution of hydrocarbons, alcohols, esters, and aldehydes in 1-methyl-3-butyl-imidazolium bis(trifluoromethyl-sulfonyl) imide using gas-liquid chromatography. J. Chem. Eng. Data,2005,50(5):1510-1514.
    [208]Zhang J, Zhang Q H, Qiao B T, et al. Solubilities of the gaseous and liquid solutes and their thermodynamics of solubilization in the novel room-temperature ionic liquids at infinite dilution by gas chromatography. J. Chem. Eng. Data,2007,52(6):2277-2283.
    [209]Andrade E. A theory of the viscosity of liquids-Part Ⅱ. Phil. Mag.,1934,17(1137):698-732.
    [210]Seddon K R, Starck A S, Torres M J. Viscosity and density of 1-alkyl-3-methylimidazolium ionic liquids.:American Chemical Society, Washington DC,2004[C].
    [211]Fulcher G S. Analysis of recent measurements of the viscosity of glasses. J. Am. Chem. Soc., 1925,8(6):339-355.
    [212]Tammann G, Hesse W Z. The dependence of viscosity upon the temperature of supercooled liquids. Anorg. Allg. Chem.,1926,156:245-257.
    [213]Vogel H. The law of the relation between the viscosity of liquids and the temperature. Phys. Z., 1921,22:645-646.
    [214]Okoturo O O, Vandernoot T J. Temperature dependence of viscosity for room temperature ionic liquids. J. Electroanal. Chem.,2004,568(1-2):167-181.
    [215]Litovitz T A. Temperature dependence of the viscosity of associated liquids. J. Chem. Phys., 1952,20(7):1088-1089.
    [216]Ghatee M H, Zare M, Zolghadr A R, et al. Temperature dependence of viscosity and relation with the surface tension of ionic liquids. Fluid Phase Equilib.,2010,291(2):188-194.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700