用户名: 密码: 验证码:
贵金属纳米材料的合成及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
贵金属纳米颗粒由于其具有催化、等离子体共振、光谱学等特有性质而成为无机纳米材料中研究最广泛的胶体体系之一。随着合成形貌可控的纳米材料技术的不断发展和更新,研究形貌(尺寸、形状、组分等)与纳米材料特有性质之间的关系已经受到人们广泛的关注。目前,大面积、精确地控制合成贵金属纳米材料,并研究其在催化、光学等领域的应用,依旧是当前纳米材料研究的热点和难点。
     本论文基于晶种调制法,在水相中合成了分散性好、尺寸均一、形貌特殊的贵金属纳米材料,主要包括:Au多面体和涉及Au、Pd、Ag三种元素的核壳多面体复合结构,并进一步研究了上述不同纳米材料的光学和电化学性质,主要工作如下:
     1.通过晶种调制法成功合成了尺寸均一、分散性良好的金六面体、八面体及菱形十二面体。并首次系统地研究了三种低指数面的单晶金多面体对葡萄糖的电催化行为。结果表明:葡萄糖的电催化氧化过程强烈地依赖于金多面体的不同晶面。相对于暴露{111}面的金八面体和{110}菱形十二面体而言,暴露{100}的金六面体表现出更高的催化活性,并且这些金多面体在催化过程中均具有较高稳定性。
     2.通过晶种外延生长法制备了不同结构的Au-Pd、Pd-Au核-壳结构的多面体。首先,以椭球形Au纳米颗粒为晶核,H_2PdCl_4为钯源,抗坏血酸为还原剂,在十六烷基三甲基溴化铵溶液中通过反应条件的控制,合成了不同形貌的Au-Pd六面体、八面体、菱形十二面体。同样,通过晶种外延生长法以边长约为22 nm的Pd六面体纳米颗粒为晶核,HAuCl4为前驱体,抗坏血酸为还原剂,在十六烷基氯化吡啶溶液中合成了尺寸均一、分散性良好的Pd-Au六面体、八面体、菱形十二面体。同时研究了酸性条件下三种Au-Pd核-壳多面体对甲酸的电催化行为。结果表明:暴露{100}面的Au-Pd六面体相对于暴露{111}面的八面体和{110}面的菱形十二面体具有更高的催化电流密度。此外,较为系统地研究了不同厚度壳层的Au-Pd六面体的光学性质。结果表明:Au-Pd核-壳六面体表现出不同于椭球状Au纳米颗粒的光学活性,当Pd壳层的厚度小于5 nm时,Au-Pd核-壳结构的SPR在500-508 nm,当Pd壳层的厚度大于5 nm时,Au-Pd核壳六面体的SPR性质主要取决于外层Pd的光学性质。
     Q3.通过晶种外延生长法以多面体Au-Pd和Pd-Au纳米颗粒为晶核,AgNO3为银源,抗坏血酸为还原剂,Br-为特定的吸附粒子,在十六烷基三甲基氯化铵溶液中合成了Au-Pd-Ag和Pd-Au-Ag三元核-壳结构的贵金属六面体。并比较了不同壳层厚度的Au-Pd-Ag和Pd-Au-Ag三元贵金属六面体的光学性质。对不同壳层厚度的Au-Pd-Ag和Pd-Au-Ag六面体,其光学性质主要由外层的Ag来决定,当晶种的大小不变,随着壳层厚度的减小,其光谱均发生蓝移。
In nano-science and nano-technology, colloidal metal nanoparticles are emerging as key materials for catalysis, plasmonics, and spectroscopy. With the development of synthesis method, it has been pay attention to study the relation between morphology (size, shape, composition) and physical and chemical properties. Nanomaterials with special morphology have been showed good properties and will been application in many field, meanwhile, precise control the morphology to tune special properties have been a hot topic.
     Seed mediated method was employed to synthesize noble metal nanomaterials with special shape, including monodisperse Au single crystal polyhedra, core-shell polyhedra involving Au, Pd, and Ag. For special shape nanomaterials, SPR and electrochemical properties were studied. The following is the main result:
     1. Using seed-mediated method to synthesize three types Au polyhedra including rhombic dodecahedra (RD), octahedra (Oct), and cubes, which were bounded with three low-index {110}, {111} and {100} facets, respectively. And then systematically explore the shape-dependent catalytic activities of gold nanoparticles toward glucose oxidation in alkaline electrolytes. Our findings clearly reveal that glucose oxidation is strongly dependent on the crystal facets of Au nanocrystals. The {100}-bounded cubic Au nanocrystals are significantly more active than the {110}-bounded rhombic dodecahedral and {111}-bounded octahedral Au nanocrystals. Furthermore, these Au nanocrystal catalysts exhibit remarkably high stability in the repetitive electrocatalytic oxidation process.
     2. Au-Pd nano-polyhedral were synthesized through epitaxial growth method in aqueous solution. Ellipsoial Au were employed as the seeds, through reducing H2PdCl4 with L-ascorbic acid in cetyltrimethylammonium bromide (CTAB )solution,simply adjust―growth solution‖environment, Au-Pd core-shell rhombic dodecahedra (RD), octahedra (Oct), and cubes can synthesize. Pd-Au bimetallic nano-polyhedra were also synthesized using cubic Pd as seed, through reducing HAuCl4 with L-ascorbic acid in cetylpyridinium chloride (CPC) solution. The binary metal Au-Pd nanopolyhedra with uniform size were impolyed to study SPR and electrocatalytic. For electrocatalytic properties, the {100}-bounded cubic Au -Pd nanocrystals are significantly more active than the {110}-bounded RD and {111}-bounded octahedral Au-Pd nanocrystals. The study demonstrated for the Au-Pd core-shell nanocrystals, When Pd shells are smaller than 5nm, the SPR of Au-Pd core-shell was observed at 500-508nm. When shells are larger than 5nm, the SPR of Au-Pd are mainly determined by the exterior shell (Pd).
     3. Au-Pd-Ag and Pd-Au-Ag nano-cubes were synthesized through epitaxial growth method in aqueous solution. Polyhedra Au-Pd and Pd-Au were employed as the seeds, Br- as special absorption ion, through reducing AgNO3 with L-ascorbic acid in cetyltrimethylammonium chloride ( CTAC ) solution. SPR of Au-Pd-Ag and Pd-Au-Ag with different thickness were also study. The SPR of Au-Pd-Ag and Pd-Au-Ag are mainly determined by the exterior shell (Ag) and with decreasing the size of trimetallic core-shell structure, the SPR are blue shift.
引文
1. Yu; Chang, S.-S.; Lee, C.-L.; Wang, C. R. C., Gold Nanorods:? Electrochemical Synthesis and Optical Properties. The Journal of Physical Chemistry B 1997, 101 (34), 6661-6664.
    2. Murphy, C. J.; Gole, A. M.; Hunyadi, S. E.; Orendorff, C. J., One-Dimensional Colloidal Gold and Silver Nanostructures. Inorganic Chemistry 2006, 45 (19), 7544-7554.
    3. Jin, R.; Cao, Y.; Mirkin, C. A.; Kelly, K. L.; Schatz, G. C.; Zheng, J. G., Photoinduced Conversion of Silver Nanospheres to Nanoprisms. Science 2001, 294 (5548), 1901-1903.
    4. Chen, S.; Carroll, D. L., Synthesis and Characterization of Truncated Triangular Silver Nanoplates. Nano Letters 2002, 2 (9), 1003-1007.
    5. Millstone, J. E.; Park, S.; Shuford, K. L.; Qin, L.; Schatz, G. C.; Mirkin, C. A., Observation of a Quadrupole Plasmon Mode for a Colloidal Solution of Gold Nanoprisms. Journal of the American Chemical Society 2005, 127 (15), 5312-5313.
    6. Zhang, Q.; Li, W.; Moran, C.; Zeng, J.; Chen, J.; Wen, L.-P.; Xia, Y., Seed-Mediated Synthesis of Ag Nanocubes with Controllable Edge Lengths in the Range of 30?200 nm and Comparison of Their Optical Properties. Journal of the American Chemical Society 2010, 132 (32), 11372-11378.
    7. Tao, A.; Sinsermsuksakul, P.; Yang, P., Polyhedral Silver Nanocrystals with Distinct Scattering Signatures. Angewandte Chemie International Edition 2006, 45 (28), 4597-4601.
    8. Chen, W.; Chen, S., Oxygen Electroreduction Catalyzed by Gold Nanoclusters: Strong Core Size Effects. Angewandte Chemie International Edition 2009, 48 (24), 4386-4389.
    9. Yamamoto, K.; Imaoka, T.; Chun, W. J.; Enoki, O.; Katoh, H.; Takenaga, M.; Sonoi, A., Size-specific catalytic activity of platinum clusters enhances oxygen reduction reactions. Nat. Chem. 2009, 1 (5), 397-402.
    10. Xiao, L.; Zhuang, L.; Liu, Y.; Lu, J. T.; Abruna, H. D., Activating Pd by Morphology Tailoring for Oxygen Reduction. Journal of the American Chemical Society 2009, 131 (2), 602-608.
    11. Jeong, G. H.; Kim, M.; Lee, Y. W.; Choi, W.; Oh, W. T.; Park, Q. H.; Han, S. W., Polyhedral Au Nanocrystals Exclusively Bound by {110} Facets: The Rhombic Dodecahedron.Journal of the American Chemical Society 2009, 131 (5), 1672-1673.
    12. Lee, Y. W.; Kim, M.; Kim, Z. H.; Han, S. W., One-Step Synthesis of Au@Pd Core?Shell Nanooctahedron. Journal of the American Chemical Society 2009, 131 (47), 17036-17037.
    13. Chang, S.-S.; Shih, C.-W.; Chen, C.-D.; Lai, W.-C.; Wang, C. R. C., The Shape Transition of Gold Nanorods. Langmuir 1998, 15 (3), 701-709.
    14. Martin, C. R., Nanomaterials: A Membrane-Based Synthetic Approach. Science 1994, 266 (5193), 1961-1966.
    15. Hill, J. J.; Cotton, S. P.; Ziegler, K. J., Alignment and Morphology Control of Ordered Mesoporous Silicas in Anodic Aluminum Oxide Channels by Electrophoretic Deposition. Chemistry of Materials 2009, 21 (9), 1841-1846.
    16. Keilbach, A.; Moses, J.; Koh?n, R.; Dob?linger, M.; Bein, T., Electrodeposition of Copper and Silver Nanowires in Hierarchical Mesoporous Silica/Anodic Alumina Nanostructures. Chemistry of Materials 2010, 22 (19), 5430-5436.
    17. Sch?nenberger, C.; van der Zande, B. M. I.; Fokkink, L. G. J.; Henny, M.; Schmid, C.; Krüger, M.; Bachtold, A.; Huber, R.; Birk, H.; Staufer, U., Template Synthesis of Nanowires in Porous Polycarbonate Membranes Electrochemistry and Morphology. The Journal of Physical Chemistry B 1997, 101 (28), 5497-5505.
    18. Tonucci, R. J.; Justus, B. L.; Campillo, A. J.; Ford, C. E., Nanochannel Array Glass. Science 1992, 258 (5083), 783-785.
    19. Wu, C.-G.; Bein, T., Conducting Polyaniline Filaments in a Mesoporous Channel Host. Science 1994, 264 (5166), 1757-1759.
    20. Guerret-Piecourt, C.; Bouar, Y. L.; Lolseau, A.; Pascard, H., Relation between metal electronic structure and morphology of metal compounds inside carbon nanotubes. Nature 1994, 372 (6508), 761-765.
    21. Bok, H.-M.; Shuford, K. L.; Kim, S.; Kim, S. K.; Park, S., Multiple Surface Plasmon Modes for Gold/Silver Alloy Nanorods. Langmuir 2009, 25 (9), 5266-5270.
    22. Tian, N.; Zhou, Z. Y.; Sun, S. G.; Ding, Y.; Wang, Z. L., Synthesis of Tetrahexahedral Platinum Nanocrystals with High-Index Facets and High Electro-Oxidation Activity. Science 2007,
    316 (5825), 732-735.
    23. Tian, N.; Zhou, Z. Y.; Yu, N. F.; Wang, L. Y.; Sun, S. G., Direct Electrodeposition of Tetrahexahedral Pd Nanocrystals with High-Index Facets and High Catalytic Activity for EthanolElectrooxidation. Journal of the American Chemical Society 2010, 132 (22), 7580-7581.
    24. Yonezawa, T.; Yasui, K.; Kimizuka, N., Controlled Formation of Smaller Gold Nanoparticles by the Use of Four-Chained Disulfide Stabilizer. Langmuir 2000, 17 (2), 271-273.
    25. Mpourmpakis, G.; Vlachos, D. G., Insights into the Early Stages of Metal Nanoparticle Formation via First-Principle Calculations: the Roles of Citrate and Water. Langmuir 2008, 24 (14), 7465-7473.
    26. Caswell, K. K.; Bender, C. M.; Murphy, C. J., Seedless, Surfactantless Wet Chemical Synthesis of Silver Nanowires. Nano Letters 2003, 3 (5), 667-669.
    27. Ji, X.; Song, X.; Li, J.; Bai, Y.; Yang, W.; Peng, X., Size Control of Gold Nanocrystals in Citrate Reduction:? The Third Role of Citrate. Journal of the American Chemical Society 2007, 129 (45), 13939-13948.
    28. Gao, J.; Bender, C. M.; Murphy, C. J., Dependence of the Gold Nanorod Aspect Ratio on the Nature of the Directing Surfactant in Aqueous Solution. Langmuir 2003, 19 (21), 9065-9070.
    29. Gole, A.; Murphy, C. J., Seed-Mediated Synthesis of Gold Nanorods:? Role of the Size and Nature of the Seed. Chemistry of Materials 2004, 16 (19), 3633-3640.
    30. Niu, W. X.; Zheng, S. L.; Wang, D. W.; Liu, X. Q.; Li, H. J.; Han, S. A.; Chen, J.; Tang, Z. Y.; Xu, G. B., Selective Synthesis of Single-Crystalline Rhombic Dodecahedral, Octahedral, and Cubic Gold Nanocrystals. Journal of the American Chemical Society 2009, 131 (2), 697-703.
    31. Habas, S. E.; Lee, H.; Radmilovic, V.; Somorjai, G. A.; Yang, P., Shaping binary metal nanocrystals through epitaxial seeded growth. Nature Materials 2007, 6 (9), 692-697.
    32. Fan, F.-R.; Liu, D.-Y.; Wu, Y.-F.; Duan, S.; Xie, Z.-X.; Jiang, Z.-Y.; Tian, Z.-Q., Epitaxial Growth of Heterogeneous Metal Nanocrystals: From Gold Nano-octahedra to Palladium and Silver Nanocubes. Journal of the American Chemical Society 2008, 130 (22), 6949-6951.
    33. Lim, B.; Kobayashi, H.; Yu, T.; Wang, J.; Kim, M. J.; Li, Z.-Y.; Rycenga, M.; Xia, Y., Synthesis of Pd?Au Bimetallic Nanocrystals via Controlled Overgrowth. Journal of the American Chemical Society 2010, 132 (8), 2506-2507.
    34. Lim, B.; Jiang, M.; Camargo, P. H. C.; Cho, E. C.; Tao, J.; Lu, X.; Zhu, Y.; Xia, Y., Pd-Pt Bimetallic Nanodendrites with High Activity for Oxygen Reduction. Science 2009, 324 (5932), 1302-1305.
    35. Kim, Y.; Hong, J. W.; Lee, Y. W.; Kim, M.; Kim, D.; Yun, W. S.; Han, S. W., Synthesisof AuPt Heteronanostructures with Enhanced Electrocatalytic Activity toward Oxygen Reduction. Angew. Chem.-Int. Edit. 2010, 49 (52), 10197-10201.
    36. Sun, Y.; Xia, Y., Mechanistic Study on the Replacement Reaction between Silver Nanostructures and Chloroauric Acid in Aqueous Medium. Journal of the American Chemical Society 2004, 126 (12), 3892-3901.
    37. Sun, Y. G.; Xia, Y. N., Multiple-walled nanotubes made of metals. Advanced Materials 2004, 16 (3), 264-268.
    38. Chen, J.; McLellan, J. M.; Siekkinen, A.; Xiong, Y.; Li, Z.-Y.; Xia, Y., Facile Synthesis of Gold?Silver Nanocages with Controllable Pores on the Surface. Journal of the American Chemical Society 2006, 128 (46), 14776-14777.
    39. Lu, X.; Au, L.; McLellan, J.; Li, Z.-Y.; Marquez, M.; Xia, Y., Fabrication of Cubic Nanocages and Nanoframes by Dealloying Au/Ag Alloy Nanoboxes with an Aqueous Etchant Based on Fe(NO3)3 or NH4OH. Nano Letters 2007, 7 (6), 1764-1769.
    40. Sun, Y. G.; Xia, Y. N., Triangular nanoplates of silver: Synthesis, characterization, and use as sacrificial templates for generating triangular nanorings of gold. Advanced Materials 2003, 15 (9), 695-699.
    41. Sun, Y.; Mayers, B. T.; Xia, Y., Template-Engaged Replacement Reaction:? A One-Step Approach to the Large-Scale Synthesis of Metal Nanostructures with Hollow Interiors. Nano Letters 2002, 2 (5), 481-485.
    42. Sun, Y. G.; Mayers, B.; Xia, Y. N., Metal nanostructures with hollow interiors. Advanced Materials 2003, 15 (7-8), 641-646.
    43. Mayers, B.; Jiang, X.; Sunderland, D.; Cattle, B.; Xia, Y., Hollow Nanostructures of Platinum with Controllable Dimensions Can Be Synthesized by Templating Against Selenium Nanowires and Colloids. Journal of the American Chemical Society 2003, 125 (44), 13364-13365.
    44. Camargo, P. H. C.; Xiong, Y.; Ji, L.; Zuo, J. M.; Xia, Y., Facile Synthesis of Tadpole-like Nanostructures Consisting of Au Heads and Pd Tails. Journal of the American Chemical Society 2007, 129 (50), 15452-15453.
    45. Zhang, H.; Jin, M.; Wang, J.; Li, W.; Camargo, P. H. C.; Kim, M. J.; Yang, D.; Xie, Z.; Xia, Y., Synthesis of Pd?Pt Bimetallic Nanocrystals with a Concave Structure through a Bromide-Induced Galvanic Replacement Reaction. Journal of the American Chemical Society 2011, 133 (15), 6078-6089.
    46. Frenken, J. W. M.; Stoltze, P., Are Vicinal Metal Surfaces Stable? Physical Review Letters 1999, 82 (17), 3500.
    47. Sun, Y.; Xia, Y., Shape-Controlled Synthesis of Gold and Silver Nanoparticles. Science 2002, 298 (5601), 2176-2179.
    48. Song, H.; Kim, F.; Connor, S.; Somorjai, G. A.; Yang, P., Pt Nanocrystals:? Shape Control and Langmuir?Blodgett Monolayer Formation. The Journal of Physical Chemistry B 2004, 109 (1), 188-193.
    49. Niu, W.; Zhang, L.; Xu, G., Shape-Controlled Synthesis of Single-Crystalline Palladium Nanocrystals. ACS Nano 2010, 4 (4), 1987-1996.
    50. Zhou, Y.; Wang, C. Y.; Zhu, Y. R.; Chen, Z. Y., A Novel Ultraviolet Irradiation Technique for Shape-Controlled Synthesis of Gold Nanoparticles at Room Temperature. Chemistry of Materials 1999, 11 (9), 2310-2312.
    51. Jiang, L.-P.; Xu, S.; Zhu, J.-M.; Zhang, J.-R.; Zhu, J.-J.; Chen, H.-Y., Ultrasonic-Assisted Synthesis of Monodisperse Single-Crystalline Silver Nanoplates and Gold Nanorings. Inorganic Chemistry 2004, 43 (19), 5877-5883.
    52. Xia, Y.; Xiong, Y. J.; Lim, B.; Skrabalak, S. E., Shape-Controlled Synthesis of Metal Nanocrystals: Simple Chemistry Meets Complex Physics? Angew. Chem.-Int. Edit. 2009, 48 (1),
    60-103.
    53. Tao, A. R.; Habas, S.; Yang, P., Shape Control of Colloidal Metal Nanocrystals. Small 2008, 4 (3), 310-325.
    54. Jana, N. R.; Gearheart, L.; Murphy, C. J., Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio. Chemical Communications 2001, (7), 617-618.
    55. Sau, T. K.; Murphy, C. J., Room Temperature, High-Yield Synthesis of Multiple Shapes of Gold Nanoparticles in Aqueous Solution. Journal of the American Chemical Society 2004, 126 (28), 8648-8649.
    56. Tsuji, M.; Miyamae, N.; Lim, S.; Kimura, K.; Zhang, X.; Hikino, S.; Nishio, M., Crystal Structures and Growth Mechanisms of Au@Ag Core?Shell Nanoparticles Prepared by the Microwave?Polyol Method. Crystal Growth & Design 2006, 6 (8), 1801-1807.
    57. Sanedrin, R. G.; Georganopoulou, D. G.; Park, S.; Mirkin, C. A., Seed-Mediated Growth of Bimetallic Prisms. Advanced Materials 2005, 17 (8), 1027-1031.
    58. Lee, S.-M.; Jun, Y.-w.; Cho, S.-N.; Cheon, J., Single-Crystalline Star-ShapedNanocrystals and Their Evolution:? Programming the Geometry of Nano-Building Blocks. Journal of the American Chemical Society 2002, 124 (38), 11244-11245.
    59. Jun, Y.-w.; Choi, J.-s.; Cheon, J., Shape Control of Semiconductor and Metal Oxide Nanocrystals through Nonhydrolytic Colloidal Routes. Angewandte Chemie International Edition 2006, 45 (21), 3414-3439.
    60. Manna, L.; Scher, E. C.; Alivisatos, A. P., Synthesis of Soluble and Processable Rod-, Arrow-, Teardrop-, and Tetrapod-Shaped CdSe Nanocrystals. Journal of the American Chemical Society 2000, 122 (51), 12700-12706.
    61. Jana, N. R.; Gearheart, L.; Murphy, C. J., Wet Chemical Synthesis of High Aspect Ratio Cylindrical Gold Nanorods. The Journal of Physical Chemistry B 2001, 105 (19), 4065-4067.
    62. Kim, S.-W.; Park, J.; Jang, Y.; Chung, Y.; Hwang, S.; Hyeon, T.; Kim, Y. W., Synthesis of Monodisperse Palladium Nanoparticles. Nano Letters 2003, 3 (9), 1289-1291.
    63. Cushing, B. L.; Kolesnichenko, V. L.; O'Connor, C. J., Recent Advances in the Liquid-Phase Syntheses of Inorganic Nanoparticles. Chemical Reviews 2004, 104 (9), 3893-3946.
    64. Vijaya Sarathy, K.; U. Kulkarni, G.; N. R. Rao, C., A novel method of preparing thiol-derivatised nanoparticles of gold, platinum and silver forming superstructures. Chemical Communications 1997, (6), 537-538.
    65. Leff, D. V.; Brandt, L.; Heath, J. R., Synthesis and Characterization of Hydrophobic, Organically-Soluble Gold Nanocrystals Functionalized with Primary Amines. Langmuir 1996, 12 (20), 4723-4730.
    66. Garcia, M. E.; Baker, L. A.; Crooks, R. M., Preparation and Characterization of Dendrimer?Gold Colloid Nanocomposites. Analytical Chemistry 1998, 71 (1), 256-258.
    67. Chen, S.; Wang, Z. L.; Ballato, J.; Foulger, S. H.; Carroll, D. L., Monopod, Bipod, Tripod, and Tetrapod Gold Nanocrystals. Journal of the American Chemical Society 2003, 125 (52), 16186-16187.
    68. Sun, Y. G.; Xia, Y. N., Shape-controlled synthesis of gold and silver nanoparticles. Science 2002, 298 (5601), 2176-2179.
    69. Wiley, B.; Sun, Y. G.; Xia, Y., Synthesis of silver wanostructures with controlled shapes and properties. Accounts Chem. Res. 2007, 40 (10), 1067-1076.
    70. Kim, F.; Connor, S.; Song, H.; Kuykendall, T.; Yang, P., Platonic Gold Nanocrystals. Angewandte Chemie International Edition 2004, 43 (28), 3673-3677.
    71. Valden, M.; Lai, X.; Goodman, D. W., Onset of Catalytic Activity of Gold Clusters on Titania with the Appearance of Nonmetallic Properties. Science 1998, 281 (5383), 1647-1650.
    72. Yagi, I.; Ishida, T.; Uosaki, K., Electrocatalytic reduction of oxygen to water at Au nanoclusters vacuum-evaporated on boron-doped diamond in acidic solution. Electrochemistry Communications 2004, 6 (8), 773-779.
    73. Herzing, A. A.; Kiely, C. J.; Carley, A. F.; Landon, P.; Hutchings, G. J., Identification of Active Gold Nanoclusters on Iron Oxide Supports for CO Oxidation. Science 2008, 321 (5894), 1331-1335.
    74. Gong, K.; Du, F.; Xia, Z.; Durstock, M.; Dai, L., Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction. Science 2009, 323 (5915), 760-764.
    75. Yu, Y.; Zhang, Q.; Liu, B.; Lee, J. Y., Synthesis of Nanocrystals with Variable High-Index Pd Facets through the Controlled Heteroepitaxial Growth of Trisoctahedral Au Templates. Journal of the American Chemical Society 2010, 132 (51), 18258-18265.
    76. Liao, H. G.; Jiang, Y. X.; Zhou, Z. Y.; Chen, S. P.; Sun, S. G., Shape-Controlled Synthesis of Gold Nanoparticles in Deep Eutectic Solvents for Studies of Structure-Functionality Relationships in Electrocatalysis. Angew. Chem.-Int. Edit. 2008, 47 (47), 9100-9103.
    77. Komanicky, V.; Iddir, H.; Chang, K.-C.; Menzel, A.; Karapetrov, G.; Hennessy, D.; Zapol, P.; You, H., Shape-Dependent Activity of Platinum Array Catalyst. Journal of the American Chemical Society 2009, 131 (16), 5732-5733.
    78. Tian, Y.; Liu, H.; Zhao, G.; Tatsuma, T., Shape-Controlled Electrodeposition of Gold Nanostructures. The Journal of Physical Chemistry B 2006, 110 (46), 23478-23481.
    79. Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C., The Optical Properties of Metal Nanoparticles:? The Influence of Size, Shape, and Dielectric Environment. The Journal of Physical Chemistry B 2002, 107 (3), 668-677.
    80. Murphy, C. J.; Sau, T. K.; Gole, A. M.; Orendorff, C. J.; Gao, J.; Gou, L.; Hunyadi, S. E.; Li, T., Anisotropic Metal Nanoparticles:? Synthesis, Assembly, and Optical Applications. The Journal of Physical Chemistry B 2005, 109 (29), 13857-13870.
    81. Mulvihill, M. J.; Ling, X. Y.; Henzie, J.; Yang, P., Anisotropic Etching of Silver Nanoparticles for Plasmonic Structures Capable of Single-Particle SERS. Journal of the American Chemical Society 2009, 132 (1), 268-274.
    82. Millstone, J. E.; Hurst, S. J.; Metraux, G. S.; Cutler, J. I.; Mirkin, C. A., Colloidal Gold and Silver Triangular Nanoprisms. Small 2009, 5 (6), 646-664.
    83. Xue, C.; Mirkin, C. A., pH-Switchable Silver Nanoprism Growth Pathways. Angewandte Chemie International Edition 2007, 46 (12), 2036-2038.
    84. Skrabalak, S. E.; Au, L.; Li, X. D.; Xia, Y., Facile synthesis of Ag nanocubes and Au nanocages. Nature Protocols 2007, 2 (9), 2182-2190.
    1. Lim, B.; Jiang, M.; Camargo, P. H. C.; Cho, E. C.; Tao, J.; Lu, X.; Zhu, Y.; Xia, Y., Pd-Pt Bimetallic Nanodendrites with High Activity for Oxygen Reduction. Science 2009, 324 (5932), 1302-1305.
    2. Peng, Z.; Yang, H., Synthesis and Oxygen Reduction Electrocatalytic Property of Pt-on-Pd Bimetallic Heteronanostructures. J. Am. Chem. Soc. 2009, 131 (22), 7542-7543.
    3. Peng, Z.; You, H.; Wu, J.; Yang, H., Electrochemical Synthesis and Catalytic Property of Sub-10 nm Platinum Cubic Nanoboxes. Nano Lett. 2010, 10 (4), 1492-1496.
    4. Li, Y.; Cox, J. T.; Zhang, B., Electrochemical Responses and Electrocatalysis at Single Au Nanoparticles. J. Am. Chem. Soc. 2010, 132 (9), 3047-3054.
    5. Zeng, J.; Zhang, Q.; Chen, J.; Xia, Y., A Comparison Study of the Catalytic Properties of Au-Based Nanocages, Nanoboxes, and Nanoparticles. Nano Lett. 2010, 10 (1), 30-35.
    6. Subhramannia, M.; Pillai, V. K., Shape-dependent electrocatalytic activity of platinum nanostructures. J. Mater. Chem. 2008, 18 (48), 5858-5870.
    7. Komanicky, V.; Iddir, H.; Chang, K. C.; Menzel, A.; Karapetrov, G.; Hennessy, D.; Zapol, P.; You, H., Shape-Dependent Activity of Platinum Array Catalyst. J. Am. Chem. Soc. 2009, 131 (16), 5732-5733.
    8. Narayanan, R.; El Sayed, M. A., Changing Catalytic Activity during Colloidal Platinum Nanocatalysis Due to Shape Changes:? Electron-Transfer Reaction. J. Am. Chem. Soc. 2004, 126 (23), 7194-7195.
    9. Wang, C.; Daimon, H.; Lee, Y.; Kim, J.; Sun, S., Synthesis of Monodisperse Pt Nanocubes and Their Enhanced Catalysis for Oxygen Reduction. J. Am. Chem. Soc. 2007, 129 (22), 6974-6975.
    10. Ye, H.; Crooks, R. M., Effect of Elemental Composition of PtPd Bimetallic Nanoparticles Containing an Average of 180 Atoms on the Kinetics of the Electrochemical Oxygen Reduction Reaction. J. Am. Chem. Soc. 2007, 129 (12), 3627-3633.
    11. Yamamoto, K.; Imaoka, T.; Chun, W. J.; Enoki, O.; Katoh, H.; Takenaga, M.; Sonoi, A., Size-specific catalytic activity of platinum clusters enhances oxygen reduction reactions. Nat.Chem. 2009, 1 (5), 397-402.
    12. Mazumder, V.; Lee, Y.; Sun, S., Recent Development of Active Nanoparticle Catalysts for Fuel Cell Reactions. Adv. Funct. Mater. 2010, 20 (8), 1224-1231.
    13. Zhang, J.; Yang, H.; Fang, J.; Zou, S., Synthesis and Oxygen Reduction Activity of Shape-Controlled Pt3Ni Nanopolyhedra. Nano Lett. 2010, 10 (2), 638-644.
    14. Ji, X. L.; Lee, K. T.; Holden, R.; Zhang, L.; Zhang, J. J.; Botton, G. A.; Couillard, M.; Nazar, L. F., Nanocrystalline intermetallics on mesoporous carbon for direct formic acid fuel cell anodes. Nat. Chem. 2010, 2 (4), 286-293.
    15. Tian, N.; Zhou, Z. Y.; Sun, S. G.; Ding, Y.; Wang, Z. L., Synthesis of Tetrahexahedral Platinum Nanocrystals with High-Index Facets and High Electro-Oxidation Activity. Science 2007,
    316 (5825), 732-735.
    16. Tian, N.; Zhou, Z. Y.; Sun, S. G., Platinum Metal Catalysts of High-Index Surfaces: From Single-Crystal Planes to Electrochemically Shape-Controlled Nanoparticles. J. Phys. Chem. C 2008, 112 (50), 19801-19817.
    17. Tian, N.; Zhou, Z. Y.; Yu, N. F.; Wang, L. Y.; Sun, S. G., Direct Electrodeposition of Tetrahexahedral Pd Nanocrystals with High-Index Facets and High Catalytic Activity for Ethanol Electrooxidation. J. Am. Chem. Soc. 2010, 132 (22), 7580-7581.
    18. Lu, C.-L.; Prasad, K. S.; Wu, H.-L.; Ho, J.-a. A.; Huang, M. H., Au Nanocube-Directed Fabrication of Au?Pd Core?Shell Nanocrystals with Tetrahexahedral, Concave Octahedral, and Octahedral Structures and Their Electrocatalytic Activity. J. Am. Chem. Soc. 2010, 132 (41), 14546-14553.
    19. Tao, A. R.; Habas, S.; Yang, P., Shape Control of Colloidal Metal Nanocrystals. Small 2008, 4 (3), 310-325.
    20. Sa?nchez-Sa?nchez, C. M.; Solla-Gullo?n , J.; Vidal-Iglesias, F. J.; Aldaz, A.; Montiel, V.; Herrero, E., Imaging Structure Sensitive Catalysis on Different Shape-Controlled Platinum Nanoparticles. J. Am. Chem. Soc. 2010, 132 (16), 5622-5624.
    21. Chen, Y. X.; Chen, S. P.; Zhou, Z. Y.; Tian, N.; Jiang, Y. X.; Sun, S. G.; Ding, Y.; Wang, Z. L., Tuning the Shape and Catalytic Activity of Fe Nanocrystals from Rhombic Dodecahedra and Tetragonal Bipyramids to Cubes by Electrochemistry. J. Am. Chem. Soc. 2009, 131 (31), 10860-10862.
    22. Tian, Y.; Liu, H. Q.; Zhao, G. H.; Tatsuma, T., Shape-controlled electrodeposition ofgold nanostructures. J. Phys. Chem. B 2006, 110 (46), 23478-23481.
    23. Xiao, L.; Zhuang, L.; Liu, Y.; Lu, J. T.; Abruna, H. D., Activating Pd by Morphology Tailoring for Oxygen Reduction. J. Am. Chem. Soc. 2009, 131 (2), 602-608.
    24. Huang, X. Q.; Tang, S. H.; Zhang, H. H.; Zhou, Z. Y.; Zheng, N. F., Controlled Formation of Concave Tetrahedral/Trigonal Bipyramidal Palladium Nanocrystals. J. Am. Chem. Soc. 2009, 131 (39), 13916-13917.
    25. Niu, W. X.; Zheng, S. L.; Wang, D. W.; Liu, X. Q.; Li, H. J.; Han, S. A.; Chen, J.; Tang, Z. Y.; Xu, G. B., Selective Synthesis of Single-Crystalline Rhombic Dodecahedral, Octahedral, and Cubic Gold Nanocrystals. J. Am. Chem. Soc. 2009, 131 (2), 697-703.
    26. Habas, S. E.; Lee, H.; Radmilovic, V.; Somorjai, G. A.; Yang, P., Shaping binary metal nanocrystals through epitaxial seeded growth. Nat. Mater. 2007, 6 (9), 692-697.
    27. Hamelin, A., Cyclic voltammetry at gold single-crystal surfaces .1. Behaviour at low-index faces. J. Electroanal. Chem. 1996, 407 (1-2), 1-11.
    28. Trasatti, S.; Petrii, O. A., REAL SURFACE-AREA MEASUREMENTS IN ELECTROCHEMISTRY. Pure Appl. Chem. 1991, 63 (5), 711-734.
    29. Angersteinkozlowska, H.; Conway, B. E.; Hamelin, A.; Stoicoviciu, L., ELEMENTARY STEPS OF ELECTROCHEMICAL OXIDATION OF SINGLE-CRYSTAL PLANES OF AU .1. CHEMICAL BASIS OF PROCESSES INVOLVING GEOMETRY OF ANIONS AND THE ELECTRODE SURFACES. Electrochim. Acta 1986, 31 (8), 1051-1061.
    30. Tominaga, M.; Shimazoe, T.; Nagashima, M.; Kusuda, H.; Kubo, A.; Kuwahara, Y.; Taniguchi, I., Electrocatalytic oxidation of glucose at gold–silver alloy, silver and gold nanoparticles in an alkaline solution. J. Electroanal. Chem. 2006, 590 (1), 37-46.
    31. Bai, Y.; Yang, W.; Sun, Y.; Sun, C., Enzyme-free glucose sensor based on a three-dimensional gold film electrode. Sensors and Actuators B: Chemical 2008, 134 (2), 471-476.
    32. Tominaga, M.; Shimazoe, T.; Nagashima, M.; Taniguchi, I., Electrocatalytic oxidation of glucose at gold nanoparticle-modified carbon electrodes in alkaline and neutral solutions. Electrochem. Commun. 2005, 7 (2), 189-193.
    33. Aoun, S. B.; Dursun, Z.; Koga, T.; Bang, G. S.; Sotomura, T.; Taniguchi, I., Effect of metal ad-layers on Au(111) electrodes on electrocatalytic oxidation of glucose in an alkaline solution. J. Electroanal. Chem. 2004, 567 (2), 175-183.
    34. Larew, L. A.; Johnson, D. C., Concentration-dependence of the mechanise of glucose-oxidation at gold electrode in alkaline media. J. Electroanal. Chem. 1989, 262 (1-2), 167-182.
    35. Yi, Q.; Yu, W.; Niu, F., Novel Nanoporous Binary Au? Ru Electrocatalysts for Glucose Oxidation. Electroanalysis 2010, 22 (5), 556-563.
    36. Hsiao, M. W.; Adzic, R. R.; Yeager, E. B., Electrochemical oxidation of glucose on single crystal and polycrystalline gold surfaces in phosphate buffer. J. Electrochem. Soc. 1996, 143 (3), 759-767.
    1. Zeng, J.; Zhang, Q.; Chen, J.; Xia, Y., A Comparison Study of the Catalytic Properties of Au-Based Nanocages, Nanoboxes, and Nanoparticles. Nano Lett. 2010, 10 (1), 30-35.
    2. Subhramannia, M.; Pillai, V. K., Shape-dependent electrocatalytic activity of platinum nanostructures. J. Mater. Chem. 2008, 18 (48), 5858-5870.
    3. Ye, H.; Crooks, R. M., Effect of Elemental Composition of PtPd Bimetallic Nanoparticles Containing an Average of 180 Atoms on the Kinetics of the Electrochemical Oxygen Reduction Reaction. J. Am. Chem. Soc. 2007, 129 (12), 3627-3633.
    4. Yamamoto, K.; Imaoka, T.; Chun, W. J.; Enoki, O.; Katoh, H.; Takenaga, M.; Sonoi, A., Size-specific catalytic activity of platinum clusters enhances oxygen reduction reactions. Nat. Chem. 2009, 1 (5), 397-402.
    5. Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C., The Optical Properties of Metal Nanoparticles:? The Influence of Size, Shape, and Dielectric Environment. The Journal of Physical Chemistry B 2002, 107 (3), 668-677.
    6. Vossmeyer, T.; Katsikas, L.; Giersig, M.; Popovic, I. G.; Diesner, K.; Chemseddine, A.; Eychmueller, A.; Weller, H., CdS Nanoclusters: Synthesis, Characterization, Size Dependent Oscillator Strength, Temperature Shift of the Excitonic Transition Energy, and Reversible Absorbance Shift. The Journal of Physical Chemistry 1994, 98 (31), 7665-7673.
    7. Tian, N.; Zhou, Z. Y.; Sun, S. G., Platinum Metal Catalysts of High-Index Surfaces: From Single-Crystal Planes to Electrochemically Shape-Controlled Nanoparticles. J. Phys. Chem. C 2008, 112 (50), 19801-19817.
    8. Komanicky, V.; Iddir, H.; Chang, K. C.; Menzel, A.; Karapetrov, G.; Hennessy, D.; Zapol, P.; You, H., Shape-Dependent Activity of Platinum Array Catalyst. J. Am. Chem. Soc. 2009, 131 (16), 5732-5733.
    9. Chen, Y. X.; Chen, S. P.; Zhou, Z. Y.; Tian, N.; Jiang, Y. X.; Sun, S. G.; Ding, Y.; Wang, Z. L., Tuning the Shape and Catalytic Activity of Fe Nanocrystals from Rhombic Dodecahedra and Tetragonal Bipyramids to Cubes by Electrochemistry. J. Am. Chem. Soc. 2009, 131 (31), 10860-10862.
    10. Cho, E. C.; Au, L.; Zhang, Q.; Xia, Y., The Effects of Size, Shape, and Surface FunctionalGroup of Gold Nanostructures on Their Adsorption and Internalization by Cells. Small 2010, 6 (4), 517-522.
    11. Gao, L.; Fan, L.; Zhang, J., Selective Growth of Ag Nanodewdrops on Au Nanostructures: A New type of Bimetallic Heterostructure. Langmuir 2009, 25 (19), 11844-11848.
    12. Choi, S.-H.; Kim, E.-G.; Hyeon, T., One-Pot Synthesis of Copper?Indium Sulfide Nanocrystal Heterostructures with Acorn, Bottle, and Larva Shapes. J. Am. Chem. Soc. 2006, 128 (8), 2520-2521.
    13. Zhou, S.; McIlwrath, K.; Jackson, G.; Eichhorn, B., Enhanced CO Tolerance for Hydrogen Activation in Au?Pt Dendritic Heteroaggregate Nanostructures. J. Am. Chem. Soc. 2006, 128 (6), 1780-1781.
    14. Seo, D.; Yoo, C. I.; Jung, J.; Song, H., Ag?Au?Ag Heterometallic Nanorods Formed through Directed Anisotropic Growth. J. Am. Chem. Soc. 2008, 130 (10), 2940-2941.
    15. Guo, S.; Dong, S.; Wang, E., Three-Dimensional Pt-on-Pd Bimetallic Nanodendrites Supported on Graphene Nanosheet: Facile Synthesis and Used as an Advanced Nanoelectrocatalyst for Methanol Oxidation. ACS Nano 2009, 4 (1), 547-555.
    16. Carbone, L.; Cozzoli, P. D., Colloidal heterostructured nanocrystals: Synthesis and growth mechanisms. Nano Today 2010, 5 (5), 449-493.
    17. Alayoglu, S.; Eichhorn, B., Rh?Pt Bimetallic Catalysts: Synthesis, Characterization, and Catalysis of Core?Shell, Alloy, and Monometallic Nanoparticles. J. Am. Chem. Soc. 2008, 130 (51), 17479-17486.
    18. Zhang, J.; Tang, Y.; Lee, K.; Ouyang, M., Nonepitaxial Growth of Hybrid Core -Shell Nanostructures with Large Lattice Mismatches. Science 2010, 327 (5973), 1634-1638.
    19. Li, L.; Pandey, A.; Werder, D. J.; Khanal, B. P.; Pietryga, J. M.; Klimov, V. I., Efficient Synthesis of Highly Luminescent Copper Indium Sulfide-Based Core/Shell Nanocrystals with Surprisingly Long-Lived Emission. J. Am. Chem. Soc. 2011, 133 (5), 1176-1179.
    20. Peng, X.; Schlamp, M. C.; Kadavanich, A. V.; Alivisatos, A. P., Epitaxial Growth of Highly Luminescent CdSe/CdS Core/Shell Nanocrystals with Photostability and Electronic Accessibility. J. Am. Chem. Soc. 1997, 119 (30), 7019-7029.
    21. Xiang, Y.; Wu, X.; Liu, D.; Jiang, X.; Chu, W.; Li, Z.; Ma, Y.; Zhou, W.; Xie, S., Formation of Rectangularly Shaped Pd/Au Bimetallic Nanorods:? Evidence for Competing Growth of the Pd Shell between the {110} and {100} Side Facets of Au Nanorods. Nano Lett. 2006, 6 (10), 2290-2294.
    22. Fan, F.-R.; Liu, D.-Y.; Wu, Y.-F.; Duan, S.; Xie, Z.-X.; Jiang, Z.-Y.; Tian, Z.-Q., Epitaxial Growth of Heterogeneous Metal Nanocrystals: From Gold Nano-octahedra to Palladium and Silver Nanocubes. J. Am. Chem. Soc. 2008, 130 (22), 6949-6951.
    23. Xue, C.; Millstone, J. E.; Li, S.; Mirkin, C. A., Plasmon-Driven Synthesis of Triangular Core–Shell Nanoprisms from Gold Seeds. Angewandte Chemie International Edition 2007, 46 (44), 8436-8439.
    24. Habas, S. E.; Lee, H.; Radmilovic, V.; Somorjai, G. A.; Yang, P., Shaping binary metal nanocrystals through epitaxial seeded growth. Nat. Mater. 2007, 6 (9), 692-697.
    25. Lim, B.; Wang, J.; Camargo, P. H. C.; Jiang, M.; Kim, M. J.; Xia, Y., Facile Synthesis of Bimetallic Nanoplates Consisting of Pd Cores and Pt Shells through Seeded Epitaxial Growth. Nano Lett. 2008, 8 (8), 2535-2540.
    26. Yu, Y.; Zhang, Q.; Liu, B.; Lee, J. Y., Synthesis of Nanocrystals with Variable High-Index Pd Facets through the Controlled Heteroepitaxial Growth of Trisoctahedral Au Templates. J. Am. Chem. Soc. 2010, 132 (51), 18258-18265.
    27. Wang, F.; Sun, L.-D.; Feng, W.; Chen, H.; Yeung, M. H.; Wang, J.; Yan, C.-H., Heteroepitaxial Growth of Core-Shell and Core-Multishell Nanocrystals Composed of Palladium and Gold. Small 2010, 6 (22), 2566-2575.
    28. Lim, B.; Kobayashi, H.; Yu, T.; Wang, J.; Kim, M. J.; Li, Z.-Y.; Rycenga, M.; Xia, Y., Synthesis of Pd?Au Bimetallic Nanocrystals via Controlled Overgrowth. J. Am. Chem. Soc. 2010, 132 (8), 2506-2507.
    29. Wang, F.; Li, C.; Sun, L.-D.; Wu, H.; Ming, T.; Wang, J.; Yu, J. C.; Yan, C.-H., Heteroepitaxial Growth of High-Index-Faceted Palladium Nanoshells and Their Catalytic Performance. J. Am. Chem. Soc. 2010, null-null.
    30. Lu, C.-L.; Prasad, K. S.; Wu, H.-L.; Ho, J.-a. A.; Huang, M. H., Au Nanocube-Directed Fabrication of Au?Pd Core?Shell Nanocrystals with Tetrahexahedral, Concave Octahedral, and Octahedral Structures and Their Electrocatalytic Activity. J. Am. Chem. Soc. 2010, 132 (41), 14546-14553.
    31. Jana, D.; Dandapat, A.; De, G., Au@Pd Core?Shell Nanoparticle Incorporated Alumina Sols and Coatings: Transformation of Au@Pd to Au?Pd Alloy Nanoparticles. The Journal of Physical Chemistry C 2009, 113 (21), 9101-9107.
    32. Cui, L.; Wang, A.; Wu, D.-Y.; Ren, B.; Tian, Z.-Q., Shaping and Shelling Pt and PdNanoparticles for Ultraviolet Laser Excited Surface-Enhanced Raman Scattering. The Journal of Physical Chemistry C 2008, 112 (45), 17618-17624.
    33. Xu, C. W.; Wang, H.; Shen, P. K.; Jiang, S. P., Highly Ordered Pd Nanowire Arrays as Effective Electrocatalysts for Ethanol Oxidation in Direct Alcohol Fuel Cells. Adv. Mater. 2007, 19 (23), 4256-4259.
    34. Tian, N.; Zhou, Z.-Y.; Yu, N.-F.; Wang, L.-Y.; Sun, S.-G., Direct Electrodeposition of Tetrahexahedral Pd Nanocrystals with High-Index Facets and High Catalytic Activity for Ethanol Electrooxidation. J. Am. Chem. Soc. 2010, 132 (22), 7580-7581.
    1. Ma, Y. Y.; Li, W. Y.; Cho, E. C.; Li, Z. Y.; Yu, T. K.; Zeng, J.; Xie, Z. X.; Xia, Y. N., Au@Ag Core-Shell Nanocubes with Finely Tuned and Well-Controlled Sizes, Shell Thicknesses, and Optical Properties. ACS Nano 2010, 4 (11), 6725-6734.
    2. Lu, C. L.; Prasad, K. S.; Wu, H. L.; Ho, J. A. A.; Huang, M. H., Au Nanocube-Directed Fabrication of Au-Pd Core-Shell Nanocrystals with Tetrahexahedral, Concave Octahedral, and Octahedral Structures and Their Electrocatalytic Activity. Journal of the American Chemical Society 2010, 132 (41), 14546-14553.
    3. Habas, S. E.; Lee, H.; Radmilovic, V.; Somorjai, G. A.; Yang, P., Shaping binary metal nanocrystals through epitaxial seeded growth. Nature Materials 2007, 6 (9), 692-697.
    4. Lim, B.; Wang, J.; Camargo, P. H. C.; Jiang, M.; Kim, M. J.; Xia, Y., Facile Synthesis of Bimetallic Nanoplates Consisting of Pd Cores and Pt Shells through Seeded Epitaxial Growth. Nano Letters 2008, 8 (8), 2535-2540.
    5. Lim, B.; Kobayashi, H.; Yu, T.; Wang, J. G.; Kim, M. J.; Li, Z. Y.; Rycenga, M.; Xia, Y., Synthesis of Pd-Au Bimetallic Nanocrystals via Controlled Overgrowth. Journal of the American Chemical Society 2010, 132 (8), 2506-2507.
    6. Lim, B.; Wang, J. G.; Camargo, P. H. C.; Jiang, M. J.; Kim, M. J.; Xia, Y. N., Facile synthesis of bimetallic nanoplates consisting of Pd cores and Pt shells through seeded epitaxial growth. Nano Letters 2008, 8 (8), 2535-2540.
    7. Wang, F.; Sun, L.-D.; Feng, W.; Chen, H.; Yeung, M. H.; Wang, J.; Yan, C.-H., Heteroepitaxial Growth of Core-Shell and Core-Multishell Nanocrystals Composed of Palladium and Gold. Small 2010,
    6 (22), 2566-2575.
    8. Wang, F.; Li, C.; Sun, L.-D.; Wu, H.; Ming, T.; Wang, J.; Yu, J. C.; Yan, C.-H., Heteroepitaxial Growth of High-Index-Faceted Palladium Nanoshells and Their Catalytic Performance. Journal of the American Chemical Society 2010, 1106-1111.
    9. Cho, E. C.; Camargo, P. H. C.; Xia, Y. N., Synthesis and Characterization of Noble-Metal Nanostructures Containing Gold Nanorods in the Center. Advanced Materials 2010, 22 (6), 744-748.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700