用户名: 密码: 验证码:
井间电阻率成像方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
井间电阻率成像技术和地表电阻率成像技术相比,因为井间装置的供电电极位于地表以下,对于有一定深度的异常目标体,其分辨能力将远远大于地表装置的分辨率,这特别适用于当今能源和资源勘探中大深度和高分辨率的勘探要求。
     井间电阻率成像的目的是确定井间异常体的位置及地层真物性参数,本文提出的井间视电阻率几何成像方法可以较准确地确定异常体在井间的纵向位置。基于非全空间直流电场的原理,采用镜像法推导出有别于半空间和全空间的视电阻率计算公式,求出与所有电位对应的视电阻率值,然后以观测井深为纵坐标,供电井深为横坐标绘制视电阻率等值线图,由此得出井间异常体的影像图。应用三维三线性插值有限单元正演模拟方法,计算并分析了几种典型的地质模型,结果表明,由视电阻率等值线形态能够判断异常体的空间形态和准确位置,但井间低阻体表现为高视电阻率异常,井间高阻体表现为低视电阻率异常。该方法垂向分辨率较高,确定深度较准确,但无法分辨异常体的横向位置。
     为了进一步确定异常体在井间的横向位置,提出一种井间视电阻率网格化交汇成像方法。对井间区域进行网格化以后,求出每一网格节点上的视电阻率平均值,最后以井深为横坐标,井间距离为纵坐标绘制网格化之后的重组视电阻率等值线图。模型计算结果表明可通过该等值线图大致确定异常体的横向位置。
     井间电磁成像是井间精细结构研究的重要手段之一。论文最后总结了现有的一些井间电磁成像方法并分析了各自的优缺点,指出今后井间电磁成像技术的研究方向将围绕着仪器的研制、金属套管对成像结果的影响及成像反演方法等一些方面进行。最终将采用多分量井间电磁系统探测井间地层的各项异性特征,以达到精确描述井间精细结构的目的。
Compared to resistivity image on the surface, the crosshole resistivity image has a better resolution for the target with a certain depth because its current electrode is located below the surface. This method especially meets with the requirements of deep depth and high resolution of energy and resource exploration at present.
     The purpose of crosshole resistivity image is to ascertain the location of abnormity body and real parameters of the stratum. The geometry image method of crosshole apparent resistivity is put forward in this thesis, which can accurately ascertain the perpendicular position of abnormity body. Based on the theory of direct-current electric field in non-full space, the apparent resistivity formula that is different from half space and full space was deduced by the image method, and all apparent resistivity was solved out, then the apparent resistivity isopleth map was drawn, in which, observation hole depth is ordinate and power-supply hole depth is abscissa. At last, several typical geologic models were simulated by three-dimensional Finite Element Method. The results show, the space shape and precise position of abnormity body can be judged from apparent resistivity isoline shape, but crosshole low resistivity body reflects high apparent resistivity abnormity and crosshole high resistivity body reflects low apparent resistivity abnormity. This method has high resolution in perpendicular direction, and can accurately ascertain the depth, but the transverse position of abnormity body can't be recognized.
     To further ascertain the transverse position of crosshole abnormity body, the gridding image method of crosshole apparent resistivity is put forward. After the crosshole area was divided into grids, the average value of apparent resistivity in each grid nodes was calculated. Then the recomposed apparent resistivity isopleth map after gridding was drawn, in which, well depth is abscissa and crosshole separation is ordinate. Model computing result demonstrated the transverse position of abnormity body can be approximately ascertained by this isopleth map.
     Crosshole electromagnetism image is one of the important means to study crosshole precision configuration. Some crosshole electromagnetism image methods were summarized at the end of this thesis, and its advantages and disadvantages were analyzed. At last, this thesis pointed out the study orientation of crosshole electromagnetism image will be instrument development, the influence of metal thimble and image method, and finally multi-component crosshole electromagnetism system will be adopted to detect the anisotropism characteristic of crosshole stratum, in order to describe crosshole precision configuration accurately.
引文
[1]Alfano L. Geoelectrical prospecting with underground electrodes. Geophys. Prosp.,1962,10:290-303
    [2]Snyder D. D. and Merkel R. M. Analitic models for the interetation of electrical surveys using buried current electrodes. Geophysics,1973,38:713-729
    [3]Daniels J. J. Three-dimensional resistivity and induced polarization model ingusing buried electrodes, Geophysics,1977,42,1006-1019
    [4]Dey A. and Morrison H. F. Resistivity modeling for arbitrarily shaped three-dimensional structures[J]. Geophysical Prospecting,1979a,27:106-136
    [5]Dey A. and Morrison H. F. Resistivity modeling for arbitrarily shaped three-dimensional structures [J]. Geophysics,1979b,44(4):753-780
    [6]Eloranta, E. H.. A comparison between mise-a-la-masse anomalies obtained by pole-pole electrode configuration[J]. Geoexploration,1985,23:471-481
    [7]Eloranta E. H. The Behavior of mise-a-la-masse anomalies near a vertical contact[J]. Geoexploration,1986,24:1-14
    [8]Beasley C. W. and Ward S. H. Three-dimensional mise-a-la-masse modeling applied to mapping fracture zones[J]. Geophysics,1986,51(1):98-113
    [9]Yang E. W. and Ward S. H. Single-borehole and crosshole resistivity anomalies of thin ellipsoid and spheroid[J]. Geophysics,1987,70:637-677
    [10]Shima H., Sakayama T. Resistivity image:An approach to 2-D resistivity inverse problems[C]//57th Society of Exploration Geophysicists, Expanded Abstracts.1987:204-207
    [11]Daily W. and Owen E. Gross-borehole resistivity image[J]. Geophysics,1991, 56(8):1228-1235
    [12]Shima H. Two-dimensional automatic resistivity inversion technique using alpha centers [J]. Geophysics,1990,55(6):682-694
    [13]Shima H.2D and 3D resistivity image reconstruction using cross-hole data[J]. Geophysics,1992,57 (10):1270-1281
    [14]Keisuke Ushijima, Hideki Mizunaga, Toshiaki Tanaka et al. Reservoir monitoring by a 4-D electrical technique[J]. The Leading Edge,1999: 1422-1424
    [15]Bevc, D., Morrison, H.F. Borehole-to-surface electrical resistivity monitoring of a salt water injection experiment[J]. Geophysics.1991,56(6):769-777
    [16]Slater L., Binley A. M., Daily W. R. et al. Crosshole electrical imaging of a controlled saline tracer Injection[J]. Journal of Applied Geophysics,2000,44: 85-102
    [17]Christensen N. B., Sherlock D., Dodds K. Monitoring CO2 injection with crosshole electrical resistivity image[J]. Exploration Geophysics 2006,37: 44-49
    [18]Peter B., Robert S., Stephanie Z. et al. Geoelectrical imaging of groundwater salinization in the Okavango Delta, Botswana[J]. Journal of Applied Geophysics, 2006,60:126-141
    [19]刘素红,朱德怀,王域辉.井间断块油藏电场的有限元法正反演模拟[J].江汉石油学院学报,1993,15(2):45-50
    [20]白登海,于晟.电阻率层析成象理论和方法[J].地球物理学进展,1995,10(1):56-75
    [21]周兵,曹俊兴.井间电阻率成像数值模拟[J].物探化探计算技术,1995,17(4): 9-17
    [22]周兵,曹俊兴.弹性波场和稳恒电流场的Frechet导数计算方法[J].物探化探计算技术,1995,17(2):7-14
    [23]董清华,田宪谟,严忠琼.井间电阻率层析成象的平滑度约束反演[J].物探化探计算技术,1997,19(2):122-127
    [24]董清华,田宪谟.井间电阻率成像中Frechet导数的算法比较[J].物探化探计算技术,1997,19(1):41-45
    [25]董清华.井间电阻率层析成像的某些进展[J].地球物理学进展,1997,12(3): 77-89
    [26]董清华,严忠琼.井间电阻率成象在工程勘察中的应用[J].工程勘察,1998,(1):73-75
    [27]董清华,曹俊兴.井间电阻率层析成像的几个问题研究[J].地球物理学进展,1998,13(4):84-89
    [28]毛先进等.边界积分方程法二维电阻率层析成像[J].物探化探计算技术,1998,20(23):226-229
    [29]王若,王兴泰,卢元林等.用改进的佐迪反演方法进行二维电阻率图像重建[J].长春科技大学学报,1998,28(3):339-344
    [30]阮百尧,村上裕,徐世浙.电阻率/激发极化率数据的二维反演程序[J].物 探化探计算技术,1999,21(2):116-125
    [31]吴小平,徐果明.利用共轭梯度法的电阻率三维反演研究[J].地球物理学报,2000,43(3):420-427
    [32]刘国强,陶果,柯式镇等.摄动求解Frechet导数的电阻率层析成像方法[J].地震地质,2001,23(2):314-320
    [33]吕玉增,阮百尧,黄俊革.直流电井间三维直接成像[J].物探化探计算技术,2003,25(1):60-64
    [34]谭河清,沈金松,周超等.井地电位成像技术及其在孤东八区剩余油分布研究中的应用[J].石油大学学报(自然科学版),2004,28(2):31-37
    [35]李敬功.储层三维电阻率成像监测技术在濮城油田的应用[J].石油天然气学报(江汉石油学院学报),2006,28(1):65-67
    [36]蔡圣权,叶义平,邹鲁新等.井-地电位成像技术在新疆油田五1区剩余油分布评价研究中的应用[J].特种油气藏,2005,12(5):55-58
    [37]岳建华,刘志新.井-地三维电阻率成像技术[J].地球物理学进展,2005,202:407-411
    [38]汤井田,张继锋,冯兵等.井地电阻率法歧离率确定高阻油气藏边界[J].地球物理学报,2007,50(3):926-931
    [39]徐世浙.地球物理中的有限单元法.北京:科学出版社,1994
    [40]科马罗夫B.A.应用点测深(T3)作地电断面图的方法指南,阎立光译,北京,地质出版社,1992
    [41]曾文冲,陈序三,赵文杰.井间电磁成像测井的应用研究与现场试验[J].测井技术,2000,24(5):355-368
    [42]曾文冲,赵文杰,减德福.井间电磁成像系统应用研究[J].地球物理学报,2001,44(3):411-420
    [43]魏宝君,张庚骥,曾文冲.井间电磁成像的迭代反演算法[J].地球物理学报,1999,42(5):711-719
    [44]魏宝君,张庚骥.用改进的逐次逼近解法计算二维井间电磁场[J].测井技术,2001,25(3):179-183
    [45]魏宝君,张庚骥,梁秋锦.井间电磁场的一维反演[J].西安石油学院学报(自然科学版),2002,17(5):21-26
    [46]魏宝君.二维井间电磁场的非线性反演方法[J].石油大学学报(自然科学版),2004,28(5):39-48
    [47]魏宝君,张庚骥,胡波.用改进的局域非线性迭代方法计算三维井间电磁场[J].中国油大学学报(自然科学版),2002,26(3):125-130
    [48]栗建军.井间电磁测井原理、方法及套管对井间电磁测井影响规律的研究[D]:博士学位论文.中国海洋大学,2004
    [49]栗建军,孟凡顺.套管井井间电阻率测井的原理及数值计算[J].青岛海洋大学学报:自然科学版,2003,33(2):287-292
    [50]沈金松,孙文博,赵文杰,曾文冲.井间电磁测量数据的模拟与处理解释[J].测井技术,2007,31(5):417-424
    [51]沈金松,佟文琪,房德斌.用跨井电磁波资料重现地下介质的电阻率分布[J].石油地球物理勘探,2000,35(6):741-750
    [52]张庚骥.电法测井(下册).北京:石油土业出版社,1986
    [53]李志刚.井间电磁特征及成像[D].硕士学位论文,石油大学,2002
    [54]Alumbaugh D. L. and Morrison H. F. Monitoring subsurface changes over time with cross-well electromagnetic image[J]. Geophysical Prospecting,1995, 43:873-902
    [55]Alumbaugh D. L. and Morrison H. F. Theoretical and practical considerations for cross-well electromagnetic image assuming a cylindrical geometry [J]. Geophysics,1995,60(3):846-870
    [56]Z. Zhang and Z. Zhou. Real-time Quasi-2-D Inversion of array Resistiviity logging Data Neural Networks. Geophysics,2002,67(2):517-524
    [57]W. H. Pelton. Inversion of Two-dimensional Resistivity and Induced Polarization Data. Geophysics,1978,43(4):788-803
    [58]B. zhou. Rapid 2-D/3-D Crosshole Resistivity Imaging Using the Analytic Sensitivity Function. Geophysics,2002,67(3):755-765
    [59]魏宝君,张庚骥,梁秋锦.金属套管对电磁测井响应的影响[J].石油物探,1999,38(3):67-75
    [60]杨韡.井间电磁成像的最新进展及发展方向[J].测井技术,2000,24(4):303-306
    [61]梁秋锦,魏宝君.井间电磁成像方法的最新进展[J].油气地质与采收率,2002,9(3):63-66
    [62]曾文冲.关于我国测井技术发展的几点意见[J].测井技术,2002,26(1):1-5
    [63]魏宝君.井间电磁场的一维、二维联合反演方法[J].地球物理学报,2006,49(1):264-274
    [64]魏宝君.井间电磁成像方法研究[D].博士学位论文,石油大学,2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700