用户名: 密码: 验证码:
黄河口碳输运过程及其对莱州湾的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
河口是陆地碳储库向海洋碳储库碳输运的通道,河口的物理、化学、生物过程在空间尺度和时间尺度上的变化程度相对于陆地和海洋都比较剧烈,这些剧烈的河口过程对陆地向海洋的碳循环能够产生明显的影响,从而导致碳的有效输送通量发生变化,河口有效的碳通量研究作为补充目前全球碳循环中的循环途径不闭合问题的重要方面,逐渐成为全球碳循环研究的热点。黄河是世界上著名的高浑浊度河流,其陆源碳的入海对渤海乃至整个西北太平洋边缘海的生物地球化学过程会产生重要影响,研究黄河口碳的输运过程及有效入海通量,对于更完整、更准确地探讨全球陆地碳储库向海洋碳储库碳的单向输运过程具有重要的代表性。本文在国家自然科学基金委员会、科技部项目的支持下,在黄河口淡咸水混合带进行了汛期(2004.9;2005.9)和非汛期(2004.4;2006.4)4个航次的考察,并结合黄河调水调沙过程对莱州湾内碳参数分布开展了2005.7;2005.9两个航次的调查,对汛期和非汛期黄河口碳的输运过程及有效入海通量进行了研究,并对黄河碳输运对莱州湾内碳体系的影响作了科学的评价。本文内容主要有四个部分:①黄河口混合带有机碳的输运特征及有效通量;②黄河口无机碳的输运过程及有效通量;③黄河口pCO_2的时空分布及维持机制;④黄河碳输运对莱州湾碳参数的影响。主要实验结果和结论如下:
     颗粒有机碳:黄河泥沙中POC%与泥沙中值粒径增加有良好的指数下降关系,黄河泥沙中POC%的极限值大约为0.60%。黄河悬浮物中颗粒有机碳的含量在进入河口前比较稳定,约为0.36%,接近于黄土高原土壤有机碳的背景值0.39%,在河口低盐度区(0     溶解有机碳:可能受到人工堤坝调控的影响,汛期和非汛期黄河进入河口时溶解有机碳的含量较为稳定,分别为2.60mg/l和3.01mg/l;汛期和非汛期河口感潮河段沉积物向上覆水释放DOC能导致黄河DOC的有效入海通量分别增加10%和20%左右。当悬浮物含量超过455mg/l时,黄河入海的有机碳以颗粒态为主;反之,以溶解态为主。
     溶解无机碳:黄河口DIC含量普遍高于世界上其他河口,季节分布特征是汛期DIC小于非汛期。汛期和非汛期黄河口DIC分别在S>5和S>18的高盐度区保守性降低,低盐度区DIC亏损的原因是由于碳酸钙的沉降作用,这种沉降作用是以Ca2+ + HCO3-→CaCO3 + CO_2 (g) + H2O的形式进行的。受河口区域碳酸钙沉降作用的影响,黄河流域风化作用吸收的CO_2在河口将会有10%重新释放到大气中。黄河口淡咸水混合过程中pH会出现相对于淡水端异常升高的现象,这种现象的出现是由于混合过程中pCO_2相对于[HCO3-]更为迅速的降低引起的,可以通过黄河口混合区相对于淡水进入河口前pH的异常升高的区域来表征碳酸钙的沉降作用发生的盐度范围。
     颗粒无机碳:黄河口悬浮物中碳酸盐含量较高,这导致碱度受悬浮物影响较大,只有当悬浮物含量小于53mg/l时,悬浮物对碱度的影响可以忽略不计,因此测定黄河口的碱度时必须进行过滤;黄河口颗粒无机碳浓度主要受控于悬浮物含量,陆源悬浮物中PIC%稳定在1.75%左右,当悬浮物含量小于200mg/l时,由于浮游植物构成的海源悬浮物对陆源悬浮物的稀释作用,悬浮物中PIC%会迅速下降。黄河口泥沙沉降作用对颗粒无机碳的截留效率约为80%。
     二氧化碳分压(pCO_2):黄河口悬浮物在低盐度区域大量沉降,颗粒有机碳也随之沉降下来,从而使耗氧细菌所利用的碳源迅速减少,表观耗氧量迅速降低,水体中的pCO_2也相应的在盐度0-5的区域迅速下降,由于高碳酸氢盐的黄河水中存在以下平衡: Ca2+ + HCO3-→CaCO3↓+ CO_2 (g) + H2O当pCO_2下降时,平衡会向右移动,导致黄河低盐度区发生碳酸钙的沉降现象使DIC发生亏损;因此,黄河口低盐度区悬浮泥沙的大量沉降作用能够导致pCO_2迅速下降,这是驱动黄河口发生碳酸钙沉降作用的主要机制。另外,非汛期(4月份)黄河口磷酸盐含量较高,随着盐度0-5的区域悬浮物的大量沉降,水体光的透射率增加,使得浮游植物消耗CO_2也能够加剧碳酸钙的沉降作用,因此非汛期黄河口碳酸钙的沉降范围会扩展到盐度为0-18的区域。从整体上看,黄河口在低盐度区域生物耗氧呼吸作用和碳酸钙的沉降作用是控制水体中pCO_2的主要因素,而高盐度区pCO_2可能主要来源于海水对高碱度、高pH的黄河水的酸化作用。
     受黄河调水调沙的影响,巨量的黄河淡水输入能够造成莱州湾盐度整体性下降,莱州湾溶解性碳(DOC、DIC)的分布都表现为由西南部向东北部外海逐渐降低的趋势,调水调沙期间莱州湾DOC、DIC具有同源性,应以黄河输入为主。但9月份小清河入海流量增大后明显能对莱州湾西南部DOC、DIC的分布产生影响。通过对悬浮物中POC%的分析可以发现造成莱州湾内靠近黄河口和南部沿岸区两个POC浓度高值区的因素分别是受黄河陆源输入和浮游植物的影响。黄河口水体中较高的碳酸盐对pCO_2可能具有缓冲作用,因此黄河口及莱州湾明显表现为大气CO_2的源区,不会成为汇区。通过PIC的分析,可以发现莱州湾内陆源和海源悬浮物的分界线约为30mg/l,悬浮物中的PIC可以示踪黄河泥沙在莱州湾的扩散范围,黄河调水调沙输入的巨量泥沙可能最终在莱州湾内堆积。
The transport of carbon by rivers is an important component of the global carbon cycle. Of the well-documented 0.9 Gt carbon carried by world rivers each year, about 40% is organic and the remaining 60% is inorganic. Despite the large quantities of carbon delivered from rivers, only a small fraction of it is transported to the adjacent shelf and open ocean. Estuaries are the primary fresh-salt water interface. They are extremely dynamic systems, characterized by strong physico -chemical gradients, enhanced biological activity (both heterotrophic and autotrophic) and intense sedimentation and resuspension. Estuaries play an important role in transportation of dissolved and particulate material from the continent to the marine system, however very little is known about the estuarine processes that control the fate of riverine inorganic and organic carbon. The Yellow River, as one of the high turbid river, has important effect on carbon cycle of North -west Pacific Ocean, to better understand the effect of estuarine processes on riverine inorganic and organic carbon, during this study, the distributions of DOC, DIC, POC and PIC in Yellow river estuary were investigated during both dry (April, 2004; April, 2006) and wet (September, 2004; September,2005) seasons. Estuarine processes controlling carbon transport in the estuaries were discussed, and net carbon flux was calculated. Moreover, the effects of Yellow River carbon transport on Laizhou Bay were estimated by July and September 2005 cruises.
     DOC and DIC concentrations of Yellow river during dry seasons were higher than during wet seasons. The effective concentrations of DOC (CDOC*) were higher than the observed DOC at zero salinity. This input of DOC in the Yellow River estuary was due to sediment de-sorption processes in low salinity region. In contrast to DOC, the effective concentrations of DIC were 10% lower than the DIC measured at freshwater end, the loss of DIC was caused by CaCO3 precipitation in low salinity region.
     POC and PIC content of the particles stabilized to a constant value ( 0.51% and 1.75% respectively ) within the turbidity maximum zone (TMZ) and showed no noticeable seasonal variations . A rapid drop of PIC and rose of POC occurred simultaneously dropped of PIC% and rose of POC% outside the TMZ. POC% increase with decreasing particles size, more than 80% POC concentrate onΦ<16μm size particles and POC inΦ<32μm size particles account to 95% flux from Yellow river estuary to Bohai sea. When TSS=455mg/l, the ratio of DOC/POC is 1, which indicate that organic carbon transport in Yellow river is in the form of POC. They are due to an intense dilution of riverine inorganic-rich particles into a pool of aquatic organic-poor particles outside TMZ. Annually, the Yellow River transported 4.13×105 t of DIC, 3.84×104 t of DOC, 1.21×106 t of PIC and 3.54×104 t of POC to the ocean.
     With the dramatically sediment of POC in upper estuary, the partial pressure of CO_2 (pCO_2), which is derived from biogenic respiration, swiftly decrease and lead to CaCO3 precipitation in low salinity regions, the pH value will simultaneously increase in this area. Instant increasing pH value can be used as index of CaCO3 precipitation in Yellow river estuary, during dry season, photosynthesis will enlarge CaCO3 precipitation to salinity of 18. According to dissolved matter mixing model in estuary, the observation of 1-to-1 removal of TA and DIC provide just evidence that DIC removal we observed in the field is a result of HCO3- removal. The process can clean 10%(4.59×104 tons)DIC which is transported by freshwater both in dry and wet weathers, and ten percent of CO_2 (8.40×104t) which is absorbed by chemical weathering process in drainage basin will release to atmosphere in Yellow river estuary.
     The distribution of DOC and DIC in Laizhou Bay were controlled by Yellow river during the test of water-sediment regulation of the Yellow river (July,2005), however, with runoff of Yellow river decreasing and Xiaoqing river increasing in September 2005, DOC and DIC from Xiaoqing river will influence Southwest Laizhou Bay. According to the analysis of chlorophyll-a and mineral in TSS, when TSS is less than 30mg/l, phytoplankton increase but sediment from Yellow river decrease in TSS. Simultaneously,∑C20-/∑C20+ and CPI of n-alkane respectively increase and decrease. TSS=30mg/l can be regarded as effective boundary between allochthonous TSS and autochthonous TSS. Sediment from the Yellow river diffuse to southern river-mouth in surface layer; However in bottom layer, sediments diffusion range concentrate at northern and southern river-mouth of Yellow river, the central section of Laizhou Bay is possible habitation of sediment from the Yellow river.
引文
Abril G., Etcheber H., Le H. P., Bassoullet P., Boutier B. and Frankignoulle M. Oxic/anoxic oscillations and organic carbon mineralisation in an estuarine maximum turbidity zone (The Gironde, France). Limnology and Oceanography, 1999,44: 1304-1315.
    Abril G., Etcheber,H. B.Delille, Frankignoulle M., Borges A.V.. Carbonate dissolution in the turbid and eutrophic Loire estuary. Marine Ecology Progress Series, 2003,259: 129-138.
    Abril G., M. Nogueira, H. Etcheber, G. Cabec?adas, E. Lemaire and M. J. Brogueira. Behaviour of Organic Carbon in Nine Contrasting European Estuaries. Estuarine, Coastal and Shelf Science,2002,54: 241-262.
    Abril, G., Etcheber, H., Borges, A.V., Frankignoulle, M.,.Excess atmospheric carbon dioxide transported by rivers into the Scheldt estuary. C. R. Acad. Sci., II A 2000,330:761– 768.
    Adrin B Burd, Moran S B, Jackson G A. A coupled adsorption-aggregation model of the POC/234Th ratio of marine particles. Deep-Sea Research, 2000, 47: 103-120.
    Alvarez-Salgad X A, Miller A E J. Dissolved organic carbon in a large macrotidal estuary (the Humber, UK): Behaviour during estuarine mixing. Marine Pollution Bulletin, 1998,37: 216-224
    Anonymous. Final resolution of the symposium on the classification of brackish waters. Archo ceanography Limnology,1959, 11, 243-248.
    Barth J A C, Cronin A A and Dunlop C J et al., Influence of carbonates on the riverine carbon cycle in an anthropogenically dominated catchment basin: evidence from major elements and stable carbon isotopes in the Lagan River. Chemical Geology. 2003,200:203-216.
    Bergamaschi B A, Tsamakis E, Keil R G, et al. The effect of grain size and surface area on organic matter, lignin and carbohydrate concentration, and molecular compositions in Peru margin sediments. Geochim Cosmochim Acta, 1997, 61(6): 1247-1260.
    Biddanda B, Opsahl S, Benner R. Plankton respiration and carbon flux through bacterioplankton on the Louisiana shelf . Limnol Oceanogr, 1994, 39( 6): 1259 - 1275.
    Bouillon, S., F. Dahdouh-Guebas, A. V. V. S. Rao, N. Koedam, and F. Dehairs.Sources of organic carbon in mangrove sediments: Variability and possible implications for ecosystem functioning.Hydrobiologia, 2003,495:33-39.
    Brasse S., M.Nellen, R. Seifert, W. Michaelis. 2002. The Carbon Dioxide System in the Elbe Estuary. Biogeochemistry, 59, ( 1/2): 25-40.
    Cai W.J., William J. Wiebe, Yongchen Wang and Joan E, Sheldon.Intertidal marsh as a source of dissolved inorganic carbon and a sink of nitrate in the Satilla River-esturaine complex in the southeastern .U.S. Limnology and Oceanography, 2000,45:1743-1752.
    Cai W-J. Pometoy L R, Moran M. A. and Wang Y. Oxygen and carbon dioxide mass balance in the estuarine/ intertidal marsh complex of five rivers in the Southeastern . United States. Limnology and Oceanography, 1999,44: 639-649.
    Cai, W.J., Minhan Dai, Yongchen Wang,et al.The biogeochemistry of inorganic carbon and nutrients in the Pearl River estuary and the adjacent Northern South China Sea. Continental Shelf Research ,2004,24:1301-1319.
    Cai, W.-J., Y. Wang, and R.E. Hodson. Acid-base properties of dissolved organic matter in the estuarine waters of Georgia. Geochim. Cosmochim. Acta.,1998,62:473-483.
    Carlson C A,Ducklow,H W,Hansell,D A,et al.Organic carbon partitioning during springphytoptankton blooms in the Ross Sea polynya and the Sargasso Sea.Limnology and Oceanography,1998,43:375-386.
    Cauwet G, Mackenzie F T. Carbon inputs and distribution in estuaries of turbid river: the Yang Tze and Yellow Rivers(China) .Marine Chemistry, 1993, 43: 235-246.
    Cauwet, G., Sidorov, I.. The biogeochemistry of Lena River: organic carbon and nutrients distribution. Marine Chemistry , 1996,53: 211-227.
    Chanton, J. P and F. G. Lewis. Plankton and dissolved inorganic carbon isotopic composition in a river-dominated estuary: Apalachicola Bay, Florida. Estuaries, 1999,22: 575-583.
    Chen, C. T.A., Lin, C.M., Huang, B.T., Chang, L.F.. Stoichiometry of carbon, hydrogen, nitrogen, sulfur and oxygen in the particulate matter of the western North Pacific marginal seas. Mar. Chem, 1996 ,54:179-190.
    Chen, C.T.. Oxygen solubility in seawater. In: Battino, R. (Ed.), Solubility Data series, Vol. 7, Oxygen and Ozone. Pergamon Press, Oxford, pp. , 1981,41-44.
    Christoph M, M. K. Abbasi, Claudia K, et al. .Soil Respiratory Quotient Determined via Barometric Process Separation Combined with Nitrogen-15 Labeling . Soil Sci. Soc. Am. J. , 2004,68:1610-1615 .
    Cifuents L A, Eldridge P M. A mass and isotope balance model of DOC mixing in estuaries. Limnol. Oceanogr, 1998,43: 1872-1882.
    Cloern J E, Grenz C, Vidergar L L. An empirical model of the phytoplankton: carbon ratio-the conversion factor between productivity and growth rate. Limnology and Oceanography, 1995,40:1313-1321.
    Coffin, R. B., L. A. Cifuentes.Stable isotope analysis of carbon cycling in the Perdido Estuary, Florida. Estuaries, 1999,22: 917-926.
    Coppola Laurent, ?rjan Gustafsson,Per Andersson, et al. Fractionation of surface sediment fines based on a coupled sieve-SPLITT (split flow thin cell) method. Water Research, 2005, 39: 1935-1945.
    Craig H. The geochemistry of stable carbon isotopes. Geochim. et Cosmochim. Acta, 1953, 3:53-92.
    Deines P. The isotope composition of reduced organic carbon. In: Handbook of Environmental Isotope Geochemistry (Fraitz P and J Ch Fontes eds.), Elsevier Scientific Pubilishing Company ,1980.329-406.
    Dessery, S., Dulac, C., Laurenceau, J. M. & Meybeck, M. Evolution du carbone organique‘algal’et‘de′tritique’dans trois rivie`res du bassin Parisien. Archive of Hydrobio- logy ,1984 ,100:235-260.
    Dixon R.K.,Brown S.,Houguton R.A.Carbon pool sand flux of global forest ecosystem. Science,1994,262:185- 190.
    Etheridge D M, Steel L P, Langenfelds R L, Francey, R J, Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic ice and firn. Journal of Geophysical Research, 1996,101: 4115-4128.
    Fang,J.Y., A.P.Chen, S Q Zhao, L J Ci. Estimating biomass carbon of China’s forests: supplym- entary notes on report published in Severe by Fang et al. Acta Phytoecologica Sinica, 2002,26:243-249.
    Field,C.B and J.Y.Fung. The not-so-big U.S. carbon sink. Science, 1999,285:544-545.
    Frankignoulle M, Abril G, Borges A, et al..Carbon dioxide emission from European estuaries.Science, 1998,282: 434-436.
    Frankignoulle, M., I. Bourge and R.Wollast. Atmospheric CO2 fluxes in a highly polluted estuary (the Scheldt). Limnol. Oceanogr, 1996,41:365-369.
    Frankignoulle, M., I. Bourge and R.Wollast. Atmospheric CO2 fluxes in a highly polluted estuary (the Scheldt). Limnol. Oceanogr, 1996. 41:365-369.
    Gan,W.B.,Chen,H.M. and Han,Y.F.. Carbon transport by the Yangtze(at Nanjing)and Huanghe(at Jinan) rivers,People’s Republic of China. In:E.T.Degens(Editor),Transport of Carbon and Minerals in Major World Rivers,Part 2. Mitt.Geol.Palaontol.Inst.Univ.Hamburg, SCOPE/UNEP Sonderd., 1983,55:459-470.
    Hartley AM, House WA, Leadbeater BSC, Callow ME. Coprecipitation of phosphate with calcite in the presence of photosynthesising green algae. Water Res ,1997,31: 2261-2268.
    Hedges J I.Global biogeochemical cycles:progress and problems.Marine Chemistry,1992,39:67-93.
    Hedges J.I. and Keil, R.G.. Sedimentary organic matter preservation: an assessment and speculative synthesis. Marine Chemistry, 1995,49:81-115.
    Hedges J.I.,Keil R.G.and Bernner R. What happens to terrestrial organic matter in the ocean? Organic Geochemistry ,1997,27: 195-212.
    Hedges, J.I., Baldock, J.A., Ge′linas, Y., Lee, C., Peterson, M.L., Wakeham, S.G.. The biochemical and elemental compositions of marine plankton: a NMR perspective. Mar. Chem , 2002,78:47- 63.
    Heip, C. H. R., Goosen, N. K., Herman, P. M. J., Kromkamp, J., Middelburg, J. J. and Soetaert, K. Production and consumptipn of biological particles in temperate tidal estuaries. Oceanography and Marine Biology Annual Review, 1995 ,33: 1-149.
    Hellings, L., F. Dehairs, S. Van Damme, and W. Baeyens. Dissolved inorganic carbon in a highly polluted estuary (the Scheldt). Limnol. Oceanogr , 2001,46:1406-1414.
    Hem J D, Demayo A, Smith R A. Hydrogeochemistry of rivers and lakes.In Wolman M G (eds). The geology of America, 1990,(0/1):189-231.
    Herman P. M. J. and Heip C. H. R. Biogeochemistry of the Maximum Turbidity zone of Estuaries (MATURE): some conclusions. Journal of Marine Systems, 1999,22: 89-104.
    Hopkinson, .S. , Ishi Buffam, John Hobbie et al.. Terrestrial inputs of organic matter to coastal ecosystems: An intercomparison of chemical characteristics and bioavailability. Biogeochemy,1998,43(3):211-234.
    Hu,C.,Ji,Z.and Wang,T.Dynamic characteristics of sea current and sediment dispersion in the Yellow River Estuary.International Journal of Sediment Research,1998,13(2):16-26.
    Hyuna J.H., Choi J. K., Chung K. H., Yang E.-J. and Kim M.-K.. Tidally Induced Changes in Bacterial Growth and Viability in the Macrotidal Han River Estuary, Yellow Sea. Estuarine, Coastal and Shelf Science, 1999,48:143-153.
    IGBP, IHDP, WCRP, The carbon challenge: An IGBP-IHDP-WCRP Joint Project. Stockholm: International Geosphere and Biospere Program, 2001, pp. 3-12.
    Ittekkot V,Safiullah S,Mycke B.Seasonal variability and geochemical significance of organic matter in the River Ganges,Ban gladesh.Nature,1985,317:800-802.
    Jonge VN, Villerius LA. Possible role of carbonate dissolution in estuarine phosphate dynamics. Limnol Oceanogr , 1989,34:332-340.
    Keil R G, Mayer L M, Quay P D, et al. Loss of organic matter from riverine particles in deltas.Geochim. Cosmochim Acta, 1997, 61(7): 1507-1511.
    Kempe S, Pettine M, Cauwet G. Biogeochemistry of European rivers. In Biogeochemistry of Major World Rivers, SCOPE ,1991, 42: 169-212.
    KirchmanD L.,LAncelot C.,Fasham,M.,et a1.Dissolved organic matter in biogeochemical models of the ocean [A].Towards a Model of Ocean Biogeochemical Processes[M].Berlin:Springer,1993,209-225.
    Laane, R. W. P. M. . Chemical characteristics of the organic matter in the waterphase of the Ems-Dollart estuary. BOEDEPub. en Verslagen ,1982, 6, 134.
    Legendre L, Courties C, Troussellier M. Flow cytometry in oceanography 1989 - 1999
    environmental challenges and research trends . Cytometry , 2001, 44 :164 - 172.
    Li G X,Wei H L,Yue S H et al.Sedimentation in the Yelow River delta,part II:suspended sediment dispersal and deposition on the subaqeous delta.Marine Geology,1998,149:l13- 131.
    Liu Dongsheng. The loess deposit in the middle huanghe basin. Beijing: Science Press,964:244. Liu T.S. Loess in China.New York: Springer,1985:224.
    Ludwig W,Probst J L,Kempe S.Predicting the oceanic input of organic carbon by continental erosion.Global Biogeo-chemistry Cycle,1996,10(1):23-41.
    Mantoura R F C, Woodward E M S. Conservative behaviour of riverine dissolved organic carbon in the Severn Estuary: chemical and geochemical implications. Geochim. Cosmochim. Acta ,1983,4: 1293-1309.
    Meybeck M.Carbon,nitrogen and phosphorus transport by world rivers.Am J Sci,1982,282(4):401-450.
    Miller, A. E. J. Seasonal investigation of dissolved organic carbon dynamics in the Tamar Estuary, U.K. Estuarine, Coastal and Shelf Science, 1999,49: 891-908.
    Milliman J D, Xie Q C, Yang Z. Transfer of particulate organic carbon and nitrogen from the Yangtze River to the Ocean. American Journal of Science, 1984,284:824-834.
    Milliman,J.D.,Meade,R.H.World-wide delivery of river sediments to the oceans.Journal of Geology,1983,(91):1-21.
    Moran, M. A., Sheldon, W. M. and Sheldon, J. E. Biodegradation of riverine dissolved organic carbon in five estuaries of the Southeastern United States. Estuaries, 1999, 22: 55-64.
    Muylaert,K. Dasseville,R.et al., Dissolved organic carbon in the freshwater tidal reaches of the Schelde estuary. Estuarine, Coastal and Shelf Science ,2005,64:591-600.
    Neal C, Williams RJ, Jarvie HP, Neal M, Wickham H, Hill L. Phosphorus-calcium carbonate solubility relationships in a lowland chalk stream impacted by sewage inputs and phosphorus remediation: an assessment of phosphorus self cleansing mechanisms in natural waters. Sci Total Environ ,2002,282/283:295-310.
    Neal C. Calcite saturation in eastern UK rivers. The Science of the Total Environment, 2002,282: 311-321.
    Neal, C., House, W.A., Down, K.. An assessment of excess carbon dioxide partial pressures in natural waters based on pH and alkalinity measurements. Sci. Total Environ, 1998,210/211:173-185.
    Officer C B, Lynch D R. Dynamics of estuarine mixing. Estuary Coastal Shelf Science, 1981, 12: 525-533.
    Ogawa H, Ogura N. Comparison of two methods for measuring dissolved organic carbon in seawater. Nature, 1992, 356:696-698.
    Ongley E D,Krishnappan B G,roppo I G et al.. Cohesive sediment transport: emerging issues for toxic chemical management. Hydrobiologia ,1992,235/236: 177-187.
    Pacala, S.W.,G.C.Hartt,D.Baker.et al..Consistent laod and atmosphere based US carbon sink estimates. Science,2001,292:2316-2320.
    Papadimitriou S, Kenndy H, Bentaleb I, et al.. Dissolved organic carbon in sediments from the eastern North Atlantic. Marine Chemistry, 2002,79: 37-47.
    Park, K., C. L. Osterberg and W. O. Forster. Chemical budget of the Columbia River. In A. T. Pr uter, D.L. Alverson. The Columbia River estuary and adjacent ocean waters, University of Washington Press, Seattle: , 1972 ,123-134.
    Parsons T R Particulate organic carbon in the sea [A].Riley J P,Skirrow G Chemical Oceanography [C]. London:Academic Press,1975,2:365-383.
    Peter A R, James E B. Use of 14C and 13C natural abundances for evaluating riverine, estuarine, and coastal DOC and POC sources and cycling: a review and synthesis. Organic Geochemisty , 2001, 32: 469-485.
    Peterson B, Fry B, Hullar M, Saupe S. The distribution and stable carbon isotopic composition of dissolved organic carbon in estuaries. Estuaries, 1994,17 :111-121.
    Prentice I C, Farquhar G D, Fasham M J R, Goulden M L, Heimann M, Jaramillo V J, Kheshgi H S, QuéréC L, Scholes R J, Wallace D W R, The carbon cycle and atmospheric CO2. In: Houghton J T, Yihui D (Eds.), The Intergovernmental Panel on Climate Change (IPCC). Third Assessment Report. 2001. Cambridge: Cambridge University Press.
    Raymond, P. A. and Bauer, J. E. Bacterial consumption of DOC during transport through a temperate estuary. Aquatic Microbial Ecology, 2000,22: 1-12.
    Regnier, P., Wollast, R. and Steefel, C. I.. Long-term fluxes of reactive species in macrotidal estuaries: estimates from a fully transient, multicomponent reaction-transport model. Mar. Chem , 1997,58: 127-145.
    Richter, D D, Markewitz D, Trumbore S E, Wells C G . Rapid accumulation and turnover fo soil carbon in a reestablishing forest. Nature ,1999, 400: 56-58.
    Riley J.P. and G. Sklrrow. Chemical Oceanography. Academic Press, 1976 , 2:1-149.
    Schlmel.D.S.,J.I.House,K.A.Hibbard, et al..Recent patterns and mechamisms of carbon exchange by terrestrial ecosystem. Nature ,2001,414:169-172.
    Servais, P., Billen, G. and Hascoet, M-C.Determination of the biodegradable fraction of dissolved organic matter in waters. Wat. Res. ,1987, 21:445-450.
    Shevchenko, V. R.Dolotov, Y. S. Filatov, N. N. Alexeeva, T. N. Filippov, A. S. N?thig, E.-M. et al.. Bio-geochemistry of the Kem' River estuary, White Sea (Russia). Hydrology and Earth System Sciences, ,2005,9, ( 1/2):57-66.
    Shiller A M. The effect of recycling traps and upwelling on estuarine chemical flux estimates . Geochim. Cosmochim. Acta, 1996,60: 3177-3185.
    Smith E M, Kemp W M. Planktonic and bacterial respiration along an estuarine gradient responses to carbon and nutrient enrichment. Aquat Microb Ecol, 2003, 30 :251 - 261.
    Steben Bouillon, Michel Frankignoulle, Rrank Dehairs, Branko Velimirov, Alexander Eiler, Gwenael Abril, Henri Etcheber, and Alberto Vieira Borges. Inorganic and organic carbon biogeochemistry in the Gartami Godavari estuary ( Andhra Pradesh, India) duringpre-monsoon: The local impact of extensibe mangrove forests. Global Biogeochemical Cycles, 2003,17(4):1-12.
    Suzumura M, Kokubun H, Arata N. Distribution and characteristics of suspended particulate matter in a heavily eutrophic estuary, Tokyo Bay, Japan. Mar Pollut Bull. 2004, 49 (5-6) :496-503.
    Tan F. C. and Strain P. M..Sources,sinks and distribution of organic carbon in the St.Lawrence Estuary,Canada.Geochim.Cosmo chim.Acta,1983,47:125-132.
    Taylor, G.T., Way, J., Scranton, M.I.. Planktonic carbon cycling and transport in surface waters of the highly urbanized Hudson River estuary. Limnol. Oceanogr, 2003,48: 1779- 1795.
    The News and Editorial Staffs of Science.Breakthough of the year. Science,2001,294:2443-2447.
    Tipping E, Marker A F H, et al.. Organic carbon in the Humber river. The Science of the Total Environment, 1997,194/195: 345-355.
    Trefry, J. H., S. Metz, T. A. Nelson, R. C. Trocine, and B. J. Eadie. Transport of particulate organic carbon by the Mississippi River and its fate in the Gulf of Mexico. Estuaries, 1994, 1:839-849.
    Uncles, R.J., P.E. Frickers, A.E. Easton, M.L. Griffiths, C. Harris, R.J.M. Howland, A.W. Morris, D.H. Plummer and A.D.Tappin. Concentrations of suspended particulate organic carbon in the tidal Yorkshire Ouse River and Humber Estuary. The Science of the Total Environment ,2000, 251/252:233-242.
    Veyssy, E., Etcheber, H., Lin, R. G., Buat-Me′nard, P. & Maneux, E. Seasonal variations and origins of particulate organic carbon in the lower Garonne River at La Re′ole (SW France).Hydrobiologia, 1999,391:113-126.
    Walling,D.E., and Moorehead,P.W. The particle size characteristics of fluvial sediment:An overview. Hydrobiologia, 1989,176/177(1):125-149.
    Walling,D.E Fang D. Recent trends in the suspended sediment loads of the world rivers. Global Planet Change. 2003,39:111-126.
    Wang X. C., Chen R. F. and Gardner B. Sources and transport of dissolved and particulate organic matter in the Mississippi River plume and adjacent coastal waters of the northern Gulf of Mexico. Marine Chemistry ,2004, 89:241-256.
    Wanninkhof R., McGillis W.R., Acubic .Relationship between air-sea CO2 exchange and wind speed. Geophysical Research Letters, 1999,26:1889-1892.
    Wanninkhof R.H., Relationship between gas exchange and wind speed over the ocean. Journal of Geophysical Research, 1992, 97(C5):7373-7381.
    Weiss R. F., Carbon dioxide in water and seawater: the solubility of a non ideal gas.Marine Chemistry, 1974, 2: 203-215.
    Whitehouse B G, Macdonald RW, Iseki K, et al. Organic carbon and colloids in the Mackenzie river and Beaufort sea. Marine Chemistry. 1989, 26: 371-378.
    Wright,D.L. Dispersal of River Sediments in Coastal Seas:Six Contrasting Cases.Estuaries,1995,l8(3):494-508.
    Yang Z S, Milliman J D, Liu J P, et al. Yellow River's water and sediment discharge decreasing steadily. EOS, 1998,79: 589-592.
    Yang Z S,Wang Z X, Zhang A F et al.. Distribution and movement of suspended matter in Sumlner in Laizhou Bay,The Gulf of Bohai.J Ocean Uni Qingdao,1989,4(1):49-60.
    Zhai W.D., Dai M.H., Cai W.J., Wang Y.C. , Wang Z.H. High partial pressure of CO2 and itsmaintaining mechanism in a subtropical estuary: the Pearl River estuary, China Marine Chemistry , 2005,93: 21- 32.
    Zhang S,Gan W B,Ittekkot V.Organic matter in large turbid rivem:Huanghe and its estuary.Marine hemistry,1992,38(12):53-68.
    Zhang, J., Liu, S. M., Xu, H., Yu, Z. G., Lai, S. G., Zhang, H.,Geng, G. Y. & Chen, J. F. Riverine sources and estuarine fates of particulate organic carbon from North China in Late Summer. Estuarine, Coastal and Shelf Science,1998, 46:439-448.
    蔡德陵.黄河与长江河口区有机碳的同位素地球化学[A].张经.中国主要河口的生物地球化学研究[M].北京:海洋出版社,1996.160-187.
    陈静生,王飞跃,何大伟.黄河水质地球化学.地学前缘,2006,13(1):58-73.
    陈静生,张宇,于涛,何大伟.解决黄河耗氧有机物评价中存在问题的方法探讨—四
    论黄河耗氧有机物污染评价问题.环境科学学报,2005,25(3):279-284.
    陈静生,何大伟,张宇.黄河水的COD值能够真实反映其污染状况吗?环境化学,2003,22(6):611-614.
    陈静生,张宇,于涛,何大伟.对黄河泥沙有机质的溶解特性和降解特性的研究—再论黄
    河水的COD值不能真实反映其污染状况.环境科学学报,2004,24(1):1-5.
    陈静生,张宇,于涛,何大伟.泥沙对黄河水质参数COD、高锰酸钾指数和BOD5的影响—三论黄河的COD值与高锰酸钾指数不能真实反映其污染状况.环境科学学报,2004,24(3):369-375.
    陈泮勤,马振华,王庚辰译.地球系统科学.北京:地震出版社. 1992.
    陈彰榕.现行黄河口拦门沙的形态和演化.青岛海洋大学学报,1997,27(4):539-546.
    成国栋,薛春汀主编.黄河三角洲沉积地质学.北京:地质出版社,1997.
    范德江,杨作升,王文正.长江、黄河中碳酸盐组成及差异.自然科学进展,2002, 12 (1):60-64.
    范兆木,郭永盛.黄河三角洲沿岸遥感动态分析图集.北京:海洋出版社, 1992.123.
    方精云.探索CO2失汇之谜.植物生态学报,2002,26(2):255-256.
    高会旺,吴德星,白洁,石金辉,李正炎,江文胜. 2000年夏季莱州湾生态环境要素的分布特征.青岛海洋大学学报,2003,33(2):185-191.
    高全洲,陶贞.河流有机碳的输出通量及性质研究进展.应用生态学报, 2003, 14 (6):1000-1001.
    高全洲,沈承德,孙彦敏等.西江流域的有机碳侵蚀通量.沉积学报, 2000, 18(4):639-645
    高全洲,沈承德,孙彦敏,易惟熙.北江流域有机碳侵蚀通量的初步研究.环境科学,2001,22(2):12-18.
    高学鲁.中国近海典型海域溶解无机碳系统的生物地球化学特征.中国科学院海洋研究所博士论文,2005.
    韩鹏,倪晋仁.水土保持对黄河中游泥沙粒径影响的统计分析.水利学报,2001(8):69-74.
    胡春宏,曹文洪.黄河口水沙变异与调控I--黄河口水沙运动与演变基本规律.泥沙研究, 2003,10(5):1-8.
    胡春宏,曹文洪.黄河口水沙变异与调控II—黄河口治理方向与措施.泥沙研究, 2003,10(5):9-14.
    黄海挺,杨作升,张彩云.黄河口拦门沙动态研究.海洋科学,2003,27(6):35-37.
    黄河网(www.yellowriver.gov.cn)
    江文胜,苏健等.渤海悬浮物浓度分布和水动力特征的关系. 2002,24(增刊1): 213-217.
    江文胜,王厚杰.莱州湾悬浮泥沙分布形态及其与底质分布的关系.海洋与湖,2005, 36(2): 98-103.
    焦念志,王荣.海洋初级生产光动力学及产品结构.海洋学报,1994, 16(5):85-91.
    李福荣,陈国华,纪红等.珠江口海水碱度研究.青岛海洋大学学报,1999增刊:49-54.
    李岩,张龙军,苏征,王晓亮,潘建明.长江口淡水端淡、盐水混合表层pCO2的急剧变化及其影响机制.中国海洋大学学报, 2006 ,36 (2):295-298.
    李广雪.黄河入海泥沙扩散与河海相互作用.海洋地质与第四纪地质, 1999, 19(3):1-10.
    李国英,基于空间尺度的黄河调水调沙.人民黄河,2004,26(2):1-14.
    李晶莹,张经.黄河流域化学风化作用与大气CO2的消耗.海洋地质与第四纪地质, 2003, 22:43-49.
    刘建刚,郑克勋,傅伟宁,吴顺华.地下水碳酸平衡检查系统.中国工程科学, 2003,5(9):61-64.
    刘勇胜,陈沈良,李九发.黄河入海水沙通量变化规律.海洋通报, 2005, 24(6):1-8.
    马士德,谢肖勃,朱宿兰.辽东湾海域海水DOC,POC及间隙水中的DOC分布特征. 1995,6:46-49.
    孟春霞,邓春梅等.小清河口及邻近海域的溶解氧.海洋环境科学, 2005, 24(3):25-28.
    庞家珍,司书亨.黄河河口演变Ⅱ:河口水文特征及泥沙淤积分布.海洋与湖沼,1980,l1(4):295-305.
    秦宏国.枯、洪季黄河水沙输运的三维数值模拟机特征分析.中国海洋大学硕士论文,2005.
    宋金明,季学刚,李宁,高学鲁,袁华茂,詹天荣.一种海水中溶解无机碳的准确简易测定方法. 分析化学,2004,32(12): l689-1692.
    宋金明,徐亚岩,张英,李学刚,袁华茂.中国海洋生物地球化学过程研究的最新进展,海洋科学,2006,30(2):69-77.
    宋金明等,中国近海生物地球化学.济南:山东科技出版社, 2004. 606.
    孙秉一,王永辰,林光岩等.黄河口及邻近海域水体中TAlk的研究.海洋学报, 1988 , 10 (3) : 294-301.
    孙效功,杨作升,陈彰榕.黄河三角洲冲淤定量计算及其机制讨论.海洋学报,1993,(15):129-136.
    谭燕,张龙军,王凡等.夏季东海西部表层海水中的pCO2及海-气界面通量.海洋与湖沼, 2004, 35(3): 239-245
    陶贞,高全洲,姚冠荣,沈承德,邬俏钧,吴志才,刘冠超.增江流域河流颗粒有机碳的来源、含量变化及输出通量.环境科学学报,2004,24(5):789-795.
    陶澍,梁涛.伊春河河水溶解态有机碳含量和输出通量的时空变化.地理学报,1997,52(3):254-261.
    万修全,鲍献文,吴德星等. 2000年夏季莱州湾主要观测要素的分布特征.中国海洋大学学报,2004,34(1):7-12.
    王峰,张龙军.改进的喷淋—鼓泡式平衡器GC法测定海水中的Pco2.分析科学学报,2002, 18(1): 66-69.
    王厚杰,杨作升,毕乃双.黄河口泥沙输运三维数值模拟I—黄河口切变锋泥沙研究, 2006,4(2):1-9.
    王厚杰,杨作升等.2005年黄河调水调沙期间河口入海主流的快速摆动.科学通报, 2005, 50(23): 2656-2662.
    王开荣.黄河调水调沙对河口及其三角洲的影响和评价.泥沙研究, 2005,6:29-33.
    文启忠.中国黄土地球化学.北京,科学出版社,1988. p28.
    吴明清,文启忠,潘景瑜,刁桂仪.黄河中游地区马兰黄土主要化学成分的再研究.自然科学进展, 1996, 6(1): 80-85.
    严国安,刘永定.水生生态系统的碳循环及对大气CO2的汇.生态学报,2001,21(5):827-833.
    叶春生,侯志军,李泽刚.黄河口泥沙通量研究中时空分段的理论思考.人民黄河,2006,28(7):14-16.
    于志刚,米铁柱,谢宝东,姚庆祯,张经.二十年来渤海生态环境参数的演化和相互关系.海洋环境科学,2000,19(1):15-19.
    于志刚.黄河下游生源要素与渤海的生态环境.黄河河口问题及治理对策研讨会专家论坛,黄河水利出版社,郑州, 2003, 94-96.
    臧启运.黄河三角洲近岸泥沙.北京:海洋出版社,1996.152.
    张经.中国主要河口的生物地球化学研究.海洋出版社,1996.
    张龙军.东海海-气界面CO2通量研究.中国海洋大学博士论文,2004.
    张卫国,俞立中等.长江口南岸边滩沉积物重污染记录的磁诊断法.海洋与湖沼, 2000, 31(6):616-623.
    张正斌,陈镇东,刘莲生等.海洋化学原理与应用.北京:海洋出版社,1999,112-116.
    张正斌,刘莲生等.海洋物理化学.北京:科学出版社,1989,478-483.
    郑爱榕,李文权,陈敏.浮游植物释放的溶解有机碳对初级生产力测定的低估偏差研究.厦门大学学报(自然科学版), 1992,31(4);408-412.
    郑国侠,宋金明,戴纪翠.海洋碳迁移转化与主要化学驱动因子的相互关系.应用生态学报,2006,17(4):740-746.
    邹景忠,董丽萍,秦保平.渤海湾富营养化和赤潮问题的初步探讨.海洋环境科学,1983,2(2):41- 54.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700