用户名: 密码: 验证码:
以三维有限元方法分析设计可保留前后交叉韧带人工全膝关节假体
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景人工膝关节外科虽然获得了极大的发展,但是目前所有的膝关节假体设计在术后都不能达到同正常膝关节相同的功能,在膝关节生理和生物力学上都不同于正常的膝关节。膝关节作为一个复杂重要的关节,各解剖亚单位之间是相互制约和共同作用的,这些解剖结构的任何改变都会对膝关节的整体功能有影响。目前除单髁假体外,几乎所有的膝关节假体设计均牺牲了前交叉韧带或前后交叉韧带。而牺牲了交叉韧带的人工膝关节设计必然导致一定程度的关节稳定性和运动生理功能的损失。目前少数国外设计的保留前叉韧带的假体,存在着关节显露困难、重新获得两条韧带的正常张力困难、假体的锚定不佳、关节线改变的不良影响等诸多问题,均未能达到预期的效果。随着人们生活水平和对健康及生活质量要求的提高,目前膝关节置换手术不仅仅只停留在单纯改善疼痛等症状,而如何获得最佳的功能及活动度以及使患者真正满意,当前成为大家都很关心的问题,因此对人工膝关节外科提出了更高更新的要求。
     目的设计一种能够同时保留前、后交叉韧带的表面膝关节假体,改进以往假体设计的不足,使膝关节假体解剖学、运动学及生物力学更加接近人体膝关节。
     方法1、通过离体尸体膝关节的测量,确定前交叉韧带在胫骨平台附着点的具体解剖学特点,结合应用现代计算机CAD技术完成本研究中双叉保留型假体的设计。2、计算机三维有限元分析:①结合应用现代计算机CAD及CAE技术,将膝关节医学影像学断层图像通过计算机建立包括骨、软骨、半月板、韧带等结构的人体膝关节和本假体置换之后的膝关节三维有限元模型,并对模型的有效性进行验证。②使用有限元分析软件ANSYS进一步分析和优化本假体的设计。主要是针对假体金属基座的优化分析:通过计算比较各种设计在不同载荷(压力负荷和扭转力矩负荷)下的力学特点,分析比较不同长短、粗细、数目、位置等设计对金属基座固定稳定性的影响。③使用有限元分析软件ANSYS分析对比本假体置换之后人工膝关节保留双叉韧带、本假体置换之后人工膝关节仅保留前叉韧带、正常完整膝关节、无前叉韧带的膝关节四种情况在不同载荷情况(压力负荷、股骨后抽屉负荷、旋转扭矩负荷)下的生物力学特点,通过有限元计算比较分析这些情况下应力应变以及位移的特点、韧带结构的力等等,以了解本保留双叉韧带型人工膝关节的生物力学。
     结果1、设计了一种新型的可同时保留前后交叉韧带的人工膝关节假体,在一定程度上克服了以往假体的一些缺点和不足。2、利用现代计算机技术,结合使用CAD软件、CAE软件建立的膝关节三维有限元模型和本假体置换后的三维有限元模型,形态逼真,结构完整,并且经验证其计算结果是可靠有效的。3、针对假体金属基座的优化分析:适当增加金属基座固定桩的直径、长度,固定桩位置向外侧移动都有利于提高固定的旋转稳定性;本设计同传统的单柄基座相比并未减少固定强度和固定的稳定性。4、保留双叉韧带的人工膝关节在各种负荷下的生物力学特征更接近于自然的膝关节。
     结论1、新型设计的双叉保留型人工膝关节假体可以最大限度地保留膝关节的正常解剖结构,同时避免了以往设计的一些不足。2、适当地固定桩的设计有利于提高假体基座的固定强度。本四桩设计的金属胫骨平台基座对于基座固定的稳定性没有明显的影响。3、保留双叉韧带的人工膝关节,使施行了人工关节置换手术之后的膝关节最大限度地保持了膝关节的生物力学功能,说明了在人工膝关节的手术中保留前叉韧带的必要性。
Background: Although total knee arthroplasty(TKA) has made great progress in recent years, knee functions and biomechanics after knee arthroplasty still differ from that of natural knee. The knee joint is a very complicated system made of many subunits that undergo large loads and large relative displacements during various daily activities, and all the subunits function as a whole. So with alteration or loss of any subunits, the present knee prosthesis can lead to loss of stability and physiological dysfunction of the knee. Nowadays almost all knee prosthesis sacrifice the anterior cruciate ligament except unicompartmental knee prosthesis. Also there are many problems with the present bi-cruciate ligament retaining knee prosthesis, such as joint exposure difficulty, non-optimal anchoring, difficulty in regaining proper tension of the ligament. Along with the rapid development of modern life, TKA should not only be a procedure to relieve pain and improve function, but also a good method to improve quality of life of people. So higher requirements are needed in total knee arthroplasty.
     Objectives: To design a new bi-cruciate retaining knee prosthesis and overcome problems existed in present bi-cruciate ligament retaining designs, and to keep the normal function of the natural knee as much as possible.
     Methods: 1. Anatomical measurements were made on twenty cadaver knees in order to determine the exact attachment location of the ACL. Then with the help of modern CAD(Computer Aided Design) technology, a new bi-cruciate retaining knee prosthesis was designed. 2. The three dimensional finite element models of an intact knee joint and the knee joint with implantation of the designed prosthesis were constructed with the help of modern CAD(Computer Aided Design) and CAE(Computer Aided Engineering). Then the normal knee model was validated by comparing with previous data. After that, three dimentional finite element analysis was used in the design optimization of the tibia plate. Different kinds of tibia plate designs were compared under axial loads and rotational loads to optimize the tibia plate design. Also four conditions(including intact knee, knee without ACL, knee with implantation of the prosthesis with both cruciate ligaments and knee with implantation of the prosthesis without ACL)were compared in their biomechanical responses under axial loads, rotational loads, posterior femoral drawer forces.
     Results: 1. A new bi-cruciate retaining knee prosthesis was designed and this design had overcome some disadvantages of the previous bi-cruciate retaining prosthesis. 2. By the combined usage of CAD and CAE computer technology, a three dimensional finite element model of the human knee joint with cartilage, menisci, ligaments was constructed. And the model was validated to be effective and correct in predicting the biomechanical responses of the knee. Then on the basis of this model, a three dimensional finite element model of the knee with implantation of the prosthesis was also constructed. 3. Design optimization of the tibia plate suggested that properly increase of the number of pegs, the length of pegs, the diameter of pegs and placement of pegs more laterally are helpful in improving the anti-rotational ability of the tibia plate. The newly designed four pegged tibia plate with a middle cleavage to accomodate the ACL did not decrease the fixation stability compared with commonly used single post plate. 3. The biomechanics of bi-cruciate retaining total knee prosthesis was close to that of the intact natural knee.
     Conclusions: 1. The newly designed bi-cruciate ligament retaining knee prosthesis can preserve the normal structure of the knee maximally. 2. Proper design of the pegs in the tibial plate is helpful to achieve best fixation stability.The four pegged tibia plate with a middle cleavage to accomodate the ACL was comparable with the single post tibia plate. 3. Retaining both ACL and PCL can preserve the normal biomechanics of the knee after arthroplasty as much as possible. It is necessary to retain the ACL in total knee arthroplasty.
引文
[1] Andriacchi TP, Galante JO, Fermier RW. The influence of total knee-replacement design on walking and stair-climbing. J Bone Joint Surg Am. 1982 Dec;64(9):1328-35.
    [2] Bartel DL, Burnstein AH, Santavicca EA, et al. Performance of the tibial component in total knee replacement. J Bone Joint Surg [Am] . 1982;64 :1026-1033
    [3] Bertozzi L, Stagni R, Fantozzi S, et al. Knee model sensitivity to cruciate ligaments parameters: A stability simulation study for a living subject. J Biomech. 2007;40:38-44
    [4] Bin SI, Nam TS. Early results of high-flex total knee arthroplasty: comparison study at 1 year after surgery. Knee Surg Sports Traumatol Arthrosc. 2007;15(4):350-5.
    [5] Dennis DA, Komistek RD, Mahfouz MR, et al. Multicenter determination of in vivo kinematics after total knee arthroplasry. Clin Orthop Relat Res. 2003;(416):37-57.
    [6] Jenny J Y, Jenny G. Preservation of anterior cruciate ligament in total knee arthroplasty Arch Orthop Trauma Surg. 1998;118 :145-148
    [7] Komistek RD, Allain J, Anderson DT,et al.In vivo kinematics for subjects with and without an anterior cruciate ligament. Clin Orthop Relat Res. 2002 Nov;(404):315-25.
    [8] Moglo KE, Shirazi-Adl A.On the coupling between anterior and posterior cruciate ligaments, and knee joint response under anterior femoral drawer in flexion: a finite element study. Clin Biomech (Bristol, Avon). 2003;18(8):751-9.
    [9] Moro-Oka TA, Muenchinger M, Canciani JP, et al. Comparing in vivo kinematics of anterior cruciate-retaining and posterior cruciate-retaining total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc. 2007;15(l):93-9.
    [10] Pritchett JW. Anterior cruciate-retaining total knee arthroplasty. J Arthroplasty. 1996;11(2): 194-7.
    [11] Pritchett JW. Patient preferences in knee prostheses. J Bone Joint Surg Br. 2004;86(7):979-82.
    [12] Silva M, Shepherd EF, Jackson WO, et al. Knee strength after total knee arthroplasty. J Arthroplasty. 2003; 18(5):605-11.
    [13] Stiehl JB, Komistek RD, Cloutier JM, et al.The cruciate ligaments in total knee arthroplasty: a kinematic analysis of 2 total knee arthroplasties. J Arthroplasty. 2000;15(5):545-50.
    [1]Andriacchi TP,Galante JO,Fermier RW.The influence of total knee-replacement design on walking and stair-climbing.J Bone Joint Surg Am.1982 Dec;64(9):1328-35.
    [2]Bartel DL,Burnstein AH,Santavicca EA,et al.Performance of the tibial component in total knee replacement.J Bone Joint Surg[Am]1982;64:1026-1033
    [3]Bin SI,Nam TS.Early results of high-flex total knee arthroplasty:comparison study at 1 year after surgery.Knee Surg Sports Traumatol Arthrosc. 2007;15(4):350-5.
    
    [4] Bertozzi L, Stagni R, Fantozzi S, et al. Knee model sensitivity to cruciate ligaments parameters: A stability simulation study for a living subject. J Biomech. 2007;40:38-44
    [5] Dennis DA, Komistek RD, Mahfouz MR, et al. Multicenter determination of in vivo kinematics after total knee arthroplasty. Clin Orthop Relat Res. 2003;(416):37-57.
    [6] Jenny J Y, Jenny G. Preservation of anterior cruciate ligament in total knee arthroplasty Arch Orthop Trauma Surg. 1998;118 :145-148
    [7] Komistek RD, Allain J, Anderson DT,et al.In vivo kinematics for subjects with and without an anterior cruciate ligament. Clin Orthop Relat Res. 2002;(404):315-25.
    [8] Luites JW, Wymenga AB, Blankevoort L, et al. Description of the attachment geometry of the anteromedial and posterolateral bundles of the ACL from arthroscopic perspective for anatomical tunnel placement. Knee Surg Sports Traumatol Arthrosc. 2007;15(12):1422-31.
    [9] Moglo KE, Shirazi-Adl A.On the coupling between anterior and posterior cruciate ligaments, and knee joint response under anterior femoral drawer in flexion: a finite element study. Clin Biomech (Bristol, Avon). 2003;18(8):751-9.
    [10] Moro-Oka TA, Muenchinger M, Canciani JP, et al. Comparing in vivo kinematics of anterior cruciate-retaining and posterior cruciate-retaining total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc. 2007;15(1):93-9.
    [11] Noble PC, Gordon MJ, Weiss JM, et al.Does total knee replacement restore normal knee function? Clin Orthop Relat Res. 2005;(431): 157-65.
    [12] Odensten M. Functional anatomy of the anterior cruciate ligaament and a rationale for reconstruction. J Bone Joint Surg, 1985 ;67A :257
    [13] Petersen W, Zantop T. Anatomy of the anterior cruciate ligament with regard to its two bundles. Clin Orthop Relat Res. 2007;454:35-47
    [14] Pritchett JW. Anterior cruciate-retaining total knee arthroplasty. J Arthroplasty.1996;11(2):194-7.
    [15]Pritchett JW.Patient preferences in knee prostheses.J Bone Joint Surg Br.2004;86(7):979-82.
    [16]Rand JA,Trousdale RT,Ilstrup DM,et al.Factors affecting the durability of primary total knee prostheses.J Bone Joint Surg Am.2003;85-A(2):259-65.
    [17]Silva M,Shepherd EF,Jackson WO,et al.Knee strength after total knee arthroplasty.J Arthroplasty.2003;18(5):605-11.
    [18]Stiehl JB,Komistek RD,Cloutier JM,et al.The cruciate ligaments in total knee arthroplasty:a kinematic analysis of 2 total knee arthroplasties.J Arthroplasty.2000;15(5):545-50.
    [19]Takatsu T,Itokazu M,Shimizu K.The function of posterior tilt of the tibial component following posterior cruciate ligament-retaining total knee arthroplasty.Bull Hosp Jt Dis.1998;57(4):195-201.
    [20]Zantop T,Wellmann M,Fu FH,et al.Tunnel positioning of anteromedial and posterolateral bundles in anatomic anterior cruciate ligament reconstruction:anatomic and radiographic findings.Am J Sports Med.2008;36(1):65-72.
    [21]高彦平,陈金荣,吴宇峰,等.前交叉韧带胫骨棘止点的形态学特征及其生物力学特性研究.中国临床解剖学.2005;23(5):532-537.
    [1]Bendjaballah MZ,Shirazi-Adl A,Zukor DJ.Biomechanical response of the passive human knee joint under anterior-posterior forces.Clin Biomech (Bristol,Avon).1998;13(8):625-633.
    [2]Blankevoort L,Ruiskes R.Validation of a three-dimensional model of the knee.J.Riomechanics.1996;29(7):955-961.
    [3]Jason P.Hallorana,Anthony J,et al.Explicit finite element modeling of total knee replacement mechanics.J.Biomech.2005;38:323-331
    [4]Jilani A.,Shirazi-Adl A,Bendjaballah MZ.Biomechanics of the human tibio-femoral joint in axial rotation.The Knee.1997;4(4):203-213.
    [5]Kessler O,Dürselen L,Banks S,et al.Sagittal curvature of total knee replacements predicts in vivo kinematics.Clin Biomech(Bristol,Avon).2007;22(1):52-8.
    [6]LeRoux MA,Setton LA.Experimental biphasic fem determinations of the material properties and hydraulic permeability of the meniscus in tension.J.Biomech.Eng.2002;124:315-321.
    [7]Li G.,Lopez O,Rubash H.Variability of a three-diemensional finite element model constructed using magnetic resonanceimages of a knee for joint contact stress analysis.J.Biomech.Eng.2001;123:341-346.
    [8]Mesfar W,Shirazi-Adl A.Biomechanics of the knee joint in flexion under various quadriceps forces.Knee.2005;12(6):424-34.
    [9]Moglo KE,Shirazi-Adl A.On the coupling between anterior and posterior cruciate ligaments,and knee joint response under anterior femoral drawer in flexion:a finite element study.Clin Biomech(Bristol,Avon).2003;18(8):751-9.
    [10]Moglo KE,Shirazi-Adl A.Cruciate coupling and screw-home mechanism in passive knee joint during extension--flexion.J Biomech.2005;38(5):1075-83.
    [11]Pe(?)a E,Calvo B,Martinez MA,et al.Finite element analysis of the effect of meniscal tears and meniscectomies on human knee biomechanics.Clin Biomech(Bristol,Avon).2005;20(5):498-507.
    [12]Pe(?)a E,Calvo B,Martinez MA,et al.A three-dimensional finite element analysis of the combined behavior of ligaments and menisci in the healthy human knee joint.J Biomech.2006;39(9):1686-701
    [13]Wismans J,Veldpaus F,Janssen J,et al.A three-dimensional mathematical model of the knee-joint.J.Biomech.1980;13(8):677-685.
    [14]杜汇良,黄世霖,张金换.医学图像三维有限元重建中的数据管理及T10-T12胸椎模型建立.生物医学工程学杂志.2004;21(5):840-843.
    [15]张美超,赵卫东,原林等.建立数字化虚拟中国男性一号膝关节的有限元模型[J]第一军医大学学报,2003;23:(6)527-529
    [1]Ahir SP,Blunn GW,Haider H,et al.Evaluation of a testing method for the fatigue performance of total knee tibial trays.J Biomech.1999;32(10):1049-57.
    [2]Au AG,James Raso V,Liggins AB,et al.Contribution of loading conditions and material properties to stress shielding near the tibial component of total knee replacements.J Biomech.2007;40(6):1410-6.
    [3]Darwish SM,Al-Samhan A.The effect of cement stiffness and tibia tray material on the stresses developed in artificial knee.Int J Adhes Adhes(2007),oi:10.1016/j.ijadhadh.2007.05.003
    [4]Halloran JP,Petrella AJ,Rullkoetter PJ.Explicit finite element modeling of total knee replacement mechanics.J Biomech.2005;38(2):323-31.
    [5]Huang CH,Liau JJ,Huang CH,et al.Stress analysis of the anterior tibial post in posterior stabilized knee prostheses.J Orthop Res.2007;25(4):442-9.
    [6] Jeremy J, Rawlinson, Donald L, et al. Flat medial - lateral conformity in total knee replacements does not minimize contact stresses. J Biomech. 2002;35:27 - 34
    [7] Knight LA, Pal S, Coleman JC, et al. Comparison of long-term numerical and experimental total knee replacement wear during simulated gait loading. J Biomech. 2007;40(7):1550-8.
    [8] Moglo KE, Shirazi-Adl A.On the coupling between anterior and posterior cruciate ligaments, and knee joint response under anterior femoral drawer in flexion: a finite element study. Clin Biomech (Bristol, Avon). 2003;18(8):751-9.
    [9] Miyoshi S, Takahashi T, Ohtani M, et al. Analysis of the shape of the tibial tray in total knee arthroplasty using a three dimension finite element model.Clin Biomech (Bristol, Avon). 2002; 17(7):521-5.
    [10] Pal S, Haider H, Peter J, et al. Probabilistic computational modeling of total knee replacement wear. Wear. Wear 2007; doi:10.1016/j.wear.2007.06.010
    [11] Sawatari T, Tsumura H, Iesaka K, et al. Three-dimensional finite element analysis of unicompartmental knee arthroplasty--the influence of tibial component inclination.J Orthop Res. 2005;23(3):549-54.
    [12] Taiming CH. An Investigation on Contact Stresses of New Jersey Low Contact Stress (NJLCS) Knee Using Finite Element Method Journal of Systems Integration, 1999;9:187-199
    [13] Van Lenthe GH, de Waal Malefijt MC, Huiskes R. Stress shielding after total knee replacement may cause bone resorption in the distal femur. J Bone Joint Surg Br. 1997 Jan;79(1):l 17-22.
    [1]Ahir SP,Blunn GW,Haider H,et al.Evaluation of a testing method for the fatigue performance of total knee tibial trays.J Biomech.1999;32(10):1049-57.
    [2]Au AG,Liggins AB,James Raso VJ,et al.A parametric analysis of fixation post shape in tibial knee prostheses.Med Eng Phys.2005;27(2):123-34.
    [3]Au AG;James Raso V,Liggins AB,et al.Contribution of loading conditions and material properties to stress shielding near the tibial component of total knee replacements.J Biomech.2007;40(6):1410-6.
    [4]Bertin KC.Tibial Component Fixation in Total Knee Arthroplasty A Comparison of Pegged and Stemmed Designs.J Arthroplasty.2007;22(5):670-8.
    [5]Jazrawi LM,Bai B,Kummer FJ,et al.The effect of stem modularity and mode of fixation on tibial component stability in revision total knee arthroplasty.J Arthroplasty.2001;16:759-67.
    [6]Jenny J Y,Jenny G..Preservation of anterior cruciate ligament in total knee arthroplasty Arch Orthop Trauma Surg.1998;118:145-148
    [7]Miyoshi S,Takahashi T,Ohtani M,et al.Analysis of the shape of the tibial tray in total knee arthroplasty using a three dimension finite element model.Clin Biomech(Bristol,Avon).2002;17(7):521-5.
    [8]Nyman JS,Hazelwood SJ,Rodrigo JJ,et al.Long stemmed total knee arthroplasty with interlocking screws:a computational bone adaption study.J Orthop Res.2004;22(1):51-7.
    [9]Perillo-Marcone A,Ryd L,Johnsson K.et al.A combined RSA and FE study of the implanted proximal tibia:correlation of the post-operative mechanical environment with implant migration.J Biomech.2004;37(8):1205-13.
    [10]Pilliar RM,Lee JM,Maniatopoulos C.Observations on the effect of movement on bone ingrowth into porous-surfaced implants.Clin Orthop 1986;208:108-13
    [11]Stulberg BN,Dombrowski RM,Froimson M,et al.Computed tomography analysis of proximal tibial coverage.Clin Orthop.1995;311:148-156.
    [12]Westrich GH,Agulnick MA,Laskin RS.et al.Current analysis of tibial coverge provided by total knee arthroplasty systems.The knee.1997;4:221-226
    [13]赵志岗,叶金铎,王燕群,亢一澜.材料力学 天津大学出版社 天津 2001.8 117-118
    [1] Au AG, James Raso V, Liggins AB, et al. Contribution of loading conditions and material properties to stress shielding near the tibial component of total knee replacements. J Biomech. 2007;40(6):1410-6.
    [2] Beillas P, Papaioannou G, Tashman S, et al. A new method to investigate in vivo knee behavior using a finite element model of the lower limb. J Biomech. 2004; 37(7): 1019-1030
    [3] Bendjaballahl MZ, Shirazi-AdI A, Zukor D J. Biomechanics of the human knee joint in compression: reconstruction, mesh generation and finite element analysis The Knee. 1995;2( 2) :69-79.
    [4] Bendjaballah MZ, Shirazi-AdI A, Zukor DJ. Biomechanical response of the passive human knee joint under anterior-posterior forces. Clin Biomech (Bristol, Avon). 1998;13(8):625-633.
    [5] Bertozzi L, Stagni R, Fantozzi S, et al. Knee model sensitivity to cruciate ligaments parameters: A stability simulation study for a living subject. J Biomech. 2007;40:38-44
    [6] Blankevoort L, Huiskes R. Ligament-bone interaction in avcthree-dimensional model of the knee. ASME Journal of Biomechanical Engineering 1991; 113: 263 - 269.
    [7] Christel P, Franceschi JP, Sbihi A, et al. Anatomic acl reconstruction: the French experience. Oper.Techn. Orthop. 2005; 15: 103-110.
    [8] LeRoux MA, Setton LA. Experimental biphasic fem determinations of the material properties and hydraulic permeability of the meniscus in tension. J. Biomech. Eng. 2002;124:315 - 321
    [9] Li G., Lopez O, Rubash H. Variability of a three-diemensional finite element model constructed using magnetic resonanceimages of a knee for joint contact stress analysis. J. Biomech. Eng. 2001; 123:341 - 346.
    [10] Li G, Suggs J, Gill T. The effect of anterior cruciate ligament injury on knee joint function under a simulated muscle load: a three-dimensional computational simulation. Ann Biomed Eng. 2002;30(5):713-20.
    [11] Mesfar W, Shirazi-Adl A. Biomechanics of the knee joint in flexion under various quadriceps forces. Knee. 2005;12(6):424-34.
    [12] Miyoshi S, Takahashi T, Ohtani M, et al. Analysis of the shape of the tibial tray in total knee arthroplasty using a three dimension finite element model.Clin Biomech (Bristol, Avon). 2002;17(7):521-5.
    [13] Moglo KE, Shirazi-Adl A.On the coupling between anterior and posterior cruciate ligaments, and knee joint response under anterior femoral drawer in flexion: a finite element study. Clin Biomech (Bristol, Avon). 2003 ;18(8):751-9.
    [14] Pena E, Calvo B, Martinez MA, et al. A three-dimensional finite element analysis of the combined behavior of ligaments and menisci in the healthy human knee joint. J Biomech. 2006;39(9):1686-701.
    [15] Scarvell JM, Smith PN, Refshauge KM, et al. Evaluation of a method to map tibiofemoral contact points in the normal knee using MRI. Journal of Orthopaedic Research 2004;22:788 - 793.
    [16] Suggs J, Wang C, Li G. The effect of graft stiffness on knee joint biomechanics after ACL reconstruction-a 3D computational simulation. Clin Biomech (Bristol, Avon). 2003;18(1):35-43.
    [17] Taiming Chu. An investigation on contact stresses of New Jersey Low Contact Stresses(NJLCS) Knee using finite element method. Journal of Systems Integration, 1999; 9:187-199
    [18] Tissakht M, Eskandari H, Ahmed AM. Micromotion analysis of the fixation of total knee tibial component. Computers and Structures. 1995;56 (2):365-375
    [19] Van Lenthe GH, de Waal Malefijt MC, Huiskes R. Stress shielding after total knee replacement may cause bone resorption in the distal femur. J Bone Joint Surg Br. 1997 Jan;79(1):117-22.
    [20] Woo S L-Y, Debski R, Withrow J, et al. Biomechanics of the knee ligaments.American Journal of Sports and Medicine.1999;27:533-543.
    [1]Halloran JP,Petrella AJ,Rullkoetter PJ.Explicit finite element modeling of total knee replacement mechanics.J Biomech.2005;38(2):323-31.
    [2]Pappas MJ,Makris G;Buechel FF,et al.Contact stresses in metal-plastic total knee replacements:A theoretical and experimental study.Biomedical Engineering Trust,1986.
    [3]Pal S,Haider H,Peter J,et al.Probabilistic computational modeling of total knee replacement wear.Wear 2007;doi:10.1016/j.wear.2007.06.010
    [4]Knight LA,Pal S,Coleman JC,et al.Comparison of long-term numerical and experimental total knee replacement wear during simulated gait loading.J Biomech.2007;40(7):1550-8.
    [5] Morra EA, Greenwald AS. Effects of walking gait on ultra-high molecular weight polyethylene damage in unicompartmental knee systems. A finite element study. J Bone Joint Surg Am. 2003;85-A(Suppl 4):111-4.
    [6] Morra EA, Greenwald AS. Polymer insert stress in total knee designs during high-flexion activities: a finite element study. J Bone Joint Surg Am. 2005;87(Suppl2):120-4.
    [7] Taiming Chu. An investigation on contact stresses of New Jersey Low Contact Stresses(NJLCS) Knee using finite element method. Journal of Systems Integration, 1999; 9:187-199
    [8] Yang RS, Lin HJ. Contact stress on polyethylene components of a new rotating hinge with a spherical contact surface. Clin Biomech (Bristol, Avon). 2001;16(6):540-6.
    [9] Essner A, Klein R, Bushelow M, et al. The effect of sagittal conformity on knee wear. Wear. 2003;255( 7):1085-1092.
    [10] Sathasivam S, Walker PS. A computer model with surface friction for the prediction of total knee kinematics. J Biomech. 1997;30(2): 177-84.
    [11] Walker PS, Blunn G.W, Broome DR, et al. A knee simulating machine for performance evaluation of total knee replacements. J Biomech. 1997;30: 83 -89.
    [12] Uvehammer J, Karrholm J, Brandsson S. In vivo kinematics of total knee arthroplasty. Concave versus posterior-stabilised tibial joint surface. J Bone Joint Surg Br. 2000;82(4):499-505.
    [13] Bartel DL, Bicknell VL, Wright TM. The effect of conformity, thickness and material on stresses in ultra-high molecular weight components for total knee replacement. J Bone Joint Surg[Am] 1986;68:1041 -1051.
    [14] Sathasivam S, Walker PS. Computer model to predict subsurface damage in tibial inserts of total knees. J Orthop Res. 1998; 16(5):564-71.
    [15] Huang CH, Liau JJ, Huang CH, et al. Influence of post-cam design on stresses on posterior-stabilized tibial posts. Clin Orthop Relat Res. 2006 Sep;450:150-6.
    [16]. Huang CH, Liau JJ, Huang CH, et al. Stress analysis of the anterior tibial post in posterior stabilized knee prostheses.J Orthop Res. 2007;25(4):442-9.
    [17] Ryd L, Lindstrand A, Stenstr^om A, et al. Porous coated anatomic tricompartmental tibial components: the relationship between prosthetic position and micromotion. Clin Orthop 1990;251:189 - 97.
    [18] Stern SH, Wills RD, Gilbert JL. The effect of tibial stem design on component micromotion in knee arthroplasty. Clin Orthop 1997;345:44 - 52.
    [19] Miyoshi S, Takahashi T, Ohtani M, et al. Analysis of the shape of the tibial tray in total knee arthroplasty using a three dimension finite element model.Clin Biomech (Bristol, Avon). 2002; 17(7):521-5.
    [20] Perillo-Marcone A, Rydc L, Johnssond K, et al. A combined RSA and FEstudy of the implanted proximal tibia: correlation of the post-operative mechanical environment with implant migration Journal of Biomechanics. 2004;37:1205 - 1213
    [21] Van Loon CJM, De Waal Malefijt MC, Buma P, et al. Femoral bone loss in total knee arthroplasty: a review. Acta Orthopaedica Belgica 1999; 65:154 -163.
    [22] Au AG, James Raso V, Liggins AB, et al. Contribution of loading conditions and material properties to stress shielding near the tibial component of total knee replacements. J Biomech. 2007;40(6):1410-6.
    [23] Nyman JS, Hazelwood SJ, Rodrigo JJ, et al. Long stemmed total knee arthroplasty with interlocking screws: a computational bone adaption study. J Orthop Res. 2004;22(1):51-7.
    [24] Van Lenthe GH, de Waal Malefijt MC, Huiskes R. Stress shielding after total knee replacement may cause bone resorption in the distal femur. J Bone Joint SurgBr. 1997;79(1):117-22.
    [25] Darwish SM, Al-Samhan A. The effect of cement stiffness and tibia tray material on the stresses developed in artificial knee. Int J Adhes Adhes (2007), oi:10.1016/j.ijadhadh.2007.05.003
    [26] Iesaka K, Tsumura H, Sonoda H, et al. The effects of tibial component inclination on bone stress after unicompartmental knee arthroplasty. J Biomech. 2002;35(7):969-74.
    [27] Sawatari T, Tsumura H, Iesaka K, et al. Three-dimensional finite element analysis of unicompartmental knee arthroplasty~the influence of tibial component inclination.J Orthop Res. 2005;23(3):549-54.
    [28] Flivik G., Ljung P, Rydholm U. Fracture of the tibial tray of the PCA knee: a case report of early failure caused by improper design. Acta Orthopaedica Scandanavica 1990;61 (1), 26-28.
    [29] Ahir SP, Blunn GW, Haider H, et al. Evaluation of a testing method for the fatigue performance of total knee tibial trays.J Biomech. 1999;32(10):1049-57.
    [30] Harner CD, Giffin R, Dunteman RC, et al. Evaluation and treatment of recurrent instability after anterior cruciate ligament reconstruction. J. Bone Joint Surg.2000;82:1652-1663.
    [31] Pena E, Martinez MA, Calvo B, et al. A finite element simulation of the effect of graft stiffness and graft tensioning in ACL reconstruction.Clin Biomech (Bristol, Avon). 2005;20(6):636-44.
    [32] Suggs J, Wang C, Li G. The effect of graft stiffness on knee joint biomechanics after ACL reconstruction—a 3D computational simulation. Clin Biomech (Bristol, Avon). 2003;18(1):35-43.
    [33] Ramaniraka NA, Saunier P, Siegrist O, et al. Biomechanical evaluation of intra-articular and extra-articular procedures in anterior cruciate ligament reconstruction: a finite element analysis. Clin Biomech (Bristol, Avon). 2007;22(3):336-43.
    [34] Ramaniraka NA, Terrier A, Theumann N, et al. Effects of the posterior cruciate ligament reconstruction on the biomechanics of the knee joint: a finite element analysis. Clin Biomech (Bristol, Avon). 2005;20(4):434-42.
    [35] Haut Donahue TL, Hull ML, Rashid MM, et al. The sensitivity of tibiofemoral contact pressure to the size and shape of the lateral and medial menisci. J Orthop Res. 2004;22(4):807-14.
    [36] Joan E, Colin H. Normal and shear stresses on a residual limb in a prosthetic socket during ambulation: comparison of finite element results with experimental measurements. Journal of Rehabilitation Research and Development. Health & Medical Complete 1993; 30(2):191-204
    [37] Goh JC, Lee PV, Toh SL, Ooi CK. Development of an integrated CAD-FEA process for below-knee prosthetic sockets. Clin Biomech (Bristol, Avon). 2005;20(6):623-9.
    [38] Shirazi-Adl A, Mesfar W. Effect of tibial tubercle elevation on biomechanics of the entire knee joint under muscle loads. Clin Biomech (Bristol, Avon).2007;22(3):344-51.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700