用户名: 密码: 验证码:
重要违禁兽药红霉素和氯丙嗪的分子印迹聚合物的制备、表征及在食品安全检测中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
如何开发高效的前处理的材料和方法,提高样品前处理水平,已经成为目前食品分析化学的研究热点之一,由于分子印迹聚合物具有功能预定性、选择特异性、适用范围广等特点,基于分子印迹聚合物(Molecularly imprinted polymers, MIPs)的分子印迹固相萃取技术(Molecularly imprinted solid phase extraction, MISPE)已经成为食品安全检测技术发展的新趋势。
     本论文针对肉用家畜和水产品中应用广泛且危害严重的红霉素和氯丙嗪兽药制备了特异的分子印迹聚合物,对制备的聚合物的结合机理和识别特性进行了深入分析,并最终制备了这两类兽药的分子印迹固相萃取小柱,应用于实际样品中红霉素和氯丙嗪的残留分析。研究获得的主要结果如下:
     本课题采用本体聚合的分子印迹方法从制备的6组红霉素分子印迹聚合物中选取一组特异性较强的聚合物用于后续研究。该组合模板红霉素和单体MAA(methacrylic acid)的比例为(1:2),交联剂为EGDMA(ethylene glycol dimethacrylate),采用甲醇/乙腈(2:3, v/v)作为致孔剂,热聚合温度为60℃。利用扫描电镜观察、孔径分析、热重分析、紫外光谱和红外光谱分析等方法对聚合物的物理特征进行了评价。同时通过对聚合物吸附能力的热力学和动力学特性以及高效液相色谱分析,对聚合物与红霉素之间可能的印迹机理和识别能力进行了研究,证明了制备的聚合物对模板的吸附能力主要来自于低亲和力和高亲和力两类结合位点,并计算出两个结合位点的最大结合量分别为12.30 mg g-1和72.09 mg g-1。
     课题以分子印迹聚合物为固相萃取的填料,制备了红霉素分子印迹固相萃取小柱并对小柱的萃取条件进行了优化。当红霉素分子印迹聚合物固相萃取条件采用的上样缓冲液为40%甲醇,淋洗液为2.5 mL 80%甲醇,洗脱液为3mL的甲醇/PBS (0.5 M) (80:20, v/v)时,固相萃取柱对红霉素的回收率超过80%,非印迹聚合物固相萃取小柱的回收率则小于30%。采用优化后的固相萃取的方法,研究了聚合物的选择性,结果显示红霉素分子印迹聚合物对大环内酯类药物具有一定的交叉反应性。说明在印迹反应过程中模板的立体构型对特异性识别的建立起主要作用。试验中将制备的红霉素分子印迹固相萃取小柱用于猪肉样品中红霉素残留的前处理,结果显示经过MIPs净化的样品,基质对检测的干扰大大降低,同时极大提高了检测器的灵敏度。在选用的三个加标浓度下,红霉素的回收率都大于79%。采用红霉素分子印迹固相萃取小柱从水中富集红霉素的实验,同时证明制备的聚合物在自来水中可以高效的富集红霉素。
     另外,我们制备了氯丙嗪的MIPs,摸索了不同的合成方法和不同组成成分对产物的选择能力的影响。结果证明,通过本体法制备的聚合物,当使用MAA做为单体,模板单体的比例为1:4,选用TRIM (Trimethylolpropane trimethacrylate)作为交联剂时,得到的聚合物的选择性最高。试验通过色谱分析试验、红外光谱试验等研究了氯丙嗪与功能单体之间的自组装过程。选择性分析和容量分析的结果表明制备的氯丙嗪分子印迹聚合物相对于非印迹聚合物具有明显的选择性和吸附容量。当使用水溶液作为溶剂时,氯丙嗪分子印迹聚合物的最大特异吸附容量为10mg mL-1。使用氯丙嗪分子印迹聚合物固相萃取柱对猪尿样品中该药残留的富集和净化相对于商业化的C18小柱的效果更明显。
The development of new methods and new materials to enhance the effect of sample preparation has become the hotspot of food safety analysis.
     For its outstanding advantages, such as predetermined recognition ability, relative ease and low cost of preparation, and potential application to a wide range of target molecules, molecularly imprinted solid phase extraction based on molecularly imprinted polymers has attracted much attention.
     In this thesis, the principle, methodology, history and application of molecularly imprinted technology were thoroughly reviewed. The development and application of molecularly imprinted technology in food safety were also comprehensively introduced. Basis on this, the molecularly imprinted polymers of erythromycin and chlorpromazine were prepared by non-covalent methods. Then, the recognition characteristics and binding mechanism of these polymers were discussed and the applications of polymers as solid phase extraction sorbents for erythromycin and chlorpromazine pre-treatment were finally investigated. The main results of these studies are as follows:
     Six of erythromycin (ERY) imprinted polymers and non-imprinted polymers were prepared by bulk polymerization. Base on binding analysis, the MIP11 with better binding property were selected for subsequent research. The optimized system was with 1:2 ratio of template to MAA, EGDMA as the cross-linker and mixture of methanol/ acetonitrile (2:3, v/v) as the porogen. Furthermore, the physical profile of MIP11 was characterized by SEM, BET analysis, TGA, UV-vis and FT-IR spectroscopy analysis. The imprinted mechanism and recognition ability of the polymer were studied by adsorption experiments and chromatographic methods. The equilibrium binding experiments showed that the binding sites of MIPs were heterogeneous with two binding sites. For high affinity binding sites, Bmax1=12.30 mg g-1, for low affinity binding sites, Bmax2=72.09 mg g-1.
     In this study, the performance of the MIP11 as solid-phase extraction (SPE) sorbents was evaluated. After optimization, the recoveries of ERY by molecularly imprinted solid phase extraction (MISPE) could come to 80%, when using 40% methanol as loading buffer, 80% methanol as washing solvent and 80% methanol in PBS as the elute buffer to disturb the interaction between MISPE column and ERY. As control, the recoveries of non-imprinted solid phase extraction (NISPE) were less than 30%. Selectivity analysis showed that MIP11 could recognize ERY with moderate cross-reactivity for other macrolides. And molecular size and shape had served as the main factors for the specific affinity of the synthesized MIP11. When the MISPE column was used to extract ERY from pig muscle, the matrices influence towards the analysis was obviously reduced and the sensitivity of HPLC-UV was highly enhanced. At 3 spiked levels, all the recoveries of ERY were more than 79%. The performance of MISPE toward the spiked tap water further showed the high pre-concentration capability of the ERY imprinted polymers.
     In this study, the chlorpromazine molecularly imprinted polymers were also prepared, and the synthetic method and system composition toward the selective capability of the synthesized polymers were investigated firstly. The result showed that the polymer prepared by bulk polymerization had the highest selectivity when using MAA as the monomer, TRIM as the cross-linker, and with 1:4 ratio of template to momomer. By HPLC, FT-IR, BET and SEM analysis, the self-assemble process between chlorpromazine and functional monomer was studied. Adsorption selectivity and capability analysis indicated the MIP with relative high specificity. The maximum specific adsorption capability of MIP was 10mg mL-1. When using MIP as MISPE sorbents, the cartridge showed better concentration and purification effect than commercial C18 column.
引文
[1]钟耀广,食品安全学,北京化学工业出版社(2005).
    [2]吴永宁,现代食品安全科学,北京化学工业出版社(2003).
    [3]孟凡乔,食品安全性,北京中国农业大学出版社(2004).
    [4]钱建亚,熊强,食品安全概论, (2006).
    [5]胡艳云,食品中有害残留检测的前处理技术与色谱分析技术研究,博士毕业论文,中国科学技术大学, (2006).
    [6] J.B. Kim, S. Terabe, On-line sample preconcentration techniques in micellar electrokinetic chromatography, J Pharm Biomed Anal 30 (2003) 1625-1643.
    [7]姜忠义,吴洪,分子印迹技术, (2003).
    [8] L. Pauling, A theory of the structure and process of formation of antibodies, Journal of the American Chemical Society 62 (1940) 2643-2657.
    [9] F.H. Dickey, Specific adsorption, Journal of Physical Chemistry 59 (1955) 695-707.
    [10] G. Vlatakis, L.I. Andersson, R. Muller, K. Mosbach, Drug assay using antibody mimics made by molecular imprinting, Nature 361 (1993) 645-647.
    [11] C. Alexander, H.S. Andersson, L.I. Andersson, R.J. Ansell, N. Kirsch, I.A. Nicholls, J. O'Mahony, M.J. Whitcombe, Molecular imprinting science and technology: a survey of the literature for the years up to and including 2003, J Mol Recognit 19 (2006) 106-180.
    [12] K. Haupt, Imprinted polymers-tailor-made mimics of antibodies and receptors, Chem Commun (Camb) (2003) 171-178.
    [13] B. Sellergren, L.I. Andersson, Application of imprinted synthetic polymers in binding assay development, Methods 22 (2000) 92-106.
    [14] K. Haupt, K. Mosbach, Plastic antibodies: developments and applications, Trends Biotechnol 16 (1998) 468-475.
    [15] R.J. Ansell, O. Ramstrom, K. Mosbach, Towards artificial antibodies prepared by molecular imprinting, Clin Chem 42 (1996) 1506-1512.
    [16] A.G. Mayes, K. Mosbach, Molecularly imprinted polymers: Useful materials for analytical chemistry?, Trends Anal Chem 16 (1997) 321-332.
    [17] N.M. Maier, W. Lindner, Chiral recognition applications of molecularly imprinted polymers: a critical review, Anal Bioanal Chem DOI 10.1007/s00216-007-1427-4 (2007).
    [18] V. Pichon, Selective sample treatment using molecularly imprinted polymers, J Chromatogr A 1152 (2007) 41-53.
    [19] J.O. Mahonya, K. Nolana, M.R. Smytha, B. Mizaikoffb, Molecularly imprinted polymers-potential and challenges in analytical chemistry, Analytica Chimica Acta 534 (2005) 31-39.
    [20] C. He, Y. Long, J. Pan, K. Li, F. Liu, Application of molecularly imprinted polymers to solid-phase extraction of analytes from real samples, J Biochem Biophys Methods 70 (2007) 133-150.
    [21] G. Wulff, Enzyme-like Catalysis by Molecularly Imprinted Polymers, CHEMICAL REVIEWS 102 (2002) 1-27.
    [22] V.B. Kandimalla, H. Ju, Molecular imprinting: a dynamic technique for diverse applications in analytical chemistry, Anal Bioanal Chem 380 (2004) 587-605.
    [23] B. Sellergren, C.J. Allender, Molecularly imprinted polymers: A bridge to advanced drug deliveryB, Advanced Drug Delivery Reviews 57 (2005) 1733-1741.
    [24]刘有芹,徐莉,颜芸,徐悦华,分子印迹聚合物传感器的研究与发展,分析测试学报26 (2007) 450-454.
    [25] R.I. Stefan, R. Girmai Bokretsion, J.F. Van Staden, H.Y. Aboul-Enein, Determination of L- and D-enantiomers of carnitine using amperometric biosensors, Analytical Letters 36 (2003) 1091-1102.
    [26] E. Mallat, D. Barcelo, C. Barzen, G. Gauglitz, R. Abuknesha, Immunosensors for pesticide determination in natural waters, TrAC - Trends in Analytical Chemistry 20 (2001) 124-132.
    [27] Z. Dai, F. Yan, J. Chen, H. Ju, Reagentless Amperometric Immunosensors Based on Direct Electrochemistry of Horseradish Peroxidase for Determination of Carcinoma Antigen-125, Analytical Chemistry 75 (2003) 5429-5434.
    [28] W. Schuhmann, Amperometric enzyme biosensors based on optimised electron-transfer pathways and non-manual immobilisation procedures, Reviews in Molecular Biotechnology 82 (2002) 425-441.
    [29] E. Katz, I. Willner, Probing biomolecular interactions at conductive and semiconductive surfaces by impedance spectroscopy: Routes to impedimetric immunosensors, DNA-sensors, and enzyme biosensors, Electroanalysis 15 (2003) 913-947.
    [30] K. Rekha, M.D. Gouda, M.S. Thakur, N.G. Karanth, Ascorbate oxidase based amperometricbiosensor for organophosphorous pesticide monitoring, Biosensors and Bioelectronics 15 (2000) 499-502.
    [31] B. Sellergren, Molecularly imprinted polymers-man-made mimics of antibodies and their applications in analytical chemistry, Elsevier Amsterdam (2001) p.113.
    [32] D. Kriz, O. Ramstro?m, A. Svensson, K. Mosbach, Introducing biomimetic sensors based on molecularly imprinted polymers as recognition elements, Analytical Chemistry 67 (1995) 2142-2144.
    [33] L. Fischer, R. Muller, B. Ekberg, K. Mosbach, Direct enantioseparation ofβ-adrenergic blockers using a chiral stationary phase prepared by molecular imprinting, Journal of the American Chemical Society 113 (1991) 9358-9360.
    [34] A. Mulchandani, I. Kaneva, W. Chen, Biosensor for direct determination of organophosphate nerve agents using recombinant Escherichia coli with surface-expressed organophosphorus hydrolase. 2. Fiber-optic microbial biosensor, Analytical Chemistry 70 (1998) 5042-5046.
    [35] M.I. Page, W.P. Jencks, Entropic contributions to rate accelerations in enzymic and intramolecular reactions and the chelate effect, Proceedings of the National Academy of Sciences of the United States of America 68 (1971) 1678-1683.
    [36] W.P. Jencks, On the attribution and additivity of binding energies, Proceedings of the National Academy of Sciences of the United States of America 78 (1981) 4046-4050.
    [37] D. Williams, J. Coxs, A. Doig, Toward the semiquantitative estimation of binding constants. Guides for peptide-peptide binding in aqueous solution, J Am Chem Soc 113 (1991) 7020-7030.
    [38] I.A. Nicholls, Thermodynamic considerations for the design of and ligand recognition by molecularly imprinted polymers, Chem. Lett. (1995) 1035-1036.
    [39] M.J. Whitcombe, L. Martin, E.N. Vulfson, Predicting the selectivity of imprinted polymers, Chromatographia 47 (1998) 457-464.
    [40] G. Wulff, A. Sarhan, Use of polymers with enzyme-analogous structures for the resolution of racemates, Angew Chem Int Ed Engl 11 (1972) 341-343.
    [41] A. Kugimiya, J. Matsui, H. Abe, Synthesis of castasterone selective polymers prepared by molecular imprinting, Anal Chim Acta 365 (1998) 75-79.
    [42] M. Whitcombe, M. Rodriguez, P. Villar, E. Vulfson, A new method for the introduction of recognition site functionality into polymers prepared by molecular imprinting: synthesis and characterization of polymeric receptors for cholesterol, J Am Chem Soc 117 (1995) 7105-7111.
    [43] L.T. Zhang, K. Ito, V.K. Vasudevan, M. Yamaguchi, Molecularly imprinted polymers: New tailor-made materials for selective solid-phase extraction, TrAC - Trends in Analytical Chemistry 20 (2001) 477-486.
    [44] J. Matsui, M. Okada, M. Tsuruoka, T. Takeuchi, Solid-phase Extraction of a Triazine Herbicide Using a Molecularly Imprinted Synthetic Receptor, Analytical Communications 34 (1997) 85-87.
    [45] K. Yoshimatsu, K. Reimhult, A. Krozer, K. Mosbach, K. Sode, L. Ye, Uniform molecularly imprinted microspheres and nanoparticles prepared by precipitation polymerization: The control of particle size suitable for different analytical applications, Analytica Chimica Acta 584 (2007) 112-121.
    [46] H. Kempe, M. Kempe, Development and evaluation of spherical molecularly imprinted polymer beads, Analytical Chemistry 78 (2006) 3659-3666.
    [47] A.G. Mayes, K. Mosbach, Molecularly Imprinted Polymer Beads: Suspension Polymerization Using a Liquid Perfluorocarbon as the Dispersing Phase, Analytical Chemistry 68 (1996) 3769-3774.
    [48] H. Kempe, M. Kempe, Novel Method for the Synthesis of Molecularly Imprinted Polymer Bead Libraries, Macromolecular Rapid Communications 25 (2004) 315-320.
    [49] K. Hosoya, K. Yoshizako, Y. Shirasu, K. Kimata, T. Araki, N. Tanaka, J. Haginaka, Molecularly imprinted uniform-size polymer-based stationary phase for high-performance liquid chromatography Structural contribution of cross-linked polymer network on specific molecular recognition, Journal of Chromatography A 728 (1996) 139-147.
    [50] J. Haginaka, H. Sanbe, Uniform-sized molecularly imprinted polymers for 2-arylpropionic acid derivatives selectively modified with hydrophilic external layer and their applications to direct serum injection analysis, Analytical Chemistry 72 (2000) 5206-5210.
    [51] T. De Boer, R. Mol, R.A. De Zeeuw, G.J. De Jong, D.C. Sherrington, P.A. Cormack, K. Ensing, Spherical molecularly imprinted polymer particles: a promising tool for molecular recognition in capillary electrokinetic separations, Electrophoresis 23 (2002) 1296-1300.
    [52] L. Ye, P.A.G. Cormack, K. Mosbach, Molecularly imprinted monodisperse microspheres for competitive radioassay, Analytical Communications 36 (1999) 35-38.
    [53] J. Wang, P.A.G. Cormack, D.C. Sherrington, E. Khoshdel, Monodisperse, Molecularly Imprinted Polymer Microspheres Prepared by Precipitation Polymerization for Affinity SeparationApplications, Angewandte Chemie - International Edition 42 (2003) 5336-5338.
    [54] C. Sulitzky, B. Ruckert, A.J. Hall, F. Lanza, K. Unger, B. Sellergren, Grafting of molecularly imprinted polymer films on silica supports containing surface-bound free radical initiators, Macromolecules 35 (2002) 79-91.
    [55] J. Matsui, T. Kato, T. Takeuchi, M. Suzuki, K. Yokoyama, E. Tamiya, I. Karube, Molecular recognition in continuous polymer rods prepared by a molecular imprinting technique, Analytical Chemistry 65 (1993) 2223-2224.
    [56] B. Sellergren, K.J. Shea, Influence of polymer morphology on the ability of imprinted network polymers to resolve enantiomers, J Chromatogr 635 (1993) 31-49.
    [57] B. Sellergren, Molecular imprinting by noncovalent interactions. Enantioselectivity and binding capacity of polymers prepared under conditions favoring the formation of template complexes, Makromol. Chem. 190 (1989) 2703-2711.
    [58] M. Kempe, K. Mosbach, Binding studies on substrate- and enantio-selective molecularly imprinted polymers, Anal. Lett. 24 (1991) 1137-1145.
    [59] D.J. O'Shannessy, B. Ekberg, K. Mosbach, Molecular imprinting of amino acid derivatives at low temperature (0°C) using photolytic homolysis of azobisnitriles, Analytical Biochemistry 177 (1989) 144-149.
    [60] J. Yin, G. Yang, Y. Chen, Rapid and efficient chiral separation of nateglinide and its L-enantiomer on monolithic molecularly imprinted polymers, J Chromatogr A 1090 (2005) 68-75.
    [61] G. Theodoridis, G. Konsta, C. Bagia, Synthesis and evaluation of molecularly imprinted polymers for enalapril and lisinopril, two synthetic peptide anti-hypertensive drugs, J Chromatogr B Analyt Technol Biomed Life Sci 804 (2004) 43-51.
    [62] M.E. Dia?z-Garcia? , R.B. Lain?o?, Molecular imprinting in sol-gel materials: Recent developments and applications, Microchimica Acta 149 (2005) 19-36.
    [63] C. Liu, C. Lin, An insight into molecularly imprinted polymers for capillary electrochromatography, Electroanalysis 25 (2004) 3997-4007.
    [64] A.A. O?zcan, R. Say, A. Denizli, A. Erso?z, L-histidine imprinted synthetic receptor for biochromatography applications, Analytical Chemistry 78 (2006) 7253-7258.
    [65] M. Kempe, K. Mosbach, Direct resolution of naproxen on a non-covalently molecularly imprinted chiral stationary phase, Journal of Chromatography A 664 (1994) 276-279.
    [66] M. Kempe, K. Mosbach, Separation of amino acids, peptides and proteins on molecularlyimprinted stationary phases, Journal of Chromatography A 691 (1995) 317-323.
    [67] M.A. Khasawneh, P.T. Vallano, V.T. Remcho, Affinity screening by packed capillary high performance liquid chromatography using molecular imprinted sorbents: II. Covalent imprinted polymers, Journal of Chromatography A 922 (2001) 87-97.
    [68] K. Haupt, K. Mosbach, Molecularly imprinted polymers and their use in biomimetic sensors, Chemical Reviews 100 (2000) 2495-2504.
    [69] G. D'Agostino, G. Alberti, R. Biesuz, M. Pesavento, Potentiometric sensor for atrazine based on a molecular imprinted membrane, Biosensors and Bioelectronics 22 (2006) 145-152.
    [70] M. Kikuchi, N. Tsuru, S. Shiratori, Recognition of terpenes using molecular imprinted polymer coated quartz crystal microbalance in air phase, Science and Technology of Advanced Materials 7 (2006) 156-161.
    [71] M. Liu, J. Lu, Y. He, J. Du, Molecular imprinting-chemiluminescence sensor for the determination of brucine, Analytica Chimica Acta 541 (2005) 99-104.
    [72] A. Ers?z, A. Denizli, A. Ozcan, R. Say, Molecularly imprinted ligand-exchange recognition assay of glucose by quartz crystal microbalance, Biosens Bioelectron 20 (2005) 2197-2202.
    [73] Y.C. Chen, Z. Wang, M. Yan, S.A. Prahl, Fluorescence anisotropy studies of molecularly imprinted polymers, Luminescence 21 (2006) 7-14.
    [74] B.S. Ebarvia, C.A. Binag, F. Sevilla Iii, Biomimetic piezoelectric quartz sensor for caffeine based on a molecularly imprinted polymer, Analytical and Bioanalytical Chemistry 378 (2004) 1331-1337.
    [75] M.C. Blanco-Lop?ez, M.J. Lobo-Castano?n?, A.J. Miranda-Ordieres, P. Tuno?n?-Blanco, Electrochemical sensors based on molecularly imprinted polymers, TrAC - Trends in Analytical Chemistry 23 (2004) 36-48.
    [76] A.L. Graham, C.A. Carlson, P.L. Edmiston, Development and characterization of molecularly imprinted sol-gel materials for the selective detection of DDT, Analytical Chemistry 74 (2002) 458-467.
    [77] H. Kubo, N. Yoshioka, T. Takeuchi, Fluorescent imprinted polymers prepared with 2-acrylamidoquinoline as a signaling monomer, Organic Letters 7 (2005) 359-362.
    [78] T. Kobayashi, Y. Murawaki, P.S. Reddy, M. Abe, N. Fujii, Molecular imprinting of caffeine and its recognition assay by quartz-crystal microbalance, Analytica Chimica Acta 435 (2001) 141-149.
    [79] J. Hong, P. Anderson, J. Qian, Selectively-permeable ultrathin film composite membranes based on molecularly-imprinted polymers, Chem Mater 10 (1998) 1029-1033.
    [80] T.A. Sergeyeva, H. Matuschewski, S.A. Piletsky, J. Bendig, U. Schedler, M. Ulbricht, Molecularly imprinted polymer membranes for substance-selective solid-phase extraction from water by surface photo-grafting polymerization, Journal of Chromatography A 907 (2001) 89-99.
    [81] M. Yoshikawa, Y. Kondo, Y. Morita, Relationship between enantioselectivity of alternative molecularly imprinted polymeric membranes and species of amino acid residues composing chiral recognition sites, Bioseparation 10 (2001) 323-330.
    [82] M.C. Hennion, Solid-phase extraction: Method development, sorbents, and coupling with liquid chromatography, Journal of Chromatography A 856 (1999) 3-54.
    [83] T.P. Rao, R. Kala, S. Daniel, Metal ion-imprinted polymers-Novel materials for selective recognition of inorganics, Analytica Chimica Acta 578 (2006) 105-116.
    [84] E. Caro, R.M. Marce, F. Borrull, P.A.G. Cormack, D.C. Sherrington, Application of molecularly imprinted polymers to solid-phase extraction of compounds from environmental and biological samples, TrAC - Trends in Analytical Chemistry 25 (2006) 143-154.
    [85] A. Fernández-González, L. Guardia, R. Badía-Laí?o, M.E. Díaz-García, Mimicking molecular receptors for antibiotics - analytical implications, TrAC - Trends in Analytical Chemistry 25 (2006) 949-957.
    [86] C. He, Y. Long, J. Pan, K. Li, F. Liu, Application of molecularly imprinted polymers to solid-phase extraction of analytes from real samples, Journal of Biochemical and Biophysical Methods 70 (2007) 133-150.
    [87] S. Hu, L. Li, X. He, Molecularly imprinted polymers: A new kind of sorbent with high selectivity in solid phase extraction, Progress in Chemistry 17 (2005) 531-543.
    [88] D. Spivak, M.A. Gilmore, K.J. Shea, Evaluation of binding and origins of specificity of 9-ethyladenine imprinted polymers, Journal of the American Chemical Society 119 (1997) 4388-4393.
    [89] R. Carabias-Martin?ez, E. Rodrig?uez-Gonzalo, E. Herrero-Hernan?dez, Determination of triazines and dealkylated and hydroxylated metabolites in river water using a propazine-imprinted polymer, Journal of Chromatography A 1085 (2005) 199-206.
    [90] X. Zhu, J. Yang, Q. Su, J. Cai, Y. Gao, Selective solid-phase extraction using molecularly imprinted polymer for the analysis of polar organophosphorus pesticides in water and soil samples,Journal of Chromatography A 1092 (2005) 161-169.
    [91] A. Guzman?-Vaz?quez De Prada, P. Martin?ez-Ruiz, A.J. Reviejo, J.M. Pingarron?, Solid-phase molecularly imprinted on-line preconcentration and voltammetric determination of sulfamethazine in milk, Analytica Chimica Acta 539 (2005) 125-132.
    [92] A. Ers?z, R. Say, A. Denizli, Ni(II) ion-imprinted solid-phase extraction and preconcentration in aqueous solutions by packed-bed columns, Analytica Chimica Acta 502 (2004) 91-97.
    [93] X. Zhu, Q. Cao, N. Hou, G. Wang, Z. Ding, The preparation and the recognition property of molecularly imprinted polymer of podophyllotoxin, Analytica Chimica Acta 561 (2006) 171-177.
    [94] I. Chianella, S.A. Piletsky, I.E. Tothill, B. Chen, A.P.F. Turner, MIP-based solid phase extraction cartridges combined with MIP-based sensors for the detection of microcystin-LR, Biosensors and Bioelectronics 18 (2002) 119-127.
    [95] B. Bjarnason, On-line solid-phase extraction of triazine herbicides using a molecularly imprinted polymer for selective sample enrichment, Analytical Chemistry 71 (1999) 2152-2156.
    [96] D.M. Han, G.Z. Fang, X.P. Yan, Preparation and evaluation of a molecularly imprinted sol-gel material for on-line solid-phase extraction coupled with high performance liquid chromatography for the determination of trace pentachlorophenol in water samples, Journal of Chromatography A 1100 (2005) 131-136.
    [97] B. Sellergren, Direct drug determination by selective sample enrichment on an imprinted polymer, Analytical Chemistry 66 (1994) 1578-1582.
    [98] M. Jiang, J.H. Zhang, S.R. Mei, Y. Shi, L.J. Zou, Y.X. Zhu, K. Dai, B. Lu, Direct enrichment and high performance liquid chromatography analysis of ultra-trace Bisphenol A in water samples with narrowly dispersible Bisphenol A imprinted polymeric microspheres column, Journal of Chromatography A 1110 (2006) 27-34.
    [99] E. Caro, R.M. Marce, P.A.G. Cormack, D.C. Sherrington, F. Borrull, On-line solid-phase extraction with molecularly imprinted polymers to selectively extract substituted 4-chlorophenols and 4-nitrophenol from water, Journal of Chromatography A 995 (2003) 233-238.
    [100] E. Caro, N. Masque, R.M. Marce, F. Borrull, P.A.G. Cormack, D.C. Sherrington, Non-covalent and semi-covalent molecularly imprinted polymers for selective on-line solid-phase extraction of 4-nitrophenol from water samples, Journal of Chromatography A 963 (2002) 169-178.
    [101] E. Caro, R.M. Marce, P.A. Cormack, D.C. Sherrington, F. Borrull, Selective enrichment ofanti-inflammatory drugs from river water samples by solid-phase extraction with a molecularlyimprinted polymer, J Sep Sci 28 (2005) 2080-2085.
    [102] J.P. Lai, R. Niessner, D. Knopp, Benzo[a]pyrene imprinted polymers: Synthesis,characterization and SPE application in water and coffee samples, Analytica Chimica Acta 522(2004) 137-144.
    [103] Y. Watabe, T. Kondo, M. Morita, N. Tanaka, J. Haginaka, K. Hosoya, Determination ofbisphenol A in environmental water at ultra-low level by high-performance liquid chromatographywith an effective on-line pretreatment device, Journal of Chromatography A 1032 (2004) 45-49.
    [104] B. San Vicente, F. Navarro Villoslada, M.C. Moreno-Bondi, Continuous solid-phaseextraction and preconcentration of bisphenol a in aqueous samples using molecularly imprintedcolumns, Analytical and Bioanalytical Chemistry 380 (2004) 115-122.
    [105] M. Kawaguchi, Y. Hayatsu, H. Nakata, Y. Ishii, R. Ito, K. Saito, H. Nakazawa, Molecularlyimprinted solid phase extraction using stable isotope labeled compounds as template and liquidchromatography-mass spectrometry for trace analysis of bisphenol A in water sample, AnalyticaChimica Acta 539 (2005) 83-89.
    [106] Y. Watabe, K. Hosoya, N. Tanaka, T. Kubo, T. Kondo, M. Morita, Novel surface modifiedmolecularly imprinted polymer focused on the removal of interference in environmental watersamples for chromatographic determination, Journal of Chromatography A 1073 (2005) 363-370.
    [107] Y. Watabe, K. Hosoya, N. Tanaka, T. Kubo, T. Kondo, M. Morita, Novel surface-modifiedmolecularly imprinted polymer focused on the removal of interference in environmental watersamples, Chemistry Letters 33 (2004) 806-807.
    [108] C.R. Teixeira Tarley, L.T. Kubota, Molecularly-imprinted solid phase extraction of catecholfrom aqueous effluents for its selective determination by differential pulse voltammetry, AnalyticaChimica Acta 548 (2005) 11-19.
    [109] C. Baggiani, C. Giovannoli, L. Anfossi, C. Tozzi, Molecularly imprinted solid-phaseextraction sorbent for the clean-up of chlorinated phenoxyacids from aqueous samples, Journal ofChromatography A 938 (2001) 35-44.
    [110] R. Say, E. Birlik, A. Ersoz, F. Yilmaz, T. Gedikbey, A. Denizli, Preconcentration of copperon ion-selective imprinted polymer microbeads, Analytica Chimica Acta 480 (2003) 251-258.
    [111] S. Wang, R. Zhang, Selective solid-phase extraction of trace copper ions in aqueous solutionwith a Cu(II)-imprinted interpenetrating polymer network gel prepared by ionic imprintedpolymer (IIP) technique, Microchimica Acta 154 (2006) 73-80.
    [112] R. Say, A. Ers?z, H. Türk, A. Denizli, Selective separation and preconcentration of cyanide by a column packed with cyanide-imprinted polymeric microbeads, Separation and Purification Technology 40 (2004) 9-14.
    [113] F.G. Tamayo, J.L. Casillas, A. Martin-Esteban, Highly selective fenuron-imprinted polymer with a homogeneous binding site distribution prepared by precipitation polymerisation and its application to the clean-up of fenuron in plant samples, Analytica Chimica Acta 482 (2003) 165-173.
    [114] Y. Liu, X. Chang, D. Yang, Y. Guo, S. Meng, Highly selective determination of inorganic mercury(II) after preconcentration with Hg(II)-imprinted diazoaminobenzene-vinylpyridine copolymers, Analytica Chimica Acta 538 (2005) 85-91.
    [115] R.G. Silva, F. Augusto, Sol-gel molecular imprinted ormosil for solid-phase extraction of methylxanthines, Journal of Chromatography A 1114 (2006) 216-223.
    [116] X. Dong, N. Wang, S. Wang, X. Zhang, Z. Fan, Synthesis and application of molecularly imprinted polymer on selective solid-phase extraction for the determination of monosulfuron residue in soil, Journal of Chromatography A 1057 (2004) 13-19.
    [117] E. Caro, R.M. Marce, P.A.G. Cormack, D.C. Sherrington, F. Borrull, Molecularly imprinted solid-phase extraction of naphthalene sulfonates from water, Journal of Chromatography A 1047 (2004) 175-180.
    [118] A. Martín-Esteban, E. Turiel, D. Stevenson, Effect of template size on the selectivity of molecularly imprinted polymers for phenylurea herbicides, Chromatographia 53 (2001) S434-S437.
    [119] M.L. Mena, P. Mart?n?ez-Ruiz, A.J. Reviejo, J.M. Pingarrón, Molecularly imprinted polymers for on-line preconcentration by solid phase extraction of pirimicarb in water samples, Analytica Chimica Acta 451 (2002) 297-304.
    [120] J. Bastide, J.P. Cambon, F. Breton, S.A. Piletsky, R. Rouillon, The use of molecularly imprinted polymers for extraction of sulfonylurea herbicides, Analytica Chimica Acta 542 (2005) 97-103.
    [121] Q.Z. Zhu, P. Degelmann, R. Niessner, D. Knopp, Selective trace analysis of sulfonylurea herbicides in water and soil samples based on solid-phase extraction using a molecularly imprinted polymer, Environmental Science and Technology 36 (2002) 5411-5420.
    [122] T. Pap, V. Horvat?h, A. Tolokan?, G. Horvai, B. Sellergren, Effect of solvents on the selectivity of terbutylazine imprinted polymer sorbents used in solid-phase extraction, Journal of Chromatography A 973 (2002) 1-12.
    [123] R. Koeber, C. Fleischer, F. Lanza, K.S. Boos, B. Sellergren, D. Barcelo?t, Evaluation of a multidimensional solid-phase extraction platform for highly selective on-line cleanup and high-throughput LC-MS analysis of triazines in river water samples using molecularly imprinted polymers, Analytical Chemistry 73 (2001) 2437-2444.
    [124] F. Chapuis, V. Pichon, F. Lanza, S. Sellergren, M.C. Hennion, Optimization of the class-selective extraction of triazines from aqueous samples using a molecularly imprinted polymer by a comprehensive approach of the retention mechanism, Journal of Chromatography A 999 (2003) 23-33.
    [125] E. Turiel, A. Martín-Esteban, P. Fernández, C. Pérez-Conde, C. Cámara, Molecular recognition in a propazine-imprinted polymer and its application to the determination of of triazines in environmental samples, Analytical Chemistry 73 (2001) 5133-5141.
    [126] F. Breton, P. Euzet, S.A. Piletsky, M.T. Giardi, R. Rouillon, Integration of photosynthetic biosensor with molecularly imprinted polymer-based solid phase extraction cartridge, Analytica Chimica Acta 569 (2006) 50-57.
    [127] C. Cacho, E. Turiel, A. Marti?n-Esteban, D. Ayala, C. Pe?rez-Conde, Semi-covalent imprinted polymer using propazine methacrylate as template molecule for the clean-up of triazines in soil and vegetable samples, Journal of Chromatography A 1114 (2006) 255-262.
    [128] C. Crescenzi, S. Bayoudh, P.A.G. Cormack, T. Klein, K. Ensing, Determination of clenbuterol in bovine liver by combining matrix solid-phase dispersion and molecularly imprinted solid-phase extraction followed by liquid chromatography/electrospray ion trap multiple-stage mass spectrometry, Analytical Chemistry 73 (2001) 2171-2177.
    [129] A. Blomgren, C. Berggren, A. Holmberg, F. Larsson, B. Sellergren, K. Ensing, Extraction of clenbuterol from calf urine using a molecularly imprinted polymer followed by quantitation by high-performance liquid chromatography with UV detection, Journal of Chromatography A 975 (2002) 157-164.
    [130] C. Widstrand, F. Larsson, M. Fiori, C. Civitareale, S. Mirante, G. Brambilla, Evaluation of MISPE for the multi-residue extraction ofβ-agonists from calves urine, Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences 804 (2004)85-91.
    [131] Y. Xia, J.E. McGuffey, S. Bhattacharyya, B. Sellergren, E. Yilmaz, L. Wang, J.T. Bernert,Analysis of the tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3- pyridyl)-1-butanol inurine by extraction on a molecularly imprinted polymer column and liquidchromatography/atmospheric pressure ionization tandem mass spectrometry, Analytical Chemistry77 (2005) 7639-7645.
    [132] J. Yang, Y. Hu, J.B. Cai, X.L. Zhu, Q.D. Su, A new molecularly imprinted polymer forselective extraction of cotinine from urine samples by solid-phase extraction, Analytical andBioanalytical Chemistry 384 (2006) 761-768.
    [133] M. Zi-Hui, L. Qin, Determination of degradation products of nerve agents in human serumby solid phase extraction using molecularly imprinted polymer, Analytica Chimica Acta 435 (2001)121-127.
    [134] M. Lachova?, J. Lehotay, G. Karasova?, I. Skaca?ni, D.W. Armstrong, Isolation of L-theaninefrom plant material using a molecularly imprinted polymer, Journal of Liquid Chromatographyand Related Technologies 30 (2007) 2045-2058.
    [135] G. Karasova?, J. Lehotay, J. Sa?decka?, I. Skaca?ni, M. Lachova?, Selective extraction ofderivates of p-hydroxybenzoic acid from plant material by using a molecularly imprinted polymer,Journal of Separation Science 28 (2005) 2468-2476.
    [136] R.A. Anderson, M.M. Ariffin, P.A.G. Cormack, E.I. Miller, Comparison of molecularlyimprinted solid-phase extraction (MISPE) with classical solid-phase extraction (SPE) for thedetection of benzodiazepines in post-mortem hair samples, Forensic Science International 174(2008) 40-46.
    [137] J. Yang, Y. Hu, J.B. Cai, X.L. Zhu, Q.D. Su, Y.Q. Hu, F.X. Liang, Selective hair analysis ofnicotine by molecular imprinted solid-phase extraction: An application for evaluating tobaccosmoke exposure, Food and Chemical Toxicology 45 (2007) 896-903.
    [138] M.M. Ariffin, E.I. Miller, P.A.G. Cormack, R.A. Anderson, Molecularly imprintedsolid-phase extraction of diazepam and its metabolites from hair samples, Analytical Chemistry 79(2007) 256-262.
    [139] J. Xie, L. Zhu, H. Luo, L. Zhou, C. Li, X. Xu, Direct extraction of specific pharmacophoricflavonoids from gingko leaves using a molecularly imprinted polymer for quercetin, Journal ofChromatography A 934 (2001) 1-11.
    [140] M. Zhang, J. Xie, Q. Zhou, G. Chen, Z. Liu, On-line solid-phase extraction of ceramides from yeast with ceramide III imprinted monolith, Journal of Chromatography A 984 (2003) 173-183.
    [141] M.L. Mena, L. Agüí, P. Martinez-Ruiz, P. Yá?ez-Sede?o, A.J. Reviejo, J.M. Pingarrón, Molecularly imprinted polymers for on-line clean up and preconcentration of chloramphenicol prior to its voltammetric determination, Analytical and Bioanalytical Chemistry 376 (2003) 18-25.
    [142] S.D. Harvey, Molecularly imprinted polymers for selective analysis of chemical warfare surrogate and nuclear signature compounds in complex matrices, Journal of Separation Science 28 (2005) 1221-1230.
    [143] Y. Liu, X. Liu, J. Wang, Molecularly imprinted solid-phase extraction sorbent for removal of nicotine from tobacco smoke, Analytical Letters 36 (2003) 1631-1645.
    [144] B. Castro, M.J. Whitcombe, E.N. Vulfson, R. Vazquez-Duhalt, E. Ba?rzana, Molecular imprinting for the selective adsorption of organosulphur compounds present in fuels, Analytica Chimica Acta 435 (2001) 83-90.
    [145] C. Baggiani, L. Anfossi, C. Giovannoli, Solid phase extraction of food contaminants using molecular imprinted polymers, Analytica Chimica Acta 591 (2007) 29-39.
    [146] F.G. Tamayo, J.L. Casillas, A. Martin-Esteban, Clean up of phenylurea herbicides in plant sample extracts using molecularly imprinted polymers, Analytical and Bioanalytical Chemistry 381 (2005) 1234-1240.
    [147] F.G. Tamayo, A. Martin-Esteban, Selective high performance liquid chromatography imprinted-stationary phases for the screening of phenylurea herbicides in vegetable samples, Journal of Chromatography A 1098 (2005) 116-122.
    [148] P.R. Kootstra, C.J.P.F. Kuijpers, K.L. Wubs, D. Van Doorn, S.S. Sterk, L.A. Van Ginkel, R.W. Stephany, The analysis of beta-agonists in bovine muscle using molecular imprinted polymers with ion trap LCMS screening, Analytica Chimica Acta 529 (2005) 75-81.
    [149] F. Alfonso, Mimicking molecular receptors for antibiotics - analytical implications, TrAC - Trends in Analytical Chemistry 25 (2006) 949-957.
    [150] F. Puoci, C. Garreffa, F. Iemma, R. Muzzalupo, U.G. Spizzirri, N. Picci, Molecularly imprinted solid phase extraction for detection of sudan I in food matrices, Food Chemistry 93 (2005) 349-353.
    [151] N.M. Maier, G. Buttinger, S. Welhartizki, E. Gavioli, W. Lindner, Molecularly imprintedpolymer-assisted sample clean-up of ochratoxin a from red wine: Merits and limitations, Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences 804 (2004) 103-111.
    [152] J.L. Urraca, M.D. Marazuela, M.C. Moreno-Bondi, Molecularly imprinted polymers applied to the clean-up of zearalenone andα-zearalenol from cereal and swine feed sample extracts, Analytical and Bioanalytical Chemistry 385 (2006) 1155-1161.
    [153] M. Appell, D.F. Kendra, E.K. Kim, C.M. Maragos, Synthesis and evaluation of molecularly imprinted polymers as sorbents of moniliformin, Food Additives and Contaminants 24 (2007) 43-52.
    [154]小本山真,分子印迹学-从基础到应用,北京科学出版社(2006).
    [155] A. Bossi, F. Bonini, A.P.F. Turner, S.A. Piletsky, Molecularly imprinted polymers for the recognition of proteins: The state of the art, Biosensors and Bioelectronics 22 (2007) 1131–1137 22 (2007) 1131-1137.
    [156] G. Wulff, Enzyme-like Catalysis by Molecularly Imprinted Polymers, Chem Rev 102 (2002) 1-27.
    [157] J.L. Urraca, A.J. Hall, M. Moreno-Bondi, B. Sellergren, A Stoichiometric Molecularly Imprinted Polymer for the Class-Selective Recognition of Antibiotics in Aqueous Media, Angew. Chem. Int. Ed. 45 (2006) 5158-5161.
    [158] Y. Liu, F. Wang, T. Tan, M. Lei, Study of the properties of molecularly imprinted polymers by computational and conformational analysis, Analytica Chimica Acta 581 (2007) 137-146.
    [1]李雪红,张煌涛,占秀梅,动物性食品中大环内酯类抗生素残留分析综述,草食家畜132 (2006) 10-12.
    [2]农牧发(1999)第17号1关于发布《动物性食品中兽药最高残留限量》的通知[ Z]. 1999, 09 -0111.
    [3] E. Dreassi, P. Corti, F. Bezzini, S. Furlanetto, High-performance liquid chromatographic assay of erythromycin from biological matrix using electrochemical or ultraviolet detection, Analyst 125 (2000) 1077-1081.
    [4] European, Union, EMEA Erythromycin Summary Report, Committee for Veterinary Medicinal Products, 2002.
    [5] B. Dirion, Z. Cobb, E. Schillinger, L.I. Andersson, B. Sellergren, Water-Compatible Molecularly Imprinted Polymers Obtained via High-Throughput Synthesis and Experimental Design, J Am Chem Soc 125 (2003) 15101-15109.
    [6] E. Turiel, J.L. Tadeo, P.A. Cormack, A. Martin-Esteban, HPLC imprinted-stationary phase prepared by precipitation polymerisation for the determination of thiabendazole in fruit, Analyst 130 (2005) 1601-1607.
    [7] E. Caro, R.M. Marce, P.A.G. Cormack, D.C. Sherrington, F. Borrull, Molecularly imprinted solid-phase extraction of naphthalene sulfonates from water, Journal of Chromatography A 1047 (2004) 175-180.
    [8] J. Cederfur, Y. Pei, M. Zihui, M. Kempe, Synthesis and screening of a molecularly imprinted polymer library targeted for penicillin G, Journal of Combinatorial Chemistry 5 (2003) 67-72.
    [9] A. Rachkov, N. Minoura, Recognition of oxytocin and oxytocin-related peptides in aqueous media using a molecularly imprinted polymer synthesized by the epitope approach, J Chromatogr A 889 (2000) 111-118.
    [10] H. Tsai, M. Syu, Synthesis of creatinine-imprinted poly(β-cyclodextrin) for the specific binding of creatinine, Biomaterials 26 (2005) 2759-2766.
    [11] K. Yoshimatsu, K. Reimhult, A. Krozer, K. Mosbach, K. Sode, L. Ye, Uniform molecularly imprinted microspheres and nanoparticles prepared by precipitation polymerization: The control of particle size suitable for different analytical applications, Analytica Chimica Acta 584 (2007)112-121.
    [12] Schweitz L, Andersson L, N. S, Capillary electrochromatography with molecular imprint-based selectivity for enantiomer separation of local anaesthetics, J Chromatogr A 792 (1997) 401-409.
    [13] G. Theodoridis, G. Konsta, C. Bagia, Synthesis and evaluation of molecularly imprinted polymers for enalapril and lisinopril, two synthetic peptide anti-hypertensive drugs, J Chromatogr B Analyt Technol Biomed Life Sci 804 (2004) 43-51.
    [14] C. Baggiani, C. Giovannoli, L. Anfossi, C. Tozzi, Molecularly imprinted solid-phase extraction sorbent for the clean-up of chlorinated phenoxyacids from aqueous samples, Journal of Chromatography A 938 (2001) 35-44.
    [15] T. Georgios, K. Georgia, B. Christina, Synthesis and evaluation of molecularly imprinted polymers for enalapril and lisinopril, two synthetic peptide anti-hypertensive drugs, Journal of Chromatography B 804 (2004) 43-45.
    [16] J. Zhou, X. He, Y. Li, Binding study on 5,5-diphenylhydantoin imprinted polymer constructed by utilizing an amide functional group, Analytica Chimica Acta 394 (1999) 353-359.
    [17] Y. Tunc, N. Hasirci, A. Yesilada, K. Ulubayram, Comonomer effects on binding performances and morphology of acrylate-based imprinted polymers Polymer 47 (2006) 6931-6940.
    [18] H.A. Feldman, Mathematical theory of complex ligand-binding systems at equilibrium: Some methods for parameter fitting, Anal. Biochem. 48 (1972) 317-338.
    [19] H. Rosenthal, A graphic method for the determination and presentation of binding parameters in a complex system, Anal. Biochem. 20 (1967) 525-532.
    [20] J.G. N?rby, P. Ottolenghi, J. Jensen, Scatchard Plot: Common Misinterpretation of Binding Experiments, Anal. Biochem. 102 (1980) 318-320.
    [1] D.G. Kennedy, R.J. McCracken, A. Cannavan, S.A. Hewitt, Use of liquid chromatography-mass spectrometry in the analysis of residues of antibiotics in meat and milk, J Chromatogr A 812 (1998) 77-98.
    [2] C. Leal, R. Codony, R. Compano, M. Granados, M.D. Prat, Determination of macrolide antibiotics by liquid chromatography, J Chromatogr A 910 (2001) 285-290.
    [3] S. Pleasance, J. Kelly, M.D. LeBlanc, M.A. Quilliam, R.K. Boyd, D.D. Kitts, K. McErlane, M.R. Bailey, D.H. North, Determination of erythromycin A in salmon tissue by liquid chromatography with ion-spray mass spectrometry, Biol Mass Spectrom 21 (1992) 675-687.
    [4] H. Tsai, M. Syu, Synthesis of creatinine-imprinted poly(β-cyclodextrin) for the specific binding of creatinine, Biomaterials 26 (2005) 2759-2766.
    [5] E. Dreassi, P. Corti, F. Bezzini, S. Furlanetto, High-performance liquid chromatographic assay of erythromycin from biological matrix using electrochemical or ultraviolet detection, Analyst 125 (2000) 1077-1081.
    [6] X. Dong, N. Wang, S. Wang, X. Zhang, Z. Fan, Synthesis and application of molecularly imprinted polymer on selective solid-phase extraction for the determination of monosulfuron residue in soil, Journal of Chromatography A 1057 (2004) 13-19.
    [7] Y. Xia, J.E. McGuffey, S. Bhattacharyya, B. Sellergren, E. Yilmaz, L. Wang, J.T. Bernert, Analysis of the tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol in urine by extraction on a molecularly imprinted polymer column and liquid chromatography/atmospheric pressure ionization tandem mass spectrometry, Anal Chem 77 (2005) 7639-7645.
    [8] K. Yoshimatsu, K. Reimhult, A. Krozer, K. Mosbach, K. Sode, L. Ye, Uniform molecularly imprinted microspheres and nanoparticles prepared by precipitation polymerization: The control of particle size suitable for different analytical applications, Analytica Chimica Acta 584 (2007) 112-121.
    [9] E. Caro, R.M. Marce, P.A. Cormack, D.C. Sherrington, F. Borrull, Selective enrichment of anti-inflammatory drugs from river water samples by solid-phase extraction with a molecularly imprinted polymer, J Sep Sci 28 (2005) 2080-2085.
    [10] E. Caro, R.M. Marce, F. Borrull, P.A.G. Cormack, D.C. Sherrington, Application ofmolecularly imprinted polymers to solid-phase extraction of compounds from environmental and biological samples, TrAC - Trends in Analytical Chemistry 25 (2006) 143-154.
    [11] E. Caro, R.M. Marcé, P.A.G. Cormack, D.C. Sherrington, F. Borrull, Synthesis and application of an oxytetracycline imprinted polymer for the solid-phase extraction of tetracycline antibiotics Analytica Chimica Acta 552 (2005) 81-86.
    [1] Y.B. Lee, Y.I. Choi, PSE (pale, soft, exudative) Pork : The Causes and Solutions - Review, Asian-australas. J Anim Sci 12 (1999) 244-252.
    [2] N. Eren, Analytical procedure for the determination of chlorpromazine residues in muscle tissue and urine of food-producing animals, Slov Vet Res 38 (2001) 297-304.
    [3] C.J. Sherry, Chlorpromazine: a potential physiological teratogen, Experientia 33 (1977) 493-494.
    [4] J. Cooper, P. Delahaut, T.L. Fodey, C.T. Elliott, Development of a rapid screening test for veterinary sedatives and the beta-blocker carazolol in porcine kidney by ELISA, Analyst 129 (2004) 169-174.
    [5] H. Hattori, S. Yamamoto, M. Iwata, E. Takashima, T. Yamada, O. Suzuki, Sensitive determination of phenothiazines in body fluids by gas chromatography with surface ionization detection, J Chromatogr 579 (1992) 247-252.
    [6] G.W. Ponder, J.T. Stewart, A liquid chromatographic method for the determination of promethazine enantiomers in human urine and serum using solid-phase extraction and fluorescence detection, J Pharm Biomed Anal 13 (1995) 1161-1166.
    [7] H.J. Keukens, M.M. Aerts, Determination of residues of carazolol and a number of tranquilizers in swine kidney by high-performance liquid chromatography with ultraviolet and fluorescence detection, J Chromatogr 464 (1989) 149-161.
    [8] L. Schweitz, L.I. Andersson, S. Nilsson, Molecular imprint-based stationary phases for capillary electrochromatography, Journal of Chromatography A 817 (1998) 5-13.
    [9] M.L. Mena, L. Agüí, P. Martinez-Ruiz, P. Yá?ez-Sede?o, A.J. Reviejo, J.M. Pingarrón, Molecularly imprinted polymers for on-line clean up and preconcentration of chloramphenicol prior to its voltammetric determination, Analytical and Bioanalytical Chemistry 376 (2003) 18-25.
    [10] J. Wang, P.A. Cormack, D.C. Sherrington, E. khoshdel, Monodisperse, Molecularly Imprinted Polymer Microspheres Prepared by Precipitation Polymerization for Affinity Separation Applications, Angew. Chem. Int. Ed. 42 (2003) 5336-5338.
    [11] B. Sellergren, K.J. Shea, Influence of polymer morphology on the ability of imprinted network polymers to resolve enantiomers, J Chromatogr 635 (1993) 31-49.
    [12] E. Turiel, J.L. Tadeo, P.A. Cormack, A. Martin-Esteban, HPLC imprinted-stationary phaseprepared by precipitation polymerisation for the determination of thiabendazole in fruit, Analyst 130 (2005) 1601-1607.
    [13] B. Dirion, Z. Cobb, E. Schillinger, L.I. Andersson, B. Sellergren, Water-Compatible Molecularly Imprinted Polymers Obtained via High-Throughput Synthesis and Experimental Design, J Am Chem Soc 125 (2003) 15101-15109.
    [14] K. M?ller, C. Crescenzi, U. Nilsson, Determination of a flame retardant hydrolysis product in human urine by SPE and LC–MS. Comparison of molecularly imprinted solid-phase extraction with a mixed-mode anion exchanger, Anal Bioanal Chem 378 (2004) 197-204.
    [15] E. Caro, R.M. Marce, P.A. Cormack, D.C. Sherrington, F. Borrull, Selective enrichment of anti-inflammatory drugs from river water samples by solid-phase extraction with a molecularly imprinted polymer, J Sep Sci 28 (2005) 2080-2085.
    [16] H. Tsai, M. Syu, Synthesis of creatinine-imprinted poly (β-cyclodextrin) for the specific binding of creatinine, Biomaterials 26 (2005) 2759-2766.
    [17] J. Yin, G. Yang, Y. Chen, Rapid and efficient chiral separation of nateglinide and its L-enantiomer on monolithic molecularly imprinted polymers, J Chromatogr A 1090 (2005) 68-75.
    [18] D. Spivak, M.A. Gilmore, K.J. Shea, Evaluation of binding and origins of specificity of 9-ethyladenine imprinted polymers, Journal of the American Chemical Society 119 (1997) 4388-4393.
    [19] J. Haginaka, H. Tabo, C. Kagawa, Haginaka J, Tabo H, Kagawa C. Uniformly sized molecularly imprinted polymers for d-chlorpheniramine: Influence of a porogen on their morphology and enantioselectivity, J Pharm Biomed Anal 46 (2008) 877-881.
    [20] H. Yavuz, V. Karakoc, D. Turkmen, R. Say, A. Denizli, Synthesis of cholesterol imprinted polymeric particles, Int J Biol Macromol 41 (2007) 8-15.
    [21] J. He, Q. Zhu, Q. Deng, Investigation of imprinting parameters and their recognition nature for quinine-molecularly imprinted polymers, Spectrochim Acta A Mol Biomol Spectrosc 67 (2007) 1297-1305.
    [22] B. Sellergren, L.I. Andersson, Application of imprinted synthetic polymers in binding assay development, Methods 22 (2000) 92-106.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700