用户名: 密码: 验证码:
外场下半导体异质结的非线性动力学行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着半导体器件的发展,半导体中载流子的输运引起了广泛的关注。本论文基于实空间电荷转移模型和分立漂移理论模型研究了外场下半导体异质结的非线性动力学行为。主要结论有:
     (1)对空间分布均匀的GaAs/AlGaAs异质结,系统中出现呈倒S形的负微分电导。随外加磁场强度和微波辐照体系特征为:(ⅰ)选取直流偏置位于负微分电导区域,在低磁场强度时,系统表现出自维持振荡,相应动态伏安特性曲线呈回滞现象,系统中有两吸引子(极限环和稳定的焦点)共存。当磁场强度增加到一定程度时,系统的稳定性发生改变,自维持振荡逐渐消失。伏安曲线上的回滞更加明显,回滞区域变宽;(ⅱ)考虑微波辐照和磁场共同作用时,由于系统自维持振荡和外部交流信号之间的耦合,系统表现出多种振荡模式如周期、准周期和锁频。随外加微波振幅的变化,系统经倍周期分叉通向混沌,这同实验中的现象是一致的。在磁场强度较大时,微波辐照下,系统在两个稳恒的态之间转变,相应纵向电阻受微波辐照频率的变化而呈现周期振荡,对理解最新的“零电阻”实验现象有所帮助。(ⅲ)结合系统的混沌行为,采用延迟反馈法对其控制。分析了系统动力学行为随外加反馈控制参数的分叉。研究表明,变化延迟时间和反馈权重,系统将在不同的态之间来回转变,当延迟时间恰好等于镶嵌在混沌吸引子中的不稳定轨道的周期时,该不稳定周期可以被稳定住,延迟反馈信号趋于零。
     (2)对于空间分布不均匀的GaAs/AlGaAs异质结,我们建立了描述其随空间和时间变化的偏微分方程。在直流偏置情况下,系统中有电场畴形成,其周期移动引起了自维持振荡。随后,分析了磁场对系统中出现的电场畴的影响,发现随磁场增加电场畴的宽度逐渐变窄,自维持振荡的振幅也有所减少。在周期信号的驱动下,随驱动信号的振幅的变化,系统展现出和空间均匀的GaAs/AlGaAs异质结相似的动力学行为,不同的是其通向混沌的道路为阵发通向时空混沌,并给出了其相应的电场畴的分布图。
     (3)对于弱耦合的GaAs/AlAs超晶格,其垂直输运的主要模式为顺序共振隧穿。电子漂移速度随外加电场变化可以出现负微分电导区域,同时也在系统中形成了电荷积累层构成的单极电场畴。选取合适的掺杂浓度和直流偏压系统可以促使电场畴在超晶格中周期移动,从而引起电流的振荡。受磁场的作用,稳定的电场畴易于形成,因此,系统中能产生自维持振荡的区域将有所减少。另外,对应不同的掺杂浓度,电场随空间分布也有所不同。考虑到周期驱动时,系统也表现出上述类似的复杂动力学行为。
The carrier transport in semiconductors has a considerable attention with the development of semiconductor devices. Based on the real-space electron transfer model and the discrete drift model, we investigate theoretically the nonlinear dynamics of the semiconductor heterostructures under external fields. Main results are summarized as follows:
     (1) In the case for homogeneous GaAs/AlGaAs heterostructure, the static current-voltage characteristic curve exhibits an inverted S-shaped negative differential conductivity (NDC). Thus, the system shows complex dynamic behaviors under the magnetic field and the microwave irradiation. (i)As the dc bias is set within the NDC region, the current self-sustained oscillations can be found when a relatively small magnetic field is applied. Then, the hysteresis in the dynamic current-voltage curves can be found and two stable attractors coexist in the system. With further increasing the magnetic field, the stability of the system will be changed and the selfe-sustained oscillations disappear. However, the hysteresis phenomenon is more clearly and the width of the hysteresis is broader, (ii) Considering the action of the microwave irradiation and the magnetic fields, the system shows different oscillation modes like period、quasiperiodicity and frequency-locking due to the coupling between the internal and the external signal. The routes from period-doubling to chaos can be found with changes of the irradiation amplitude which is agreement with the experiment. Under a large magnetic field, the system will be transferred between two time-independent steady states; and the sustem longitudinal resistance shows an interesting oscillation with period tuned by the ratio of microwave radiation frequency. This provides a help to understand the "zero-resistance" experiment, (iii) The time-delayed feedback method is applied to control the chaotic dynamics in the system. The bifurcation about the dynamics with the control parameters is given. The results show that the system will be changed between different states with varying delayed time and feedback strength. As for the delayed time is equal to the period of the unstable period orbit embedded in the chaotic attractors, this orbit is stabilized and the feedback signal is close to zero.
     (2) In the case for inhomogeneous GaAs/AlGaAs heterostructure, the properties of the dynamics can be described by a set of partial differential equations. For pure dc bias at a fixed magnetic field, the self-sustained oscillations are observed due to the travelling high electric field domain in the system. Varying the magnetic field, the width of the domain and the oscillational amplitude will be changed. Driven by an periodic signal, the system shows similar results with the homogeneous GaAs/AlGaAs heterostructure except that the routes from intermittent to chaos.
     (3) In the case for weakly coupled GaAs/AlAs superlattices, the main electron vertical transport mechanism is sequential resonant tunneling. The drift velocity as a function of the applied electric field can result in the NDC and a monopole domain formed by charge accumulation layer appears in superlattices. Under the appropriate doping densities and applied dc voltages, the current oscillations occur due to the motion of the charge domain over a few periods of the SL. The magnetic field B seems to be favorite for the formation of the static electric field domains and to depress the current oscillation. Thus, the oscillation regime will be narrowed as the magnetic field strength increases. For different doping densities, the distribution of the electric field in superlattices is different. Driven by a periodic signal, the system shows interesting nonlinear behaviors like quasiperiodicity, frequency-locking, and period.
引文
[1]虞丽生,半导体异质结物理,科学出版社 1987
    [2]Oldham W.G.,Milnes A.G.,n-n Semiconductor heterojunctions,Solid-State Electron.,1963;6:121-132
    [3]Hinkley E.D.,Rediker R.H.,GaAs-InSb graded-gap heterojunction,Solid-State Electron.,1967;7:671-687
    [4]Lindmayer J.,Heterojunction properties of the oxidised semiconductor,Solid-State Electron.,1965;8:523-528
    [5]Kumar R.C.,On the solution of poisson equation for an isotype heterojunction under zero-current condition,Solid-State Electron.,1968;11:543-551
    [6]Sharma B.L.,Purohit R.K.,Semiconductor Heterojunction,Oxford Pergamon Press,1974
    [7]Hayashi I.,Panish M.B.,Foy P.,IEEE.J.Quantum Electronics,1969;QE-5,211
    [8]Kressel H.,Nelson H.,RCA ReV.,1969,30,106
    [9]Esaki L.,Tsu R.,IBM J.Res.Develop.,1970,14:61
    [10]Narayanamurti V.,Stormer H.L.,Chin M.A.,Gossard A.C.,and Wiegmann W.,Selective Transmission of High-Frequency Phonons by a Superlattice:The "Dielectric" Phonon Filter,Phys.Rev.Lett.,1979,43:2012-2016
    [11]Altarelli M.,Ekenberg U.,and Fasolino A.,Calculations of hole subbands in semiconductor quantum wells and superlattices,Phys.Rev.B,1985,32:5138-5143
    [12]Perkowitz S.,Kim L.S.and Becla P.,Infrared bond ionicity in ternary Ⅱ-Ⅵalloys,Solid State Commun,1991,77,471-474
    [13]Rossouw C.J.,Pain G.N.,Glanvill S.R.and McDonald D.C.,Interdiffusion profiles in MOCVD CdTe/HgTe superlattices and Hg_(1-x)Cd_xTe multilayers,J Cryst Growth,1990,106:673-682
    [14] Hiroyuki Miyoshi and Yoshiji Horikoshi, Substrate lattice constant effect on the miscibility gap of MBE grown InAsSb, J Cryst Growth, 2001, 227-228: 571-576
    
    [15] Tsuji T., Yonezu H. and Ohshima N., Reduction of surface roughness of an AlAs/GaAs distributed Bragg reflector grown on Si with strained short-period superlattices, J Cryst Growth, 1999, 201-202: 1010-1014
    
    [16] Claxton P. A., Hopkinson M, Kovac J., Hill G., M. A. Pate and J. P. R. David Quantum-confined Stark effect in InGaAs/InP multiple quantum wells grown by solid source molecular beam epitaxy, J Cryst Growth, 1991, 111: 1080-1083
    
    [17] Govorov A. O., Interband optical absorption in the Wannier-Stark ladder under the electron-LO-phonon resonance condition Solid State Commun, 1994, 92: 977-982
    
    [18] Klitzing K. V., Dorda G., Pepper M, New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance, Phys. Rev. Lett., 1980,45,494 - 497
    
    [19] Tsui D.C., Stormer H.L., Gossard A.C., Two-Dimensional Magnetotransport in the Extreme Quantum Limit, Phys. Rev. Lett., 1982,48: 1559-1562
    
    [20] Fang F. F. and Howard W. E., Negative Field-Effect Mobility on (100) Si Surfaces, Phys. Rev. Lett., 1966, 16: 797-799
    
    [21] Frova A., Aspnes D.E., Combined Investigation of Nonuniform-Field Electroreflectance and Surface Galvanomagnetic Properties in Germanium, Phys. Rev. 1969,182:795-802
    
    [22] Johnston W. D., Vapor-phase-epitaxial growth of n-AlAs/p-GaAs solar cells, J Cryst Growth, 1977,39:117-127
    
    [23] Wang C. C., Kalisher M. H., Tracy J. M., Clarke J. E. and Longo J. T., Investigation of leakage characteristics of PbSnTesbndPbTe inverted heterostructure diodes, Solid-State Electron., 1978, 21: 625-632
    [24]Stormer H.L.,Dingle R.,Gossard A.C.,Wiegmann W.and Sturge M.D.,Two-dimensional electron gas at a semiconductor-semiconductor interface,Solid State Commun,1979,29:705-709
    [25]Laughlin R.B.,Quantized motion of three two-dimensional electrons in a strong magnetic field,Phys.Rev.B,1983,27:3383-3389
    [26]Lee K.,Shur M.S.,Klem J.,Drummond T.J.,Morkoc H.,Jap.J.Appl.Phys.,1984,23:L230
    [27]Lin B.J.F.and Tsui D.C.,Paalanen M.A.and Gossard A.C.,Mobility of the two-dimensional electron gas in GaAs-AlxGal-xAs heterostructures,Appl.Phys.Lett.1984,45:695-697
    [28]雷啸霖,高迁移率二维电子系统中微波辐射引起的磁阻振荡和零电阻,物理,2004,33:623-628
    [29]Ye P.D.,Engel L.W.,Tsui D.C.,Simmons J.A.,Wendt J.R.,Vawter G.A.,and Reno J.L.,Giant microwave photoresistance of two-dimensional electron gas,Appl.Phys.Lett.,2001,79:2193-2195
    [30]Zudov M.A.,Du R.R.,Simmons J.A.and Reno J.L.,Shubnikov-deaas-like oscillations in millimeterwave photoconductivity in a high-mobility two-dimensional electron gas,Phys.Rev.B,2001,64:201311
    [31]Mani R.G.,Smet J.H.,Klitzing K.v.,Narayanamurti V.,Johnson W.B.,Umansky V.,Zero-resistance states induced by electromagnetic-wave excitation in GaAs/AlGaAs heterostructures,Nature,2002,420:646
    [32]Mani R.G.,Smet J.H.,Klitzing K.v.,Narayanamurti V.,JohnsonW.B.,Umansky V.,Radiation-induced oscillatory magnetoresistance as a sensitive probe of the zero-field spin-splitting in high-mobility GaAs/Al_xGa_(1-x)As devices,Phys.Rev.B 2004,69:193304
    [33] Mani R. G., Narayanamurti V., Klitzing K. v., Smet J.H., Johnson W. B., and Umansky V., Radiation-induced oscillatory Hall effect in high-mobility GaAs/Al_xGa_(1-x)As devices, Phys. Rev. B 2004, 69: 161306
    
    [34] Mani R. G., Smet J. H., Klitzing K. v., Narayanamurti V., JohnsonW. B., Umansky V., Radiation-induced zero-resistance states in GaAs/AlGaAs Voltage-current characteristics and intensity dependence at the heterostructures: resistance minima, Phys. Rev. B2004 70: 155310
    
    [35] Zudov M. A. and Du R. R., Pfeiffer L. N., West K. W., Evidence for a New Dissipationless Effect in 2D Electronic Transport, Phys. Rev. Lett., 2003, 90: 046807
    
    [36] Yang C. L., Zudov M. A., Knuuttila T. A., and Du R. R., Pfeiffer L. N. and West K. W., Observation of Microwave-Induced Zero-Conductance State in Corbino Rings of a Two-Dimensional Electron System, Phys. Rev. Lett., 2003, 91: 096803
    
    [37] Lei X. L. and Liu S.Y. Radiation-Induced Magnetoresistance Oscillation in a Two-Dimensional Electron Gas in Faraday Geometry, Phys. Rev. Lett., 2003, 91: 226805
    
    [38] Lei X. L. Radiation-induced magnetoresistance oscillations in two-dimensional electron systems under bichromatic irradiation, Phys.Rev. B, 2006, 73: 235322
    
    [39] Lei X. L. and Liu S.Y. Radiation-induced magnetotransport in high-mobility two-dimensional systems: Role of electron heating, Phys. Rev. B, 2005, 72: 075345
    
    [40] Andreev A. V., Aleiner I.L., and Millis A. J., Dynamical Symmetry Breaking as the Origin of the Zero-dc-Resistance State in an ac-Driven System, Phys. Rev. Lett. 2003, 91: 056803
    
    [41] Bergeret F. S., Huckestein B., and Volkov A. F., Current-voltage characteristics and the zero-resistance state in a two-dimensional electron gas, Phys. Rev. B, 2003, 67: 241303
    
    [42] Volkov A. F., Pavlovskii V. V., Residual resistance in a two-dimensional electron system: A phenomenological approach, Phys. Rev. B, 2004, 69:125305
    
    [43] Gunn J. B., Microwave oscillations of current in III-V semiconductors, Solid State Commun., 1963, 1: 88-91
    
    [44] Kroemer H, Theory of the Gunn Effect, Pro.IEEE., 1964, 52:1736
    
    [45] Boer K. W., Quinn P. L., Inhomogeneous field distribution in homogeneous semiconductors having an N-shaped negative differential conductivity, Phys. Staus Solidi 17:307
    
    [46] Volkov A. F., Kogan S. M, Physical phenomena in semiconductors with negative differential conductivity, Sov.phys. Usp. 11:881
    
    [47] Bonch-Bruevich V. L., Zvyagin I. P., Mironov A. G., Domain Electrical Instabilities in Semiconductors, Consultants Bureau, New York
    
    [48] Aoki K., Kobayashi T., Yamamoto K., Chaotic motions in the electrical avalanche breakdown caused by weak photoexcitation in n-GaAs, J. Phys.Soc. Jpn., 1982,51:2373-2374
    
    [49] Pecora L. M., and Carroll T. L., Synchronization in chaotic systems, Phys. Rev. Lett. 1990,64:821-824
    
    [50] Ott E., Grebogi C., and Yorke J. A. Controlling chaos, Phys. Rev. Lett. 1990, 64: 1196-1199
    
    [51] Niedernostheide F.-J., Kleinkes M., Spatiotemporal dynamics of current-density filaments in a periodically driven multilayered semiconductor device, Phys. Rev. B 1999,59:7663
    
    [52] Niedernostheide F.-J., H.-J. Schulze,. Studies on dynamic avalanche and current filaments in high-voltage diodes, Physica D 2004, 199: 129-137
    
    [53] Tzeng S. T., Cheng Y.C., Two-level model and the dynamic Hall effect in nonlinear semiconductors, Phys. Rev. B 2003, 68:035211
    
    [54] Tzeng S. T., Tzeng Y., Two-level model and magnetic field effects on the hysteresis in n-GaAs, Phys. Rev. B 2004, 70: 085208
    
    
    [55] Zwolak M., Ferguson D. and DiVentra M, Chaotic transport in low-dimensional superlattices, Phys. Rev. B 2003, 67:081303
    
    [56] Aoki K, Matsuura A. and Takahashi Y., Period-doubling route to chaos and novel application principles in S-shaped NDR instabilities, Semicond. Sci. Technol., 1994,9:607
    [1] Bose S., Rodin P. and Scholl E., Competing spatial and temporal instabilities in a globally coupled bistable semiconductor system near a codimension-two bifurcation Phys. Rev. E 2000, 62: 1778 - 1789
    
    [2] Heidemann G., Bode M. and Purwins H. -G., Fronts between Hopf and Turing-type domains in a two-component reaction-diffusion system, Phys. Lett. A 1993,177:225-230
    
    [3] Hupper G., Scholl E. and Reggiani L., Global bifurcation and hysteresis of self-generated oscillations in a microscopic model of nonlinear transport in p-Ge, Solid-State Electron 1989, 32: 1787-1791
    
    [4] Borisov V. L, Sablikov V. A., ChmilA. I. and Borisova I. V., Origin of current instability in GaAs/AlGaAs heterostructures, Physica E, 2000, 8: 376-386
    
    [5] Vladimir V. and Adam K. Self-sustained acoustoelectric and photoelectric oscillations in semiconductor-piezoelectric structures Solid-State Electron, 2000, 44: 419-424
    
    [6] Meixner M., Bose S. and Scholl E., Analysis of complex and chaotic patterns near a codimension-2 Turing-Hopf point in a reaction-diffusion model, Physica D: 1997, 109: 128-138
    
    [7] Wacker A. and Scholl E., Spiking in an activator-inhibitor model for elements with S-shaped negative differential conductivity, Z. Phys. B, 1994, 93:431
    
    [8] Aoki K., Kondo T. and Watanabe T., Cross-over instability and chaos of hysteretic I-V curve during impurity avalanche breakdown in n-GaAs under longitudinal magnetic field, Solid State Commun, 1991, 77: 91 -94
    
    [9] Brandl A. and Prettl W., Chaotic fluctuations and formation of a current filament in n-type GaAs, Phys. Rev. Lett., 1991, 66: 3044 -3047
    [10] Hupper G., Pyragas K., and Scholl E., Complex dynamics of current filaments in the low-temperature impurity breakdown regime of semiconductors, Phys. Rev. B, 1993,47:15515-15522
    
    [11] Novak V., Wimmer C. and Prettl W., Impurity-breakdown-induced current filamentation in a dipolar electric field, Phys. Rev. B, 1995, 52: 9023 - 9030
    
    [12] Scholl E., From hot electron transport theory to macroscopic nonlinear and chaotic behavior induced by impact ionization in semiconductors, Solid-State Electron 1989, 32: 1129-1135
    
    [13] Kardell K., Radehaus Ch., Dohmen R., and Purwins H.-G., Stable multifilament structures in semiconductor materials based on a kinetic model, J. Appl. Phys., 1988, 64: 6336
    
    [14] Weispfenning M, Hoeser I., Bohm W., Prettl W. and Scholl E., Cyclotron-Resonance-Induced Nonequilibrium Phase Transition in n-GaAs, Phys. Rev. Lett., 1985,55:754-757
    
    [15] Wacker A., Bose S. and Scholl E., Transient spatiotemporal chaos in a reaction-diffusion model, Euro Phys. Lett., 1995, 31: 257
    
    [16]Asche, M, Gribnikov, Z. S., Ivastchenko, V. M., Kostial, H. and Mitin, V. V., Conductivity and transverse fields in n-Si for currents in the 110 and 100 planes, Physica Status Solidi, 1982, 114: 429
    
    [17]Shaw M. P., Mitin V. V., Scholl E. and Grubin H. L., The physics of instabilities in solid state electron devices, 1992, Plenum Press, New Work
    
    [18] Bonch-Bruevich V. L., Zvyagin I. P. and Mironov A. G., Domain Electrical Instabilities in Semiconductors, 1975, Consultants Bureau, New Work
    
    [19] Scholl E., Parisi J., Rohricht B., Peinke J., and Huebener R. P., Spatial correlations of chaotic oscillations in the post-breakdown regime of p-Ge, Phys. Lett. A 1987, 119:419
    [20] Reggiani L. and Mitin V., Recombination and ionization processes at impurity centres in hot-electron semiconductor transport, Rev. Nuov. Cim., 1989, 12: 1
    
    [21] Scholl E., Instabilities in semiconductors including chaotic phenomena, Physica Scripta, 1989, T29: 152
    
    [22] Gribnikov Z. S., Sov. Phys. Semicond. 1973, 6: 1204
    
    [23 Hess K., Morkoc H., Streetman B. G., Negative differential resistance through real-space electron transfer, Appl. Phys. Lett., 1979, 35: 469
    
    [24] Scholl E., Mechanisms for chaos in semiconductors induced by impact ionization, Physica B+C, 1985, 134: 271-275
    
    [25] Novak V., Hirschinger J., Niedernostheide F.-J., Prettl W., Cukr M. and Oswald J., Direct experimental observation of the Hall angle in the low-temperature breakdown regime of n-GaAs, Phys. Rev. B , 1998, 58: 13099-13102
    
    [26] Aoki K., Nonlinear Dynamics and Chaos in Semiconductors, IOP, Bristol, 2000
    
    [27] Bodeker H.U., Rottger M.C., Liehr A.W., Frank T.D., Friedrich R. and Purwins H.-G., Noise-covered drift bifurcation of dissipative solitons in a planar gas-discharge system, Phys. Rev. E 2003, 67: 056220
    
    [28] Liehr A. W., Moskalenko A. S., Astrov Yu. A., Bode M. and Purwins H.-G., Rotating bound states of dissipative solitons in systems of reaction-diffusion type, The European Physical Journal B, 2003, 37(2)
    
    [29] Amann A. and Scholl E., Bifurcations in a System of Interacting Fronts, J. Stat. Phys. 2005,119:5-6
    
    [30] Maracas G. N., Porod W., Johnson D. A., Ferry D. K. and Goronkin H. Low-frequency oscillations and routes to chaos in semi-insulating GaAs, Physica B+C, 1985, 134: 276-280
    
    [31] Maracas G.N., Johnson D. A., Puechner R. A., Edwards J. L., Myhajlenko S., Goronkin H. and Tsui R., Space charge currents, domains and instabilities viewed with voltage contrast spectroscopy, Solid-State Electron, 1989, 32: 1887-1893
    
    [32] Shaw, M. P., Mitin, V. V., Scholl E. and Grubin H.L., The Physics of Instabilities in Solid State Electrons Devices, 1992, Plenum Press, New York
    
    [33] Aoki K., Kondo T. and Watanabe T., Cross-over instability and chaos of hysteretic I-V curve during impurity avalanche breakdown in n-GaAs under longitudinal magnetic field Solid State Commun., 1991, 77: 91-94
    
    [34] Tzeng S. T., Cheng Y.C., Two-level model and the dynamic Hall effect in nonlinear semiconductors, Phys. Rev. B 2003, 68: 035211
    
    [35] Hess K., Advanced Theory of Semiconductor Devices, Prentice Hall,New Jersey, 1988
    
    [36] Scholl E., Nonlinear Spatio-Temporal Dynamics and Chaos in Semicon-ductors Cambridge: Cambridge University Press, 2001
    [1] Aoki K., Matsuura A. and Takahashi Y., Period-doubling route to chaos and novel application principles in S-shaped NDR instabilities, Semicond. Sci. Technol., 1994, 9: 607
    
    [2] Niedernostheide F.-J., Kleinkes M., Spatiotemporal dynamics of current-density filaments in a periodically driven multilayered semiconductor device , Phys. Rev. B , 1999, 59: 7663-7668
    
    [3] Bonilla L. L., Escobedo R. and Dell'Acqua G., Voltage switching and domain relocation in semiconductor superlattices, Phys. Rev. B, 2006, 73: 115341
    
    [4] Zwolak M., Ferguson D. and DiVentra M., Chaotic transport in low-dimensional superlattices , Phys. Rev. B , 2003,67: 081303
    
    [5] Bonilla L. L., Theory of nonlinear charge transport, wave propagation, and self-oscillations in semiconductor superlattices, J. Phys.: Condens. Matter, 2002 14: 341-381
    
    [6] Tzeng S. T. and Cheng Y.C., Two-level model and the dynamic Hall effect in nonlinear semiconductors, Phys. Rev. B, 2003, 68: 035211
    
    [7] Mani R. G., Smet J. H., von Klitzing K., Narayanamurti V., Johnson W. B. and Umansky V., Nature (London), 2002, 420: 646
    
    [8] Zudov M. A., Du R. R., Pfeiffer L. N. and West K. W., Evidence for a New Dissipationless Effect in 2D Electronic Transport, Phys. Rev. Lett., 2003, 90 046807
    
    [9] Yang C. L., Zudov M. A, Knuuttila T. A., Du R. R. , Pfeiffer L. N. and West K. W., Observation of Microwave-Induced Zero-Conductance State in Corbino Rings of a Two-Dimensional Electron System, Phys. Rev. Lett., 2003, 91: 096803
    
    [10] Studenikin S. A., Potemski M., Coleridge P. T., Sachrajda A. and Wasilewski Z. R., Microwave radiation induced magneto-oscillations in the longitudinal and transverse resistance of a two-dimensional electron gas, Solid State Commun., 2004,129: 341-345
    [11] Ryzhii V. and Vyurkov V., Absolute negative conductivity in two-dimensional electron systems associated with acoustic scattering stimulated by microwave radiation, Phys. Rev. B, 2003, 68:165406
    [12] Vavilov M. G. and Aleiner I. L., Magnetotransport in a two-dimensional electron gas at large filling factors, Phys. Rev. B, 2004, 69: 035303
    [13] Inarreal J. and Platero G., Theoretical Approach to Microwave-Radiation-Induced Zero-Resistance States in 2D Electron Systems, Phys. Rev. Lett. 2005, 94 016806
    [14] Koulakov A. A. and Raikh M. E., Classical model for the negative dc conductivity of ac-driven two-dimensional electrons near the cyclotron resonance, Phys. Rev. B, 2003, 68: 115324
    [15] Durst A. C., Sachdev S., Read N. and Girvin S. M., Radiation-Induced Magnetoresistance Oscillations in a 2D Electron Gas, Phys. Rev.Lett. 2003, 91: 086803
    [16] Shi J. and Xie X. C., Radiation-Induced "Zero-Resistance State" and the Photon-Assisted Transport, Phys. Rev. Lett., 2003,91: 086801
    [17] Lei X. L. and Liu S. Y., Radiation-Induced Magnetoresistance Oscillation in a Two-Dimensional Electron Gas in Faraday Geometry, Phys. Rev. Lett., 2003, 91: 226805
    [18] Ng T. K. and Dai L. X., Transport equation for the two-dimensional electron liquid under microwave radiation and a magnetic field: Explanation for the zero-resistance state, Phys.Rev. B, 2005,72: 235333
    [19] Andreev A. V., Aleiner I. L. and Millis A. J., Dynamical Symmetry Breaking as the Origin of the Zero-dc-Resistance State in an ac-Driven System, Phys. Rev. Lett., 2003,91:056803
    [20] Bergeret F. S., Huckestein B., Volkov A. F., Current-voltage characteristics and the zero-resistance state in a two-dimensional electron gas, Phys. Rev. B, 2003, 67: 241303
    
    [21] Volkov A. F., Pavlovskii V. V., Radiation-induced zero-resistance states: Possible dressed electronic structure effects, Phys. Rev. B, 2004, 70: 075314
    
    [22] Ott E., Grebogi C., and Yorke J. A., Controlling chaos, Phys. Rev. Lett. 1990, 64:1196-1199
    
    [23] Schuster H. G., Handbook of Chaos Control, Wiley-VCH, Weinheim, 1999
    
    [24] Boccaletti S., Grebogi C., Lai Y.-C., Mancini H., and Maza D., The control of chaos: theory and applications, Phys. Rep., 2000,329:103
    [25] Gauthier D. J., Resource letter: CC-1: Controlling chaos, Am.J. Phys. 2003,71: 750-759
    
    [26] Hbinger B., Doerner R. and Martienssen W., Z. Phys. B,1993 , 90:103
    [27] Hovel P. and Scholl E., Control of unstable steady states by time-delayed feedback methods, Phys. Rev. E, 2005, 72: 046203
    
    [28] Schlesner J., Amann A., Janson N. B., Just W., and Scholl E., Self-stabilization of high-frequency oscillations in semiconductor superlattices by time-delay autosynchronization, Phys. Rev.E, 2003, 68:066208
    
    [29] Pyragas V. and Pyragas K., Delayed feedback control of the Lorenz system: An analytical treatment at a subcritical Hopf bifurcation, Phys. Rev. E, 2003, 73: 036215
    
    [30] Yamasue K. and Hikihara T., Persistence of chaos in a time-delayed-feedback controlled Duffing system, Phys. Rev. E, 2006,73: 036209
    
    [31] Pyragas K., Continuous control of chaos by self-controlling feedback, Phys. Lett. A, 1992, 170:421-428
    [32] Kociuba G. and Heckenberg N. R., Controlling chaos in a Lorenz-like system using feedback, Phys. Rev. E, 2003, 68: 066212
    
    [33] Balanov A. G., Janson N. B., and Scholl E., Delayed feedback control of chaos: Bifurcation analysis, 2005, Phys. Rev. E 71: 016222
    
    [34] Nakajima H., On analytical properties of delayed feedback control of chaos, Phys. Lett. A, 1997, 232: 207
    
    
    [35] Just W., Bernard T., Ostheimer M., Reibold E. and Benner H., Mechanism of Time-Delayed Feedback Control, Phys. Rev. Lett., 1997, 78:203
    
    [36] Xu J. and Chung K. W., Effects of time delayed position feedback on a van der Pol-Duffing oscillator, Physica D, 2003, 180: 17
    [1] Gorbatyuk A.V., Niedernostheide F.-J., Mechanisms of spatial current-density instabilities in p~+-p~--n-p~+-n~(++) structures, Phys. Rev. B, 1999, 59: 13157-13169.
    
    [2] Plenge F., Rodin P., Scholl E., Krischer K., Breathing current domains in globally coupled electrochemical systems: A comparison with a semiconductor model, Phys. Rev. E, 2001, 64: 056229.
    
    [3] Eberle W., Hirschinger J., Margull U., Prettl W., Novak V., Kostial H., Visualization of current filaments in n-GaAs by photoluminescence quenching, Appl. Phys. Lett., 1996, 68: 3329
    
    [4] Tzeng S. T., Tzeng Y., Two-level model and magnetic field effects on the hysteresis in n-GaAs, Phys. Rev. B, 2004, 70: 085208
    
    [5] Niedernostheide F.-J., Brillert C., Kukuk B., Purwins H.-G., Schulze H. -J., Frequency-locked, quasiperiodic, and chaotic motions of current-density filaments in a semiconductor device , Phys. Rev. B, 1996, 54: 14012-14019
    
    [6] Bose S., Rodin P., Scholl E., Competing spatial and temporal instabilities in a globally coupled bistable semiconductor system near a codimension-two bifurcation Phys. Rev. E, 2000,62: 1778-1789
    
    [7] Bulashenko O. M., Garca M. J., Bonilla L. L., Chaotic dynamics of electric-field domains in periodically driven superlattices, Phys. Rev. B, 1996 , 53: 10008
    
    [8] Sanchez D., Platero G., Bonilla L. L., Quasiperiodic current and strange attractors in ac-driven superlattices, Phys. Rev. B, 2001, 63: 201306
    
    [9] Huang D. h., Cardimona D. A., Nonadiabatic effects in a self-consistent Hartree model for electrons under an ac electric field in multiple quantum wells, Phys. Rev. B , 2003, 67: 245306
    
    [10] Lopez R., Sanchez D., Platero G., Dynamical instability of electric-field domains in ac-driven superlattices, Phys. Rev. B, 2003, 67: 035330
    [11] Bergmann M. J., Teitsworth S. W., Bonilla L. L., Canta-lapiedra I. R., Solitary-wave conduction in p-type Ge under time-dependent voltage bias , Phys. Rev. B, 1996,53:1327
    
    [12] Wang C., Cao J.C., Current oscillation and chaotic dynamics in superlattices driven by crossed electric and magnetic fields, Chaos, 2005,15:013111
    
    [13] Sun B. Q., Wang J. N., Ge W. K., Wang Y. Q., Jiang D. S., Zhu H. J., Wang H. L., Deng Y. M., Feng S. L., Current self-oscillation induced by a transverse magnetic field in a doped GaAs/AlAs superlattice, Phys. Rev. B, 1999, 60: 8866
    
    [14] Aoki K., Matsuura A. and Takahashi Y., Period-doubling route to chaos and novel application principles in S-shaped NDR instabilities, Semicond. Sci. Technol., 1994,9:607
    
    
    [15] Scholl E., Nonlinear Spatio-Temporal Dynamics and Chaos in Semicon- doctors Cambridge University Press, Cambridge, 2001
    
    [16] Hiipper G., Scholl E., Dynamic Hall effect as a mechanism for self-sustained oscillations and chaos in semiconductors, Phys. Rev. Lett., 1991,66: 2372-2375
    
    [17] Hess K., Advanced Theory of Semiconductor Devices, Prentice Hall, New Jersey, 1988
    
    [18] Brennan K.F., Park D.H., Theoretical comparison of electron real-space transfer in classical and quantum two-dimensional heterostructure systems, J. Appl. Phys., 1989,65:1156
    
    [19] Glisson T. H., Hauser J. R., Littlejohn M. A., Hess K., Streetman B. G., Shichijo H., Monte Carlo simulation of real-space electron transfer in GaAs-AlGaAs heterostructures, J. Appl. Phys., 1980, 51: 5445
    
    [20] K.Hess, H.Morkoc, H.Shichijo, B.G.Streetman, Negative differential resistance through real-space electron transfer, Appl. Phys.Lett., 1979, 35: 469
    [1] Esaki L. and Chang L. L., New Transport Phenomenon in a Semiconductor "Superlattice", Phys. Rev. Lett., 1974, 33: 495-498
    
    
    [2] Capasso F., Luryi S, Tsang W. T., Bethea C. G., and Levine B. F., New Transient Electrical Polarization Phenomenon in Sawtooth Superlattices, Phys. Rev. Lett, 1983,51:2318-2321
    
    [3] Choi K. K, Levine B. F., Bethea C. G., Walker J, Malik R. J., Negative differential photoconductance in an alternately doped multiple quantum well structure, Appl. Phys. Lett., 1988, 52: 1979
    
    [4] Mimura H, Hosoda M, Ohtani N, Tominaga K, Fujita K, Watanabe T, Grahn H. T. and Fujiwara K., Electric-field domain formation in type-II superlattices, Phys. Rev.B, 1996,54:R2323
    
    [5] Sun, Z. Z., He H. T, Wang J. N., Wang S. D. and Wang X. R, Limit-cycle-induced frequency locking in self-sustained current oscillations in superlattices, Phys. Rev. B, 2004, 69: 045315
    
    [6] Oriols X, Alarcon A. and Mateos J, Quantum transport under high-frequency conditions: application to bound state resonant tunnelling transistors, Semicond. Sci. Technol. 2004, 19: L69-L73
    
    [7] Wacker A, and Jauho A.-P, Quantum Transport: The Link between Standard Approaches in Superlattices, Phys. Rev. Lett, 1998, 80: 369-372
    
    [8] Zhang Y. H, Yang X. P, Liu W, Zhang P.H. and Jiang D. S, New formation mechanism of electric field domain due to Γ - X sequential tunneling in GaAs/AlAs superlattices, Appl. Phys. Lett, 1994, 65:1148
    
    [9] Prengel F, Wacker A. and Scholl E, Simple model for multistability and domain formation in semiconductor superlattices, Phys. Rev. B,1994,50:1705-1712
    [10] Choi K. K., Levine B. F., Malik R. J., Walker J. and Bethea C. G., Periodic negative conductance by sequential resonant tunneling through an expanding high-field superlattice domain, Phys. Rev. B, 1987, 35:4172-4175
    
    [11] Kwok S. H., Grahn H. T., Ramsteiner M., Ploog K., Prengel F., Wacker A., and Scholl E., Murugkar S. and Merlin R., Nonresonant carrier transport through high-field domains in semiconductor superlattices, Phys. Rev. B, 1995, 51: 9943-9951
    
    [12] Grahn H. T., Haug R. J., Muller W. and Ploog K., Electric-field domains in semiconductor superlattices: A novel system for tunneling between 2D systems, Phys. Rev. Lett., 1991, 67: 1618-1621
    
    [13] He H. T., Sun Z. Z., Wang X. R., Wang Y. Q., Ge W. K. and Wang J. N., External ac-signal-controlled dynamics of electric field domains in a GaAs/AlAs superlattice, Solid State Commun., 2005,136: 572-575
    
    [14] Ohtani N., Egami N., Grahn H. T. and Ploog K. H., Phase diagram of static and dynamic electric field domain formation in semiconductor superlattices, Physica B, 1999, 272: 205-208
    
    [15] Kawasaki K., Imazawa M., Kawashima K. and Fujiwara K., Exciton resonance induced dips in photocurrent spectra of weakly coupled GaAs/AlAs superlattice p-i-n diodes: barrier thickness dependence, Physica E, 1999, 5: 117-123
    
    [16] Wu J. Q., Jiang D. S. and Sun B. Q., Room-temperature microwave oscillation in AlAs/GaAs superlattices, Physica E, 1999,4:137-141
    
    [17] Ohtani N., Egami N., Grahn H. T. and Ploog K. H., Carrier density dependence of transitions between chaotic and periodic photocurrent oscillations in undoped GaAs/AlAs superlattices, Physica B,1998, 249-251: 878-881
    [18] Kwok S. H., Norris T. B., L. L. Bonilla, Galan J., Cuesta J. A., Martinez F. C., Molera J. M., Grahn H. T. and Ploog K., Domain-wall kinetics and tunneling-induced instabilities in superlattices, Phys. Rev. B,1995,51: 10171-10174
    
    [19] Bonilla L. L., Galan J., Cuesta J. A., Martinez F. C. and Molera J. M., Dynamics of electric-field domains and oscillations of the photocurrent in a simple superlattice model, Phys. Rev. B, 1994, 50: 8644-8657
    
    [20] Grahn H., Joerg K., Ploog K., Bonilla L. L., Galan J., Kindelan M., Moscoso M., Self-oscillations of the current in doped semiconductor superlattices, Jpn. J. Appl. Phys., 1995, 34:4526
    
    [21] Kastrup J., Hey R., Ploog K. H., Grahn H. T., Bonilla L. L., Kindelan M., Moscoso M., Wacker A. and Galan J., Electrically tunable GHz oscillations in doped GaAs/AlAs superlattices, Phys. Rev. B, 1997, 55:2476
    
    [22] Wacker A., Moscoso M., Kindelan M., and Bonilla L. L., Current-voltage characteristic and stability in resonant-tunneling n-dopedsemiconductor superlattices, Phys. Rev. B, 1997, 55: 2466
    
    [23] Sanchez D., Bonilla L. L. and Platero G., Temperature dependence of current self-oscillations and electric-field domains in sequential- tunneling doped superlattices, Phys. Rev. B, 2001, 64:115311
    
    [24] Li C.Y., Sun B.Q., Jiang D.S. and Wang J.N., Analysis of the temperature-induced transition to current self-oscillations in doped GaAs/AlAs superlattices, Semicond. Sci.Technol., 2001,16: 239-242
    
    [25] Wang X. R., Wang J. N., Sun B.Q., and Jiang D. S., Anomaly of the current self-oscillation frequency in the sequential tunneling of a doped GaAs/AlAs superlattice, Phys. Rev. B, 2000, 61:7261
    [26] Bulashenko O. M., Garcia M. J. and Bonilla L. L., Chaotic dynamics of electric-field domains in periodically driven superlattices, Phys. Rev. B, 1996, 53:10008-10018
    
    [27] Ohtani N., Egami N., Grahn H. T. and Ploog K. H., Carrier density dependence of transitions between chaotic and periodic photocurrent oscillations in undoped GaAs/AlAs superlattices, Physica B, 1998,249-251: 878-881
    
    [28] M.Zwolak, D.Ferguson and M. DiVentra, Chaotic transport in low-dimensional superlattices, Phys. Rev. B, 2003, 67:081303
    
    [29] Sun B. Q., Wang J. N., Jiang D. S., Wu J. Q., Wang Y. Q. and Ge W. K., Self-sustained oscillations caused by magnetic field in a weakly-coupled GaAs/AlAs superlattice, Physica B, 2000,279:220-223
    
    [30] Sun B. Q., Wang J. N., Ge W. K., Wang Y. Q., Jiang D. S., Zhu H. J., Wang H. L., Deng Y. M., and Feng S. L., Current self-oscillation induced by a transverse magnetic field in a doped GaAs/AlAs superlattice, Phys. Rev. B, 1999, 60:8866
    
    [31] Sun B. Q., Wang J. N. and Jiang D. S., Transverse magnetic field effect on the current hysteresis of doped GaAs/AlAs superlattice, Semicond. Sci. Technol., 2005, 20:947
    
    [32] Wang C., Cao J.C., Current oscillation and chaotic dynamics in superlattices driven by crossed electric and magnetic fields, Chaos, 2005,15: 013111
    
    [33] Wang X. R. and Niu Q., General analysis of instabilities and oscillations of the sequential tunneling in superlattices, Phys. Rev. B, 1999, 59:R12755
    
    [34] Yury A. M., Vladimir N. M. and Maxim P. T., Resonant tunneling in weakly coupled GaAs/AlGaAs superlattices in a transverse magnetic field: A probe of electronic distribution function, Physica E, 2006, 32: 297-300

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700