用户名: 密码: 验证码:
低钾血症时机体钾离子变化规律及其调节机制的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:使用低钾饲料饲喂家兔建立缺钾动物模型,观察饲喂不同时间后家兔血浆钾离子浓度变化,测定红细胞、心肌、骨骼肌等细胞或组织的钾离子含量,探究机体缺钾时钾离子在不同组织的变化规律并探讨其间可能存在的相关性变化。同时测定机体不同细胞和组织中Na~+-K~+-ATPase的活性、蛋白含量及mRNA表达情况,寻找缺钾机体不同细胞或组织钾离子变化的调节机制。试图通过钳制补钾技术,观察低钾家兔补钾过程中不同组织对钾离子的摄取情况,为临床能迅速、安全有效地纠正低钾血症提供实验依据。
     方法:
     1用低钾饲料饲喂建立低血钾动物模型
     清洁级健康家兔48只,雄性,兔龄12~14周,体重2.0~2.7 kg(由河北医科大学实验动物中心提供),随机分为6组,每组8只,分别进行正常饲料饲喂或进行不同时间的低钾饲料饲喂。对照组(T_0组)、低钾3天组(T_1组)、低钾6天组(T_2组)、低钾9天组(T_3组)、低钾12天组(T_4组)、低钾15天组(T_5组)。所有家兔购入后均进行一周的正常饲料饲喂100g/d,自由饮普通水,一周后将T_0组家兔处死取材,其余家兔进行低钾饲料饲喂,每只家兔喂食低钾饲料100 g/d,自由饮蒸馏水。T_1组:低钾饲喂3天处死取材,T_2组:低钾饲喂6天处死取材,T_3组:低钾饲喂9天处死取材,T_4组:低钾饲喂12天处死取材,T_5组:低钾饲喂15天处死取材。
     各组分别于观察结束当天经耳中央动脉取血1 ml测定血浆钾离子、钠离子及血红蛋白浓度,经股静脉抽血分离红细胞测定红细胞钾离子浓度,开胸摘取心脏测定心肌组织钾离子、钠离子含量,取家兔右下肢比目鱼肌测定骨骼肌钾离子、钠离子含量。
     血浆钾、钠离子浓度采用离子选择性电极测量法测定,血红蛋白浓度采用分光光度比色法测定。
     红细胞、心肌、比目鱼肌钾、钠离子含量采用火焰原子吸收光度计测定。
     2低钾家兔不同组织细胞Na~+-K~+-ATPase活性及α_1,α_2亚基蛋白和mRNA表达的实验研究
     清洁级健康家兔48只,雄性,兔龄12~14周,体重2.0~2.7 kg(由河北医科大学实验动物中心提供),随机分为6组,每组8只,分别进行正常饲料饲喂或进行不同时间的低钾饲料饲喂。对照组(T_0组)、低钾3天组(T_1组)、低钾6天组(T_2组)、低钾9天组(T_3组)、低钾12天组(T_4组)、低钾15天组(T_5组)。所有家兔购入后均进行一周的正常饲料饲喂100g/d,自由饮普通水,一周后将T_0组家兔处死取材,其余家兔进行低钾饲料饲喂,每只家兔喂食低钾饲料100g/d,自由饮蒸馏水。T_1组:低钾饲喂3天处死取材,T_2组:低钾饲喂6天处死取材,T_3组:低钾饲喂9天处死取材,T_4组:低钾饲喂12天处死取材,T_5组:低钾饲喂15天处死取材。
     模型制备完成后,分别于观察结束当天经耳缘静脉注射4%戊巴比妥1ml/kg,麻醉成功后,迅速固定,开胸摘取心脏,同时迅速剪去家兔右下肢兔毛,分别暴露分离比目鱼肌和股静脉,割取比目鱼肌并去除筋膜,经股静脉抽血提取红细胞。分别测定红细胞、心肌组织、比目鱼肌组织Na~+-K~+-ATPase活性和心肌组织、比目鱼肌组织Na~+-K~+-ATPaseα_1,α_2亚基蛋白及mRNA表达。
     红细胞、心肌、比目鱼肌Na~+-K~+-ATPase活性的测定按照考马斯亮蓝蛋白测定试剂盒检测总蛋白含量后用超微量ATP酶测试盒检比色法测定。
     心肌、比目鱼肌Na~+-K~+-ATPaseα_1和α_2亚基蛋白表达采用Western Blot蛋白质印迹法测定。
     心肌、比目鱼肌Na~+-K~+-ATPaseα_1和α_2亚基mRNA表达采用real time-PCR法(实时定量PCR法)测定。
     3低钾家兔红细胞与心肌、骨骼肌钾离子含量相关性的研究
     清洁级健康家兔48只,雄性,兔龄12~14周,体重2.0~2.7 kg(由河北医科大学实验动物中心提供),随机分为6组,每组8只,分别进行正常饲料饲喂或进行不同时间的低钾饲料饲喂。对照组(T_0组)、低钾3天组(T_1组)、低钾6天组(T_2组)、低钾9天组(T_3组)、低钾12天组(T_4组)、低钾15天组(T_5组)。所有家兔购入后均进行一周的正常饲料饲喂100g/d,自由饮普通水,一周后将T_0组家兔处死取材,其余家兔进行低钾饲料饲喂,每只家兔喂食低钾饲料100g/d,自由饮蒸馏水。T_1组:低钾饲喂3天处死取材,T_2组:低钾饲喂6天处死取材,T_3组:低钾饲喂9天处死取材,T_4组:低钾饲喂12天处死取材,T_5组:低钾饲喂15天处死取材。
     模型制备完成后,分别于观察结束当天经耳缘静脉注射4%戊巴比妥1ml/kg,麻醉成功后,迅速固定,开胸摘取心脏。同时迅速剪去家兔右下肢兔毛,分别暴露分离比目鱼肌和股静脉,割取比目鱼肌并去除筋膜,经股静脉抽血提取红细胞。分别测定红细胞、心肌组织、比目鱼肌钾离子含量。对红细胞钾离子含量与心肌组织、骨骼肌组织钾离子含量进行相关性分析。
     4低钾家兔补钾后心肌组织、骨骼肌组织钾离子含量的变化
     清洁级健康家兔16只,雄性,兔龄12~14周,体重2.0~2.7 kg(河北医科大学实验动物中心提供),随机分为2组,每组8只,分别为补钾对照组(RC组)和补钾实验组(RE组)。家兔购入后正常饲喂一周开始低钾饲喂进行模型制备。RC组给予正常饮食15天(每只家兔喂食正常饲料100g/d,自由饮普通水),RE组给予低钾饮食15天(每只家兔喂食低钾饲料100g/d,自由饮蒸馏水)。RE组模型制备完成后静脉泵入KCl行补钾实验,RC组作为其对照组同时给予补钾。两组家兔麻醉成功后,固定,插入尿管,排出膀胱余尿,收集1 h产生的尿液并测定尿液钾离子浓度,测定基础肾脏排钾量,然后建立液路持续泵入KCl并监测血浆钾离子浓度变化,钳制血浆钾离子浓度于5.5mmol/L并稳定至少1 h,停止泵钾,立即留取心脏及比目鱼肌标本以测定心脏及比目鱼肌钾离子含量,输注期间继续收集尿液以测定输注期间肾脏排钾量。
     计录RC组及RE组总的钾离子摄取量、肾脏排钾量、心肌(比目鱼肌)钾离子摄取量及平均钾离子摄取率。
     结果:
     1低钾饲料饲喂建立低血钾动物模型
     1.1低钾饲喂期间动物未见明显不适,对低钾饲料耐受良好。
     1.2各组家兔体重及兔龄比较差异无统计学意义。
     1.3血浆钾、钠离子浓度和血红蛋白浓度的变化
     T_1、T_2、T_3、T_4、T_5组血浆钾离子浓度较正常对照组(T_0组)逐渐降低,差异有统计学意义(P<0.05);T_1、T_2、T_3、T_4、T_5组血浆钠离子浓度和血红蛋白浓度与正常对照组(T_0组)比较差异无统计学意义(P>0.05)。
     1.4红细胞钾离子、钠离子含量的变化
     T_1、T_2、T_3、T_4、T_5组红细胞钾离子含量较正常对照组(T_0组)逐渐降低,差异有统计学意义(P<0.05);T_1、T_2、T_3、T_4、T_5组红细胞钠离子含量较正常对照组(T_0组)增加,差异有统计学意义(P<0.05)。
     1.5心肌钾离子、钠离子含量的变化
     T_1组心肌钾离子含量较正常对照组(T_0)无明显降低(P>0.05),T_2、T_3、T_4、T_5组心肌钾离子含量较正常对照组(T_0)降低,差异有统计学意义(P<0.05);T_1、T_2、T_3、T_4、T_5组心肌钠离子含量与正常对照组(T_0)比较,无统计学意义(P>0.05)。
     1.6比目鱼肌钾离子、钠离子含量的变化
     T_1、T_2、T_3、T_4、T_5组比目鱼肌钾离子含量较正常对照组(T_0组)降低,差异有统计学意义(P <0.05):T_1、T_2、T_3、T_4、T_5组比目鱼肌钠离子含量较正常对照组(T_0组)增加,差异有统计学意义(P<0.05)。
     2低钾家兔不同组织细胞Na~+-K~+-ATPase活性及α_1,α_2亚基的蛋白及mRNA表达
     2.1红细胞Na~+-K~+-ATPase活性的变化
     T_1组红细胞Na~+-K~+-ATPase活性与正常对照组(T_0组)比较差异无统计学意义(P >0.05),T_2、T_3、T_4、T_5组红细胞Na~+-K~+-ATPase活性较逐渐降低,差异有统计学意义(P<0.05)。
     2.2心肌Na~+-K~+-ATPase活性的变化
     T_1、T_2组心肌Na~+-K~+-ATPase活性与正常对照组(T_0组)比较差异无统计学意义(P >0.05),T_3、T_4、T_5组心肌Na~+-K~+-ATPase活性逐渐升高,差异有统计学意义(P<0.05)。
     2.3比目鱼肌Na~+-K~+-ATPase活性的变化
     T_1、T_2、T_3、T_4、T_5组比目鱼肌Na~+-K~+-ATPase活性逐渐降低,差异有统计学意义(P<0.05)。
     2.4红细胞钾离子的含量与红细胞Na~+-K~+-ATPase活性的相关性。
     对红细胞钾离子含量与红细胞Na~+-K~+-ATPase活性进行相关性分析表现为正相关,回归线性方程为Y=0.08X-0.31,决定系数R~2=0.766,( P < 0.05)。
     2.5心肌钾离子含量与心肌组织Na~+-K~+-ATPase活性的相关性
     对心肌钾离子含量与心肌组织Na~+-K~+-ATPase活性进行相关性分析表现为负相关,回归线性方程为Y=18.41-0.09X,决定系数R~2=0.434,( P<0.05)。
     2.6比目鱼肌钾离子含量与比目鱼肌组织Na~+-K~+-ATPase活性的相关性
     对比目鱼肌钾离子含量与比目鱼肌Na~+-K~+-ATPase活性进行相关性分析表现为正相关,回归线性方程为Y=0.25X-7.94,决定系数R~2=0.870,( P<0.05)。
     2.7红细胞Na~+-K~+-ATPaseα_1和α_2亚基的蛋白表达
     α_1亚基蛋白表达水平,T_3组与正常对照组(T_0组)比较差异无统计学意义(P>0.05),T_5组较正常对照组(T_0组)降低,差异有统计学意义(P<0.05);α_2亚基蛋白表达水平,T_3、T_5组较正常对照组(T_0组)降低,T_5组较T_3组降低,差异有统计学意义(P<0.05)。
     2.8心肌组织Na~+-K~+-ATPaseα_1和α_2亚基的蛋白表达
     α_1亚基蛋白表达水平,T_3,T_5组均较正常对照组(T_0组)升高, T_5组较T_3组升高,差异有统计学意义(P <0.05);α_2亚基蛋白表达水平,T_3,T_5组均较正常对照组(T_0组)降低,T_5组较T_3组降低,差异有统计学意义(P <0.05)。
     2.9比目鱼肌组织Na~+-K~+-ATPaseα_1和α_2亚基的蛋白表达
     α_1亚基蛋白表达水平,T_3组与正常对照组(T_0组)比较,差异无统计学意义(P>0.05),T_5组较正常对照组(T_0组)及T_3组均降低,差异有统计学意义(P<0.05);α_2亚基蛋白表达水平,T_3,T_5组均较正常对照组(T_0组)降低,且T_5组低于T_3组,差异有统计学意义(P <0.05)。
     2.10心肌组织Na~+-K~+-ATPaseα_1和α_2亚基的mRNA表达
     T_3、T_5组较正常对照组(T_0组)升高,T_5组较T_3组升高,差异有统计学意义(P<0.05);α_2亚基mRNA表达水平,T_3、T_5组较正常对照组(T_0组)降低,T_5组较T_3组降低,较差异有统计学意义(P <0.05)。
     2.11比目鱼肌组织Na~+-K~+-ATPaseα_1和α_2亚基的mRNA表达
     T_3组与正常对照组(T_0组)比较,差异无统计学意义(P>0.05),T_5组正常对照组(T_0)及T_3组降低,差异有统计学意义(P<0.05);α_2亚基mRNA表达水平,T_3,T_5组较正常对照组(T_0)降低,T_5组较T_3组降低,差异有统计学意义(P <0.05)。
     3低钾家兔红细胞钾离子含量与心肌、骨骼肌钾离子含量的相关性
     3.1低钾过程中红细胞与心肌组织钾离子含量的相关性
     对低钾过程中红细胞钾离子含量与心肌组织钾离子含量进行相关性分析表现为正相关,回归线性方程为Y=0.37X~+58.24,决定系数R~2=0.666( P<0.05)。
     3.2低钾过程中红细胞与比目鱼肌组织钾离子含量的相关性
     对低钾过程中红细胞钾离子含量与比目鱼肌组织钾离子含量进行相关性分析表现为正相关,回归线性方程为Y=0.81X~+15.01,决定系数R~2=0.822( P<0.05)。
     4低钾家兔补钾后心肌组织、骨骼肌组织钾离子含量的变化
     4.1补钾结束时,RE组输注KCl的总剂量较RC组高,差异有统计学意义(P<0.05);肾脏排钾量RE组较RC组增高,差异有统计学意义(P <0.05)。
     4.2补钾后心肌钾离子摄取量和平均心肌钾离子摄取率的比较
     RE组心肌钾离子摄取量较RC组心肌钾离子摄取量升高,差异有统计学意义(P<0.05);RE组平均心肌钾离子摄取率较RC组平均心肌钾离子摄取率升高,差异有统计学意义(P <0.05)。
     4.3补钾后比目鱼肌钾离子摄取量和平均比目鱼肌钾离子摄取率的比较
     RE组比目鱼肌钾离子摄取量较RC组比目鱼肌钾离子摄取量升高,差异有统计学意义(P<0.05);RE组平均比目鱼肌钾离子摄取率较RC组平均比目鱼肌钾离子摄取率升高,差异有统计学意义(P<0.05)。
     4.4心肌组织与比目鱼肌组织比较在钳制补钾过程中摄钾速率明显增高,差异有统计学意义(P<0.05)。
     4.5在钳制补钾过程中随着时间的延长,机体总钾摄取量逐渐下降。
     结论:
     1本实验采用低钾饲料饲喂家兔可使其血浆钾离子降低,成功制备家兔缺钾模型。
     2低钾饲料饲喂家兔后可使家兔血浆钾离子浓度,红细胞、心肌组织、比目鱼肌钾离子含量逐渐降低。
     3缺钾可使红细胞、比目鱼肌Na~+-K~+-ATPase活性逐渐降低,心肌组织Na~+-K~+-ATPase活性升高,红细胞、比目鱼肌Na~+-K~+-ATPase活性分别与红细胞、比目鱼肌钾离子含量呈正相关;心肌组织Na~+-K~+-ATPase活性与心肌组织钾离子含量呈负相关。
     4在缺钾过程中红细胞、比目鱼肌、心肌Na~+-K~+-ATPaseα_1和α_2亚基反应性不同,在红细胞及比目鱼肌α_1和α_2亚基蛋白表达及mRNA表达水平逐渐降低;在心肌组织,α_1亚基蛋白表达及mRNA表达水平逐渐升高,α_2亚基蛋白表达及mRNA表达水平逐渐降低。
     5缺钾过程中红细胞钾离子含量与心肌组织、比目鱼肌钾离子含量呈正相关
     6补钾时缺钾家兔总钾离子摄取量明显增加,肾脏排钾量也明显增加,其中心肌组织摄钾率明显高于骨骼肌组织摄钾率。在钳制补钾过程中随着时间的延长,机体总钾摄取量逐渐降低。
Objective: K~+-depleted rabbit models were prepared with a low-K cotent diet in this study, plasma potassium ion (K~+) concentration, K~+ content, Na~+-K~+-ATPase activity and Na~+-K~+-ATPaseα_1,α_2 isoform protein expression in erythrocyte(RBC), myocardium and skeletal muscle, Na~+-K~+-ATPaseα_1,α_2 isoform mRNA expression in myocardium and skeletal muscle were measured when rabbits were fed different days, to investigate correlation between K~+ content and Na~+-K~+-ATPase activity in RBC, myocardium and skeletal muscle, respectively, and to explore correlation between RBC K content and myocadial or skeletal muscle K~+ content. Total K~+ infusion dosage, renal K~+ excretion and K~+ uptake rate of myocardium and skeletal muscle were observed after clamping of plasma K~+ by KCl infusion.
     Methods:
     1 Prepared animal models with a low-K content diet Forty-eight healthy male rabbits weighing 2.0~2.7kg were randomly divided into 6 groups (n=8/group) : normal control group (group T_0) ,K-depleted-3-day group (group T_1) , K-depleted-6-day group (group T_2) , K-depleted-9-day group (group T_3) , K-depleted-12-day group (group T_4) , K-depleted-15-day group (group T_5).All rabbits were fed a normal diet for a week before model preparation.Group T_0 were given a normal diet only(100g standard chow/day each rabbit,free access to normal water),groupT_1,T_2,T_3,T_4,T_5 were fed with a low-K content diet (100g low-K content chow/day each rabbit,free access to distilled water)for 3 days,6 days, 9 days, 12 days, 15 days,respectively. On the day that models were prepared, rabbits in group T_0,T_1,T_2,T_3,T_4,T_5 were anesthetized by 4% pentobarbital (1ml/kg) given through auricular vein, 1ml blood for measuring plama K~+, sodium(Na~+) and hemoglobin concentration was sampled through central auricular artery , their thoracic cavity were opend and hearts were excised, at the moment, soleus muscle and femoral vein were separated and exposed, then soleus muscle was amputated ,blood was taken from femoral vein for separating RBC,to measure K~+ and Na~+ content in RBC, myocardium and soleus muscle.
     Plasma K~+ and Na~+ concentrations were measured by ion-sensitive electrodes, hemoglobin concentration by spectrophotometric method. K~+ contents and Na~+ contents in RBC, myocardium and soleus muscle were measured by flame atomic absorption photometry.
     2 Protein and mRNA expression of Na~+-K~+-ATPaseα_1,α_2 isoform in RBC, myocardium and soleus muscle of K~+-depleted rabbits
     Forty-eight healthy male rabbits weighing 2.0~2.7kg were randomly divided into 6 groups (n=8/group) : normal control group (group T_0) ,K~+-depleted-3-day group (group T_1) , K~+-depleted-6-day group (group T_2) , K~+-depleted-9-day group (group T_3) , K~+-depleted-12-day group (group T_4) , K~+-depleted-15-day group (group T_5).All rabbits were fed a normal diet for a week before model preparation.Group T_0 were given a normal diet only(100g standard chow/day each rabbit,free access to normal water),groupT_1,T_2,T_3,T_4,T_5 were fed with a low-K content diet (100g low-K~+ content chow/day each rabbit,free access to distilled water)for 3 days,6 days, 9 days, 12 days, 15 days,respectively. When animal models were prepared, hearts and soleus muscle of rabbits in group T_0,T_1,T_2,T_3,T_4,T_5 were cut off after blood sampling ,to measure plasma K~+, Na, hemoglobin concentration, K~+ and Na~+ content in RBC, myocardium and soleus muscle.On the day that models were prepared, rabbits in group T_0,T_1,T_2,T_3,T_4,T_5 were anesthetized by 4% pentobarbital (1ml/kg) given through auricular vein, their thoracic cavity were opend and hearts were excised, at the moment, soleus muscle and femoral vein were separated and exposed, then soleus muscle was amputated ,blood was taken from femoral vein for separating RBC, to measure Na~+-K~+-ATPase activity and Na~+-K~+-ATPaseα_1,α_2 isoform protein and mRNA expression in RBC, myocardium, soleus muscle.
     Na~+-K~+-ATPase activity of RBC, myocardium and soleus muscle were measured with an ultramicro-ATPase test box after total protein quantity with a coomssie brilliant blue protein measurement test box. Na~+-K~+-ATPaseα_1 andα_2 isoform protein expression in RBC, myocardium and soleus muscle were measured by western blot. Na~+-K~+-ATPaseα_1 andα_2 isoform mRNA expression in myocardium and soleus muscle were measured by real-time PCR.
     3 Correlation between RBC K~+ content and mycardial K content or soleus K~+ content in K-depleted rabbits
     Forty-eight healthy male rabbits weighing 2.0~2.7 kg were randomly divided into 6 groups (n=8/group) : normal control group (group T_0) ,K~+-depleted-3-day group (group T_1) , K~+-depleted-6-day group (group T_2) , K~+-depleted-9-day group (group T_3) , K~+-depleted-12-day group (group T_4) , K~+-depleted-15-day group (group T_5).All rabbits were fed a normal diet for a week before model preparation.Group T_0 were given a normal diet only(100g standard chow/day each rabbit,free access to normal water),groupT_1,T_2,T_3,T_4,T_5 were fed with a low-K content diet (100g low-K content chow/day each rabbit,free access to distilled water)for 3 days,6 days, 9 days, 12 days, 15 days,respectively. When animal models were prepared, hearts and soleus muscle of rabbits in group T_0,T_1,T_2,T_3,T_4,T_5 were cut off after blood sampling ,to measure plasma K~+, Na, hemoglobin concentration, K~+ and Na~+ content in RBC, myocardium and soleus muscle.On the day that models were prepared, rabbits in group T_0,T_1,T_2,T_3,T_4,T_5 were anesthetized by 4% pentobarbital (1ml/kg) given through auricular vein, their thoracic cavity were opend and hearts were excised, at the moment, soleus muscle and femoral vein were separated and exposed, then soleus muscle was amputated ,blood was taken from femoral vein for separating RBC, to measure K~+ content in RBC, myocardium and soleus muscle.
     K~+ contents in RBC, myocardium and soleus muscle were measured by flame atomic absorption photometry.
     Analyze relationship between RBC K~+ content and mycardial K~+ content or soleus K~+ content
     4 Change of K~+ content in myocardium and soleus muscle in K~+-depleted rabbits after K~+ repletion
     Sixteen healthy male rabbits weighing 2.0~2.7kg were randomly divided into 2 groups (n=8/group) : repletion control group (group RC) and repletion experimental group (group RE).All rabbits were fed a normal diet for a week before model preparation.Group RC were given a normal diet only(100 g standard chow/day each rabbit,free access to normal water),group RE were fed with a low-K~+ content diet (100 g low-K~+ content chow/day each rabbit,free access to distilled water)for 15 days. Rabbits in group RC and RE were used for intravenous potassium repletion experiment. After rabbits were anesthetized, a urinary catheter was incerted for collecting urine to measure renal K~+ excretion in 1 hour, then KCl infusions began and continued until the plasma K~+ reached the set-point 5.5mmol/L and were stable for 1 h.KCl infusions were then immediately stopped,the hearts and soleus muscle of animals were excised. Urine during KCl infusion was collected to measure K~+ content in urine.
     Total K uptake of grop RC and RE was expressed as total K infusion dosage after K~+ clamping was stopped, renal K~+ excretion was expressed as total K~+ content in urine .Myocardial(Soleus) K~+ uptake of group RC during KCl infusions was calculated as the difference between myocardial (soleus) K~+ content in each heart (soleus muscle) after KCl infusion and mean myocardial (soleus) K~+ content in group T_0; myocardial(soleus) K~+ uptake of group RE during KCl infusions was calculated as the difference between myocardial (soleus) K~+ content in each heart (soleus muscle) after KCl infusion and mean myocardial (soleus) K~+ content in group T_5;mean myocardial (soleus) K~+ uptake rate of each rabbit was calculated by respective myocardial (soleus) K~+ uptake divided by duration of K~+ infusion .
     Result:
     1 Prepared animal models with a low-K ~+content diet
     1.1 Animals were clinically unaffected and the low-K~+ content dietary regimens were well tolerated.
     1.2 There is no difference of the rabbits’weight and ages in each groups.
     1.3 The change of plasma K~+, Na~+ and hemoglobin concentration
     Compared with group T_0, plasma K~+ concentration in group T_1,T_2,T_3,T_4,T_5 gradually decreased,the statistical differcence was significant(P<0.05); no significant difference in plasma Na~+ and hemoglobin concentration was observed in group T_0,T_1,T_2,T_3,T_4,T_5(P>0.05).
     1.4 The change of RBC K~+,Na ~+content
     Compared with group T_0, RBC K~+ content in group T_1,T_2,T_3,T_4,T_5 gradually decreased,the statistical differcence was significant(P<0.05); compared with group T_0, RBC Na~+ content in group T_1,T_2,T_3,T_4,T_5 gradually increased,the statistical differcence was significant(P<0.05).
     1.5 The change of myocardial K~+,Na~+ content
     Compared with group T_0, there was no significant decrease in myocardial K~+ content of group T_1,(P >0.05), myocardial K~+ content in groupT_2, T_3,T_4,T_5 decreased,the statistical differcence was significant(P <0.05);there was no significant increse in myocardial Na~+ content in T_1,T_2,T_3,T_4,T_5 compared with group T_0(P >0.05).
     1.6 The change of soleus K~+,Na~+ content
     Compared with group T_0, soleus K~+ content in group T_1,T_2,T_3,T_4,T_5 gradually decreased,the statistical differcence was significant(P<0.05); compared with group T_0, soleus Na~+ content in group T_1,T_2,T_3,T_4,T_5 gradually increased,the statistical differcence was significant(P<0.05).
     2 Protein and mRNA expression of Na~+-K~+-ATPaseα_1,α_2 isoform in RBC, myocardium and soleus muscle of K~+-depleted rabbits
     2.1 The change of RBC Na~+-K~+-ATPase activity
     Compared with group T_0, RBC Na~+-K~+-ATPase activity in group T_1 decreased, but the statistical differcence was not significant(P >0.05), RBC Na~+-K~+-ATPase activity in group T_2,T_3,T_4,T_5 decreased,the statistical differcence was significant(P <0.05)
     2.2 The change of myocardial Na~+-K~+-ATPase activity
     Compared with group T_0, there was no significant increase in myocardial Na~+-K~+-ATPase activity in group T_1,T_2 (P >0.05), but myocardial Na~+-K~+-ATPase activity in group T_3 , T_4,T_5 increased,the statistical differcence was significant(P <0.05).
     2.3 The change of soleus Na~+-K~+-ATPase activity
     Compared with group T_0, RBC Na~+-K~+-ATPase activity in group T_1,T_2,T_3,T_4,T_5 decreased, the statistical differcence was significant(P <0.05)
     2.4 Relationship between RBC K and Na~+-K~+-ATPase activity
     During K depletion,both RBC K content and Na~+-K~+-ATPase activity gradually decreased, linear regression analysis showed a positive linear relationship between RBC Na~+-K~+-ATPaseb activity and RBC K content, linear regression equation was Y=0.08X-0.31, R~2=0.766, P < 0.05.
     2.5 Relationship between myocardial K and Na~+-K~+-ATPase activity
     During K depletion, myocardial K content gradually decreased ,however, myocardial Na~+-K~+-ATPase activity gradually increased, linear regression analysis showed a negative linear relationship between myocardial Na~+-K~+-ATPaseb activity and myocardial K content, linear regression equation was Y=18.41-0.09X,R~2=0.434, P < 0.05.
     2.6 Relationship between soleus K and Na~+-K~+-ATPase activity
     During K depletion,both soleus K content and Na~+-K~+-ATPase activity gradually decreased, linear regression analysis showed a positive linear relationship between soleus Na~+-K~+-ATPaseb activity and soleus K content, linear regression equation was Y=0.25X-7.94,R~2=0.870, P< 0.05.
     2.7 Protein expression of RBC Na~+-K~+-ATPaseα_1 andα_2 isoform
     Compared with group T_0, there was no significant decrease in RBC Na~+-K~+-ATPaseα_1 isoform protein expression in group T_3(P>0.05) ,RBC Na~+-K~+-ATPaseα_1 isoform protein expression in group T_5 decreased, the statistical differcence was significant(P<0.05); compared with group T_0, RBC Na~+-K~+-ATPaseα_2 isoform protein expression in group T_3,T_5 decreased, the statistical differcence was significant(P<0.05).
     2.8 Protein expression of myocardial Na~+-K~+-ATPaseα_1 andα_2 isoform
     Compared with group T_0, myocardial Na~+-K~+-ATPaseα_1 isoform protein expression in group T_3,T_5 increased, the statistical differcence was significant(P<0.05), myocardial Na~+-K~+-ATPaseα_2 isoform protein expression in group T_3,T_5 decreased, the statistical differcence was significant(P <0.05).
     2.9 Protein expression of soleus Na~+-K~+-ATPaseα_1 andα_2 isoform
     Compared with group T_0, there was no significant decrease in soleus Na~+-K~+-ATPaseα_1 isoform protein expression in group T_3(P>0.05) , soleus Na~+-K~+-ATPaseα_1 isoform protein expression in group T_5 decreased, the statistical differcence was significant(P<0.05); compared with group T_0, soleus Na~+-K~+-ATPaseα_2 isoform protein expression in group T_3,T_5 decreased, the statistical differcence was significant(P<0.05).
     2.10 mRNA expression of myocardial Na~+-K~+-ATPaseα_1 andα_2 isoform
     Compared with group T_0, myocardial Na~+-K~+-ATPaseα_1 isoform mRNA expression in group T_3,T_5 increased, the statistical differcence was significant(P<0.05), myocardial Na~+-K~+-ATPaseα_2 isoform mRNA expression in group T_3,T_5 decreased, the statistical differcence was significant(P <0.05).
     2.11 mRNA expression of soleus Na~+-K~+-ATPaseα_1 andα_2 isoform
     Compared with group T_0, there was no significant decrease in soleus Na~+-K~+-ATPaseα_1 isoform mRNA expression in group T_3(P>0.05) , soleus Na~+-K~+-ATPaseα_1 isoform mRNA expression in group T_5 decreased, the statistical differcence was significant(P<0.05); compared with group T_0, soleus Na~+-K~+-ATPaseα_2 isoform mRNA expression in group T_3,T_5 decreased, the statistical differcence was significant(P<0.05).
     3 Correlation between RBC K~+ content and mycardial K~+ content or soleus K~+ content in K~+-depleted rabbits
     3.1 Relationship between RBC K~+ content and myocardial K~+ content during K~+ depletion
     Linear regression analysis showed a positive linear relationship between RBC K~+ content and myocardial K~+ content, linear regression equation was Y=0.37X~+58.24,R~2=0.666, P<0.05. 3.2 Relationship between RBC K~+ content and soleus K~+ content during K~+ depletion
     Linear regression analysis showed a positive linear relationship between RBC K~+ content and soleus K~+ content, linear regression equation was Y=0.81X~+15.01,R~2=0.822, P<0.05.
     4 Change of K~+ content in myocardium and soleus muscle in K~+-depleted rabbits after K~+ repletion
     4.1 When K~+ repletion were stopped, total KCl infusion dosage was higher in group RE than in group RC, the statistical differcence was significant(P<0.05); total renal K excretion was higher in group RE than in group RC, the statistical differcence was significant(P<0.05).
     4.2 The comparison of myocardial K~+ uptake and mean myocardial K~+ uptake rate after potassium repletion
     Compared with group RC, myocardial K~+ uptake in group RE was higher, the statistical differcence was significant(P <0.05), mean myocardial K~+ uptake rate in group RE was higher, the statistical differcence was significant(P <0.05).
     4.3 The comparison of soleus K~+ uptake and mean soleus K~+ uptake rate after potassium repletion
     Compared with group RC, soleus K~+ uptake in group RE was higher, the statistical differcence was significant(P <0.05), mean soleusl K~+ uptake rate in group RE was higher, the statistical differcence was significant(P <0.05).
     4.4 During clamping plasma K~+ concentration by KCl infusion, K~+ uptake rate of myocardiaum was higher than that of soleus muscle, the statistical differcence was significant(P <0.05).
     4.5 Body total K~+ uptake gradually decreased during clamping plasma K~+ by KCl infusion.
     Conclusion:
     1 The present study prepared K~+-depleted rabbit models successfully used a low-K~+ content diet,which induced a plasma K~+ decrease in experimental rabbits.
     2 Plasma K~+ concentation,RBC K~+ content,myocardial K~+ content and soleus K~+ content of experimental rabbits gradually decreased afer they were fed with the low-K~+ content chaw.
     3 Potassium depletion induced a down regulation in RBC Na~+-K~+-ATPase activity and soleus Na~+-K~+-ATPase activity but an upregulation in myocardial Na~+-K~+-ATPase activity;linear regression analysis of data from K-depleted and contral rabbits showed a positive linear relationship between Na~+-K~+-ATPaseb activity and K~+ content in RBC and soleus muscle respectively and a negative linear relationship between Na~+-K~+-ATPaseb activity and K content in myocardium.
     4 RBC K~+ content was positively correlated with myocardial K~+ content and soleus K~+ content during K depletion.
     5 During K~+ depletion, the responsivity of Na~+-K~+-ATPaseα_1 andα_2 isoform was different in RBC,myocardium and soleus muscle: mRNA and protein expression ofα_1 andα_2 isoform gradually decreased in RBC and soleus muscle, mRNA and protein expression ofα_1 isoform gradually increased but that ofα_2 isoform gradually decreased in myocardium.
     6 Total K~+ uptake and renal K~+ excretion incresed significantly in K~+-deplted rabbits,and K~+ uptake rate in myocardium was hiagher than that in soleus muscle, during K~+ repletion. Body total K~+ uptake gradually decreased during clamping plasma K~+ by KCl infusion.
引文
1王永根,王剑波,陈淑莎,等。控温消解-火焰原子吸收法测定红细胞中钾钠钙镁。海峡预防医学杂志,2007,13(3):53-55
    2 McDonough AA,Velotta JB,Schwinger RH,et al.The cardiac sodium pump: structure and function.Basic Res Cardiol,2002,97 Suppl 1:I19-24
    3 Bundgaard H,Kjeldsen K.Human myocardial Na,K-ATPase concentration in heart failure.,1996 Oct-Nov,163-164:277-83
    4 Potassium depletion decreases the number of 3H-ouabain binding sites and the active Na-K transport in skeletal muscle. Nature 293: 739-741, 1981
    5 Clausen T, Everts ME. Regulation of the Na,K-pump in skeletal muscle. Kidney Int 1989;35:1-13
    6 Gennaer FJ. Hypokalemia. N Engl J Med, 1998, 339(7):451-458
    7 Paice BJ, Paterson KR, Onyanga-Omara F, et al. Record linkage study of hypokalaemia in hospitalized patients. Postgrad Med J, 1986, 62:187-191
    8 Welfare W, Sasi P, English M. Challenges in managing profound hypokalemia. BMJ, 2002, 324(7332):267-270
    9路常玲,梁莉丽,李想枝。雾化吸入补钾的动物实验。实用医药杂志,2002,19(8):609
    10姚兵,张银娣,沈建平。速尿对整体大鼠肾11β-羟基类固醇脱氢酶活性的影响。徐州医学院学报,2002 , 22(1):3-6
    11 Choy AM, Lang CC, Chomsky DM, et al. Normalization of acquired QT prolongation in humans by intravenous potassium.Circulation, 1997, 96(7):2149
    12唐小江,黄建勋,李来玉,等。三甲基氯化锡引发低血钾症动物模型的研究。中国职业医学,2001,28(1):6-8
    13 Bundgaard H. Potassium depletion improves myocardial potassium uptake in vivo. Am J Physiol Cell Physiol , 2004, 287: C135-C141
    14徐志飞,蔡东联。用自配低钾饲料复制低血钾动物模型。第二军医大学学报,1992,13(1):83-84
    15 Bundgaard H and Kjeldsen K. Potassium depletion increases potassium clearance capacity in skeletal muscles in vivo during acute repletion. Am J Physiol Cell Physiol, 2002, 283: C1163-C1170
    16刘福英,刘田福主编,实验动物学,中国科学技术出版社,北京,68
    17 Giebisch, G, and Wang W. Potassium transport: from clearance to channels and pumps. Kidney Int 49: 1624-1631, 1996
    18 Weiner, ID, and Wingo CS. Hypokalemia consequences, causes, and correction. J Am Soc Nephrol, 1997, 8: 1179-1188
    19 N?rgaard A, Kjeldsen K, and Clausen T. Potassium depletion decreases the number of 3H-ouabain sites and the active Na,K transport in skeletal muscle. Nature, 1981, 293: 739-741
    20 Ward JPT and Cameron IR. Adaptation of the cardiac muscle sodium pump to chronic potassium deficiency. Cardiovasc Res, 1984, 18: 257-263
    1 Allon, M. Treatment and prevention of hyperkalemia in end-stage renal disease. Kidney Int, 1993, 43: 1197-1209
    2 Clausen T, Everts ME. Regulation of the Na,K-pump in skeletal muscle. Kidney Int, 1989, 35:1-13
    3 Martinez R, Rietberg B, Skyler J, et al. Effect of hyperkalemia on insulin secretion. Experientia, 1991, 47:270-272
    4马森.牦牛红细胞和5种组织中ATP酶的测定结果.南平师专报,2003, 22(4): 11-14
    5 Ibragimova LA, Fazlyeva RM. Clinico-diagnostic evaluation of changes in ATPase activity, lipid peroxidation and stability of red cell membranes in patients suffering from hemorrhagic fever with renal syndrome. Ter Arkh, 2000, 72(11):21-24
    6 Lingrel JB, Orlowski J, ShullMM, et al. Moleculargenetics ofNa,K-AT-Pase. ProgNuclAcids Res andMol Biol, 1990,38(1): 37-89
    7 Clausen, T. Na~+-K~+ Pump Regulation and Skeletal Muscle Contractility. Physiol Rev, 2003, 83:1269-1324
    8 Quintas LEM, Francois Noel, Maurice Wibo, et a1. Na~+/K~+-ATPaseαisoforms expression in stroke-prone spontaneously hypertensive rat heart ventricles: Effect of salt loading and lacidipine treatment. European Journal of Pharmacology, 2007, 565:151-157
    9 Bundgaard H, Kjeldsen K. Human myocardial Na,K-ATPase concentration in heart failure. Am J Physiol Cell Physiol, 1996 Oct-Nov, 163-164:277-83
    10 Hsu YM and Guidotti G. Effects of hypokalemia on the properties and expression of the (Na~+,K~+)-ATPase of rat skeletal muscle. J Biol Chem, 1991, 266: 427-433
    11 Azuma KK, Hensley CB, Putnam DS, and McDonough AA. Hypokalemia decreases Na~+-K~+-ATPaseα2- but notα1-isoform abundance in heart, muscle, and brain. Am J Physiol Cell Physiol, 1991, 260: C958-C964
    12 Rodrigo A, Elisa TM. Nongenomic effect of aldosterone on Na~+,K~+-ATPase in arterial vessels. Endocrinology, 144(4):1266-1272
    13 Skou JC. The influence of some cations on an adenosine triphosphatase from peripheral nerves. Biochim Biophys Acta, 1957 , 23: 394- 401
    14 N?rgaard A, Kjeldsen K, and Clausen T. Potassium depletion decreases the number of 3H-ouabain sites and the active Na,K transport in skeletal muscle. Nature, 1981, 293: 739-741
    15 N?rgaard A, Kjeldsen K, and Hansen O. K-dependent 3-O-methylfluorescein phosphatase activity in crude homogenate of rodent heart ventricle: effect of K~+ depletion and changes in thyroid status. Eur J Pharmacol , 1985, 113: 373-382
    16 D?rup I, Skajaa K, Clausen T, et al. Reduced concentrations of potassium, magnesium, and sodium-potassium pumps in human skeletal muscle during treatment with diuretics. Br Med J ,1988, 296: 455-458
    17 Hansen O. Theα1 isoform of Na~+,K~+-ATPase in rat soleus and extensor digitorum longus. Acta Physiol Scand , 2001, 173: 1-7
    18 Sweadner KJ and Farshi S. Rat cardiac ventricle has two Na~+,K~+-ATPases with different affinities for ouabain: developmental changes in immunologically different catalytic subunits. Proc Natl Acad Sci USA , 1987, 84:8404-8407
    1石毓澍.临床心律学[M].天津科学技术出版社. 1994: 594-595
    2 Hamill RJ, Robinson LM, Wexler HR, et al. Eficacy and safety ofpotassium infusion therapy in hypokalemic critically ill patients. Crit Care Med, 1991, 19 (5): 694
    3白定华.红细胞内低钾对慢性充血性心力衰竭治疗的影响.临床荟萃, 2003, 18(23):1360
    4陈主初,主编:病理生理学.北京:人民卫生出版社,2001,114-117
    5 Bremner P, Burgess C, Beasley R, et al. Nebulized fenoterol causes greater cardiovascular and hypokalaemic effects than equivalent bronchodilator doses of salbutamol in asthmatics. Respir Med, 1992, 86:419-423
    6 Burgess CD, Flatt A, Siebers R, et al. A comparison of the extent and duration of hypokalaemia following three nebulizedβ2-adrenoceptor agonists. Eur J Clin Pharmacol, 1989, 36:415-417
    7 McCleave DJ, Phillips PJ, Vedig AE. Compartmental shift of potassium - a result of sympathomimetic overdose. Aust N Z J Med, 1978, 8:180-183
    8 Kassirer JP, Schwartz WB. The response of normal man to selective depletion of hydrochloric acid: factors in the genesis of persistent gastric alkalosis. Am J Med, 1966,40:10-18
    9 Ryan MF, Ryan MP. Lymphocyte electrolyte al-terations during magneisum deficiency in therat. Irish J Med Sci, 1979, 148:10810
    10 Dyckner T, Wester PO. Ventricular extrasystolesand intracellular electrolytes before and afterpotassium and magnesium infusion in patients on diuretic treatment. Am Heart J, 1979, 97:13
    1杨在春,李庆棣.新编临床医学数据手册[M].北京:金盾出版社,1993, 325
    2上海第一医学院实用内科学编写组.实用内科学[M].第6版.北京:人民卫生出版社, 1973, 499
    3 Hamill RJ, Robinson LM, Wexler HR, et al. Eficacy and safety of potassium infusion therapy in hypokalemic critically ill patients[J]. Crit Care Med, 1991, 19 (5):694
    4 Kruse JA, Cadson RW. Rapid correction of hypokalemia using concentrated intravenous potassium chloride infusions. Arch Intern Med, 1990, 150(3):613
    5 Welfare W, Sasi P. Challenges in managing profound hypokalaemia. BMJ, 2002, 324(7332):269
    6 Choi CS, Thompson CB, Leong PK, et al. Short-term K~+ deprivation provokes insulin resistance of cellular K~+ uptake revealed with the K~+ clamp. Am J Physiol Renal Physiol, 2001,280: F95-F102
    7 Kruse JA, Clark VL, Carlson RW, et al..Concentrated potassium chloride infusion in critically ill patients with hypokalemia[J].J Clin Pharmacol,1994,34 (11) :1077
    8 Choy AM, Lang CC, Chomsky DM, et al. Normalization of acquired QT prolongation in humans by intravenous potassium. Circulation, 1997, 96(7):2149
    9 Bundgaard H, Kjeldsen K. Potassium depletion increases potassium clearance capacity in skeletal muscles in vivo during acute repletion. Am JPhysiol Cell Physiol, 2002, 283(4):1163
    10 Kruse JA, Cadson RW. Rapid correction of hypokalemia using concentrated intravenous potassium chloride infusions. Arch Intern Med, 1990, 150(3):613
    11屠欣.高浓度静脉补钾治疗低钾血症的临床研究[J].实用医学杂志,2005,21(11): 7
    12 Lin SH. Dhadli S, Gowfishankar M, et al. Control of excretion of potassium:lessons from studies during prolonged total fasting in human subjects. Am J Physiol Renal Physiol, 1997, 273(5): 796
    13 Domanski M, Norman J, Pitt B, et al. Diuretic use, progressive heart failure, and death in patients in the Studies of Left Ventricular Dysfunction (SOLVD). J Am Coll Cardiol , 2003, 42: 705-708
    14 Clausen T. Na~+-K~+ pump regulation and skeletal muscle contractility. Physiol Rev, 2003, 83: 1269-1324
    15 Clausen T. Long- and short-term regulation of the Na-K pump in skeletal muscle. News Physiol Sci, 1996, 11: 24-30
    16 Clausen T and Everts ME. Regulation of the Na,K-pump in skeletal muscle. Kidney Int, 1989, 35: 1-13
    17 United States Department of Agriculture. USDA Nutrient Database for Standard Reference, Release 14
    18 Allon M. Treatment and prevention of hyperkalemia in end-stage renal disease. Kidney Int, 1993, 43: 1197-1209
    19 Giebisch G and Wang W. Potassium transport: from clearance to channels and pumps. Kidney Int, 1996, 49: 1624-1631
    20 Weiner ID and Wingo CS. Hypokalemia consequences, causes, and correction. J Am Soc Nephrol, 1997, 8: 1179-1188
    21 Heppel LA. The electrolytes of muscle and liver in potassium depleted rats. Am J Physiol, 1939, 127: 385-392
    22 Norgaard A, Kjeldsen K, and Clausen T. Potassium depletion decreases the number of 3H-ouabain binding sites and the active Na-K transport in skeletal muscle. Nature, 1981, 293: 739-741
    23 Knochel JP, Dotin LN, and Hamburger RJ. Pathophysiology of intense physical conditioning in a hot climate. I. Mechanisms of potassium depletion. J Clin Invest, 1972, 51: 242-255
    1 Paice BJ, Paterson KR, Onyanga-Omara F, et al. Record linkage study of hypokalaemia in hospitalized patients. Postgrad Med J, 1986,62:187-191
    2 Schulman M, Narins RG. Hypokalemia and cardiovascular disease. Am J Cardiol, 1990,65:4E-9E
    3 Ascherio A, Rimm EB, Hernan MA, et al. Intake of potassium , magnesium, calcium, and fiber and risk of stroke among US men. Circulation, 1998,98: 1198-1204
    4 Barri YM, and Wingo CS. The effects of potassium depletion and supplementation on blood pressure: a clinical review. Am J Med Sci , 1997,314: 37-40
    5 Clausen T. Long- and short-term regulation of the Na-K pump in skeletal muscle. News Physiol Sci ,1996,11: 24-30
    6 Clausen T and Everts ME. Regulation of the Na,K-pump in skeletal muscle. Kidney Int, 1989, 35: 1-13
    7 United States Department of Agriculture. USDA Nutrient Database for Standard Reference, Release 14
    8 Allon M. Treatment and prevention of hyperkalemia in end-stage renal disease. Kidney Int , 1993,43: 1197-1209
    9 Giebisch G and Wang W. Potassium transport: from clearance to channelsand pumps. Kidney Int , 1996,49: 1624-1631
    10 Weiner ID and Wingo CS. Hypokalemia consequences, causes, and correction. J Am Soc Nephrol , 1997,8: 1179-1188
    11 Heppel LA. The electrolytes of muscle and liver in potassium depleted rats. Am J Physiol, 1939, 127: 385-392
    12 Norgaard A, Kjeldsen K, and Clausen T. Potassium depletion decreases the number of 3H-ouabain binding sites and the active Na-K transport in skeletal muscle. Nature, 1981, 293: 739-741
    13 Knochel JP, Dotin LN, and Hamburger RJ. Pathophysiology of intense physical conditioning in a hot climate. I. Mechanisms of potassium depletion. J Clin Invest, 1972, 51: 242-255
    14 Clausen T, Everts ME. Regulation of the Na,K-pump in skeletal muscle. Kidney Int, 1989,35:1-13
    15 Martinez R, Rietberg B, Skyler J, et al. Effect of hyperkalemia on insulin secretion. Experientia, 1991, 47:270-272
    16 Rowe JW, Tobin JD, Rosa RM, et al. Effect of experimental potassium deficiency on glucose and insulin metabolism. Metabolism, 1980,29:498-502
    17 AdroguéHJ, Madias NE. Changes in plasma potassium concentration during acute acid-base disturbances. Am J Med, 1981,71:456-467
    18 Blumberg A, Wiedmann P, Ferrari P. Effect of prolonged bicarbonate administration on plasma potassium in terminal renal failure. Kidney Int, 1992, 41:369-374
    19 Field MJ, Giebisch GJ. Hormonal control of renal potassium excretion. Kidney Int, 1985,27:379-387
    20 Hoes AW, Grobbee DE, Peet TM, et al. Do non-potassium-sparing diuretics increase the risk of sudden cardiac death in hypertensive patients? Recent evidence. Drugs, 1994,47:711-733
    21 Krishna GG. Effect of potassium intake on blood pressure. J Am Soc Nephrol, 1990, 1:43-52
    22 Naparstek Y, Gutman A. Spurious hypokalemia in myeloproliferativedisorders. Am J Med Sci ,1984, 288:175-177
    23 Bremner P, Burgess C, Beasley R, et al. Nebulized fenoterol causes greater cardiovascular and hypokalaemic effects than equivalent bronchodilator doses of salbutamol in asthmatics. Respir Med, 1992, 86:419-423
    24 Burgess CD, Flatt A, Siebers R, et al. A comparison of the extent and duration of hypokalaemia following three nebulized 2-adrenoceptor agonists. Eur J Clin Pharmacol, 1989, 36:415-417
    25 McCleave DJ, Phillips PJ, Vedig AE. Compartmental shift of potassium - a result of sympathomimetic overdose. Aust N Z J Med, 1978, 8:180-183
    26 Braden GL, von Oeyen PT, Germain MJ, et al. Ritodrine - and terbutaline-induced hypokalemia in preterm labor: mechanisms and consequences. Kidney Int, 1997, 51:1867-1875
    27 Bradberry SM, Vale JA. Disturbances of potassium homeostasis in poisoning. J Toxicol Clin Toxicol , 1995, 33:295-310
    28 Shannon M, Lovejoy FH. Hypokalemia after theophylline intoxication : the effects of acute vs chronic poisoning. Arch Intern Med , 1989 , 149 : 2725-2729
    29 Passmore AP, Kondowe GB, Johnston GD. Caffeine and hypokalemia. Ann Intern Med, 1986, 105:468-468
    30 Sugarman A, Kahn T. Calcium channel blockers enhance extrarenal potassium disposal in the rat. Am J Physiol, 1986, 250:F695-F701
    31 Minella RA, Shulman DS. Fatal verapamil toxicity and hypokalemia. Am Heart J, 1991, 121:1810-1812
    32 Chiou C-Y, Kifor I, Moore TJ, et al. The effect of losartan on potassium-stimulated aldosterone secretion in vitro. Endocrinology , 1994 , 134:2371-2375
    33 Tannen RL. Potassium disorders. In: Kokko JP, Tannen RL, eds. Fluids and electrolytes. 3rd ed. Philadelphia: W.B. Saunders, 1996, 111-99
    34 Katz FH, Eckert RC, Gebott MD. Hypokalemia caused by surreptitious self-administration of diuretics. Ann Intern Med, 1972, 76:85-90
    35 Jamison RL, Ross JC, Kempson RL, et al. Surreptitious diuretic ingestionand pseudo-Bartter's syndrome. Am J Med, 1982, 73:142-147
    36 Song DJ, Lorenzo B, Reidenberg MM. Inhibition of 11 -hydroxysteroid dehydrogenase by gossypol and bioflavonoids. J Lab Clin Med, 1992, 120:792-797
    37 Edwards CRW, Walker BR, Benediktsson R, et al. Congenital and acquired syndromes of apparent mineralocorticoid excess. J Steroid Biochem Mol Biol , 1993, 45:1-5
    38 Kobrin SM , Goldfarb S . Magnesium deficiency . Semin Nephrol , 1990 , 10:525-535
    39 Gearhart MO, Sorg TB. Foscarnet-induced severe hypomagnesemia and other electrolyte disorders. Ann Pharmacother, 1993, 27:285-289
    40 Basser LS. Purgatives and periodic paralysis. Med J Aust, 1979, 1:47-48
    41 Meyers AM, Feldman C, Sonnekus MI, et al. Chronic laxative abusers with pseudo-idiopathic oedema and autonomous pseudo-Bartter's syndrome: a spectrum of metabolic madness, or new lights on an old disease. S Afr Med J , 1990 , 78:631-636
    42 Ober KP. Thyrotoxic periodic paralysis in the United States: report of 7 cases and review of the literature. Medicine (Baltimore), 1992,71:109-120
    43 Sillén A, S?rensen T, Kantola I, et al. Identification of mutations in the CACNL1A3 gene in 13 families of Scandinavian origin having hypokalemic periodic paralysis and evidence of a founder effect in Danish families. Am J Med Genet, 1997, 69:102-106.
    44 Stedwell RE, Allen KM, Binder LS. Hypokalemic paralyses: a review of the etiologies, pathophysiology, presentation, and therapy. Am J Emerg Med, 1992, 10:143-148
    45 Laso FJ, Gonzalez-Buitrago JM, Martin-Ruiz C, et al. Inter-relationship between serum potassium and plasma catecholamines and 3':5' cyclic monosphosphate in alcohol withdrawal. Drug Alcohol Depend, 1990, 26:183-188
    46 Hesp R, Chanarin I, Tait CE. Potassium changes in megaloblastic anaemia. Clin Sci Mol Med, 1975, 49:77-79
    47 Rao TLK, Mathru M, Salem MR, et al. Serum potassium levels following transfusion of frozen erythrocytes. Anesthesiology, 1980, 52:170-172
    48 Hernandez RE, Schambelan M, Cogan MG, et al. Dietary NaCl determines the severity of potassium depletion-induced metabolic alkalosis. Kidney Int, 1987, 31:1356-1367
    49 Squires RD, Huth EJ. Experimental potassium depletion in normal human subjects. I. Relation of ionic intakes to the renal conservation of potassium. J Clin Invest, 1959, 38:1134-1148
    50 Kassirer JP, Schwartz WB. The response of normal man to selective depletion of hydrochloric acid: factors in the genesis of persistent gastric alkalosis. Am J Med, 1966, 40:10-18
    51 Bravo EL, Tarazi RC, Dustan HP, et al. The changing clinical spectrum of primary aldosteronism. Am J Med, 1983, 74:641- 651
    52 Tamura H, Schild L, Enomoto N, et al. Liddle disease caused by a missense mutation of subunit of the epithelial sodium channel gene. J Clin Invest, 1996, 97:1780-1784
    53 Simon DB, Lifton RP. The molecular basis of inherited hypokalemic alkalosis: Bartter's and Gitelman's syndromes. Am J Physiol ,1996 , 271:F961-F966
    54 Gill JR Jr, Bell NH, Bartter FC. Impaired conservation of sodium and potassium in renal tubular acidosis and its correction by buffer anions. Clin Sci ,1967,33:577-592
    55 Sebastian A, McSherry E, Morris RC. Renal potassium wasting in renal tubular acidosis (RTA): its occurrence in types 1 and 2 RTA despite sustained correction of systemic acidosis. J Clin Invest , 1971, 50:677-678
    56 Sebastian A, McSherry E, Morris RC. On the mechanism of renal potassium wasting in renal tubular acidosis associated with the Fanconi syndrome (type 2 RTA). J Clin Invest, 1971, 50:231-243
    57 Mir MA, Brabin B, Tang OT, et al. Hypokalaemia in acute myeloid leukaemia. Ann Intern Med, 1975, 82:54-57
    58 Lantz B, Carlmark B, Reizenstein P. Electrolytes and whole bodypotassium in acute leukemia. Acta Med Scand , 1979, 206:45-50
    59 Rimmer JM, Horn JF, Gennari FJ. Hyperkalemia as a complication of drug therapy. Arch Intern Med, 1987, 147:867-869
    60 Sterns RH, Cox M, Feig PU, Singer I. Internal potassium balance and the control of the plasma potassium concentration. Medicine (Baltimore) ,1981, 60:339-354
    61 Schwartz AB, Swartz CD. Dosage of potassium chloride elixir to correct thiazide-induced hypokalemia. JAMA, 1974, 230:702-704
    62 Kassirer JP, Harrington JT. Diuretics and potassium metabolism: a reassessment of the need, effectiveness and safety of potassium therapy. Kidney Int
    63杨在春,李庆棣.新编临床医学数据手册[M].北京:金盾出版社,1993:325
    64上海第一医学院实用内科学编写组.实用内科学[M].第6版.北京:人民卫生出版社,1973:499
    65白定华.红细胞内低钾对慢性充血性心力衰竭治疗的影响[J].临床荟萃,2003,18(23):1360
    66 Hamill RJ, Robinson LM, Wexler HR, et al..Eficacy and safety of potassium infusion therapy in hypokalemic critically ill patients[J].Crit Care Med,1991,19 (5):694
    67 Bundgaard H, Kjeldsen K.Potassium depletion increases potassium clearance capacity in skeletal muscles in vivo during acute repletion.Am J Physiol Cell Physiol,2002,283(4):1163
    68 Lin SH, Dhadli S, Gowfishankar M, et al. Control of excretion of potassium:lessons from studies during prolonged total fasting in human subjects. Am J Physiol Renal Physiol, 1997, 273(5):796
    69 Kruse JA, Clark VL, Carlson RW, et al. Concentrated potassium chloride infusion in critically ill patients with hypokalemia. J Clin Pharmacol,1994,34 (11) :1077
    70 Thompson CB, Choi C, Youn JH,et al..Temporal responses of oxidative VS. glycolytic skeletal muscles Io K deprivation: Na pumps and cell cations.Am J Physiol Cell Physiol, 1999, 276(6):1411
    71谢扬,饶邦复.临床病理讨论第279例—周期性麻痹,低钾血症,持续性心室颤动[J].中华内科杂志, 2001, 40(12):859
    72 Kruse JA, Cadson RW. Rapid correction of hypokalemia using concentrated intravenous potassium chloride infusions. Arch Intern Med, 1990, 150(3):613
    73 Welfare W, Sasi P.Challenges in managing profound hypokalaemia . BMJ, 2002, 324(7332):269
    74 Choy AM, Lang CC, Chomsky DM, et al. Normalization of acquired QT prolongation in humans by intravenous potassium. Circulation, 1997, 96(7): 2149
    75屠欣.高浓度静脉补钾治疗低钾血症的临床研究[J].实用医学杂志,2005,21(11): 78
    76 Messie MT, Darrell JC, DiMarco RF, et al. Norm othermie retrograde continuous cardioplegia for myocardial protection during cardiopulmonary bypass. Texs Heart Institute J, 1993, 20(2):89
    77 Skou JC. The influence of some cations on an adenosine triphosphatase from peripheral nerves. Biochim Biophys Acta, 1957, 23(2):394-401
    78 Clausen, T. Na~+-K~+-Pump Regulation and Skeletal Muscle Contractility. Physiol Rev, 2003, 83:1269-1324
    79 Quintas LEM, Francois Noel, Maurice Wibo,et a1. Na~+/K~+-ATPaseαisoforms expression in stroke-prone spontaneously hypertensive rat heart ventricles:Effect of salt loading and lacidipine treatment. European Journal of Pharmacology, 2007, 565:151-157
    80 Anner BM, Imesch E, Moosmayer M. Sodium transport defect of ouabain resistant renal Na~+,K~+-ATPase.Boichem Biophys Res Commun, 1989, 165(1):360
    81 Gregoire ID, Roth S, Siegenthaler P, et a1.A ouabain displacing factor in normal pregnancy,pregnancy-induced hypertension and pre-eclampsia. Clin Sci, 1988, 71(1):307
    82 Munzer JS, Daly SE, Jewell-Motz EA, et al. Tissue- and isoform-specific kinetic behavior of the Na,K-ATPase. J Biol Chem, 1994, 269:16668-16676
    83 McDonough AA, Velotta JB, Schwinger RH, et al. The cardiac sodium pump: structure and function.Basic Res Cardiol, 2002, 97 Suppl 1:I19-24
    84 Geering K. The functional role of beta subunits in oligomeric P2 type ATPases. J Bioenerg Biomembr, 2001, 33(5):425-438
    85 Bundgaard H, Kjeldsen K. Human myocardial Na,K-ATPase concentration in heart failure. Am J Physiol Cell Physiol, 1996 Oct-Nov, 163-164:277-83
    86 Skou JC. The influence of some cations on an adenosine triphosphatase from peripheral nerves.Biochim Biophys Acta, 1957, 23(2):394-401
    87 Glynn IM.Annual review prize lecture. All hands to the odium pump. Physiol, 1993,462:1-30
    88 Juel C. Potassium and sodium shifts during in vitro isometric muscle contraction, and the time course of the ion-gradient recovery. Pflu¨gers Arch, 1986, 406: 458-463
    89 Hazeyama Y and Sparks HV. A model of potassium ion efflux during exercise of skeletal muscle. Am J Physiol Regul Integr Comp Physiol, 1979, 236: R83–R90
    90 Everts ME and Clausen T. Excitation-induced activation of the Na~+-K~+ pump in rat skeletal muscle. Am J Physiol Cell Physiol , 1994, 266: C925-C934
    91 Nielsen OB and Clausen T. Regulation of Na~+-K~+pump activity in contracting rat muscle. J Physiol (Lond) , 1997, 503: 571-581
    92 Evans RH and Smith JW. Mode of action of catecholamines on skeletal muscle (Abstract). J Physiol (Lond) , 1973, 232: 81P-82P
    93 Tashiro N. Effects of isoprenaline on contractions of directly stimulated fast and slow skeletal muscles of the guinea-pig. Br J Pharmacol, 1973, 48: 121-131
    94 Richter EA, Sonne B, Christensen NJ, et al. Role of epinephrine for muscular glycogenolysis and pancreatic hormonal secretion in running rats. Am J Physiol Endocrinol Metab, 1981, 240: E526-E532
    95 Powell WJ and Skinner NS. Effect of the catecholamines on ionic balance and vascular resistance in skeletal muscle. Am J Cardiol, 1966, 18: 73-82
    96 Clausen T and Flatman JA. Effects of insulin and epinephrine on Na~+-K~+ and glucose transport in soleus muscle. Am J Physiol Endocrinol Metab, 1987, 252: E492-E499
    97 Van Mil HGJ, Kerkhof CJM, and van Heukelom JS. Modulation of the isoprenaline-induced membrane hyperpolarization of mouse skeletal muscle cells. Br J Pharmacol , 1995, 116: 2881-2888
    98 Clausen T and Overgaard K. The role of K~+ channels in the force recovery elicited by Na~+-K~+pump stimulation in Ba2~+-paralysed rat skeletal muscle. J Physiol (Lond) , 2000, 527: 325-332
    99 Hallen J, Gullestad L, and Sejersted OM. K~+ shifts of skeletal muscle during stepwise bicycle exercise with and without betaadrenoceptor blockade. J Physiol (Lond) , 1994, 477: 149-159
    100Scheinin M, Koulu M, Laurikainen E, and Allonen H. Hypokalaemia and other non-bronchial effects of inhaled fenoterol and salbutamol: a placebo-controlled dose-response study in healthy volunteers. Br J Clin Pharmacol , 1987, 24: 645-653
    101Ferrannini E, Taddel S, Santoro D, et al. Independent stimulation of glucose metabolism and Na~+-K~+exchange by insulin in the human forearm. Am J Physiol Endocrinol Metab , 1988, 255: E953-E958
    102Weil E, Sasson S, and Gutman Y. Mechanisms of insulin-induced activation of Na~+-K~+-ATPase in solated rat soleus muscle. Am J Physiol Cell Physiol, 1991, 261: C224-C230
    103Ragolia L, Cherpalis B, Srinivasan M, et al. Role of serine/threonine protein phosphatases in insulin regulation of Na~+/ K~+-ATPase activity in cultured rat skeletal muscle cells. J Biol Chem, 1997, 272: 23653-23658
    104Djurhuus MS, Vaag A, and Klitgaard NAH. Muscle sodium, potassium, and [3H]ouabain binding in identical twins, discordant for type 2 diabetes. J Clin Endocrinol Metab, 2001, 86: 859–866
    105Omatsu-Kanbe M and Kitasato H. Insulin stimulates the translocation ofNa~+/K~+-dependent ATPase molecules from intracellular stores to the plasma membrane in frog skeletal muscle. Biochem J, 1990, 272: 727-733
    106Marette A, Krischer J, Lavoie L, et al. Insulin increases the Na~+-K~+-ATPaseα2-subunit in the surface of rat skeletal muscle: morphological evidence. Am J Physiol Cell Physiol, 1993, 265: C1716-C1722
    107Chibalin AV, Kovalenko MV, Ryder JW, et al. Insulin- and glucose-induced phosphorylation of the Na~+,K~+-adenosine triphosphatase alphasubunits in rat skeletal muscle. Endocrinology, 2001, 142: 3474-3482
    108Ramlal T, Ewart HS, Somwar R, et al. Muscle subcellular localization and recruitment by insulin of glucose transporters and Na~+-K~+-ATPase subunits in transgenic mice overexpressing the GLUT4 glucose transporter. Diabetes, 1996, 45: 1516-1523
    109Onuoha GN, Nicholls DP, Patterson A, et al. Neuropeptide secretion in exercise. Neuropeptides , 1998, 32: 319-325
    110Li KX and Sperelakis N. Isoproterenol- and insulin-induced hyperpolarization in rat skeletal muscle. J Cell Physiol , 1993, 157: 631-636
    111Clausen T and Kohn PG. The effect of insulin on the transport of sodium and potassium in rat soleus muscle. J Physiol (Lond) , 1977, 265: 19-42
    112Clausen T. The relationship between the transport of glucose and cations across cell membranes in isolated tissues. II. Effects of K~+-free medium, ouabain and insulin upon the fate of glucose in rat diaphragm. Biochim Biophys Acta , 1966, 120: 361-368
    113Glitsch HG and Tappe A. The Na~+/K~+ pump of cardiac Purkinje cells in preferentially fuelled by glycolytic ATP production. Pflu¨gers Arch, 1993, 422: 380-385
    114Kjeldsen K , Richter EA , Galbo H , et al Training increases the concentration of [3H]ouabain-binding sites in rat skeletal muscle . Biochim Biophys Acta , 1986 , 860 : 708-712
    115Knochel JP, Blachley JD, Johnson JH, et al. Muscle cell electricalhyperpolarization and reduced exercise hyperkalemia in physically conditioned dogs. J Clin Invest, 1985, 75: 740-745
    116Ward KM, Manning W, and Wareham AC. Effects of denervation and immobiliation during development upon [3H]ouabain binding by slow- and fast-twitch muscle of the rat. J Neurol Sci , 1987, 78: 213-224
    117Jebens E, Steen H, Fjeld TO, et al. Changes in Na~+,K~+-adenosinetriphosphatase, citrate synthase and K~+ in sheep skeletal muscle during immobilization and remobilization. Eur J Appl Physiol, 1995, 71: 386-395
    118Leivseth G and Reikeras O. Changes in muscle fiber crosssectional area and concentrations of Na,K-ATPase in deltoid muscle in patients with impingement syndrome of the shoulder. J Orthop Sports Phys Ther, 1994, 19: 146-149
    119Gadsby DC, Niedergerke R, and Ogden DC. The dual nature of the membrane potential increase associated with the activity of the sodium/potassium exchange pump in skeletal muscle fibres. Proc R Soc Lond B Biol Sci , 1977, 198: 463-472
    120Suwannachot P. K~+-Homeostasis in Horses. Effects of Training and Food Supply on the Na~+,K~+-ATPase Concentration in Skeletal Muscle (PhD thesis). Utrecht, The Netherlands: Utrecht Univ, 2001
    121Suwannachot P, Verkleij CB, Weijs WA, et al. Effects of training on the concentration of Na~+,K~+- ATPase in foal muscle. Equine Vet J Suppl, 1999, 31: 101-105
    122Dauncey MJ and Burton KA. [3H]ouabain binding sites in porcine skeletal muscle as influenced by environmental temperature and energy intake. Pflu¨gers Arch , 1989, 414: 317-323
    123Klitgaard H and Clausen T. Increased total concentration of Na-K pumps in vastus lateralis muscle of old trained human subjects. J Appl Physiol, 1989, 67: 2491-2494
    124Green HJ, Dahly A, Shoemaker K, Goreham C, et al. Serial effects of high-resistance and prolonged endurance training on Na~+-K~+ pumpconcentration and enzymatic activities in human vastus lateralis. Acta Physiol Scand, 1999, 165: 177-184
    125Medb? JI, Jebens E, Vikne H, et al. Effect of strenuous strength training on the Na-K pump concentration in skeletal muscle of well-trained men. Eur J Appl Physiol, 2001, 84: 148-154
    126Overgaard K, Lindstr?m T, Ingemann-Hansen T, et al. Membrane leakage and increased content of Na~+-K~+ pumps and Ca2~+ in human muscle after a 100-km run. J Appl Physiol, 2002, 92: 1891-1898
    127Kjeldsen K, Everts ME, and Clausen T. The effects of thyroid hormones on [3H]ouabain binding site concentration, Na,K-contents and 86Rb-efflux in rat skeletal muscle. Pflu¨gers Arch, 1986, 406: 529-535
    128Kjeldsen K, G?tzsche CO, N?rgaard A, et al. Effect of thyroid function on number of Na-K pumps in human skeletal muscle. Lancet, 1984, ii: 8-10
    129Horowitz B, Hensley CB, Quintero M, et al. Differential regulation of Na,K-ATPaseα1,α2, andβsubunit mRNA and protein levels by thyroid hormone. J Biol Chem, 1990, 265: 14308-14314
    130Matsumura M, Kuzuya N, Kawakami Y, et al. Effects of fasting, refeeding, and fasting with T3 administration on Na-K,ATPase in rat skeletal muscle. Metabolism , 1992, 41: 995-999
    131Swann AC. Caloric intake and Na~+-K~+-ATPase: differential regulation by alpha 1- and beta-noradrenergic receptors. Am J Physiol Regul Integr Comp Physiol, 1984, 247: R449-R455
    132Kjeldsen K, Everts ME, and Clausen T. Effects of semi-starved and potassium deficiency on the concentration of [3H]ouabainbinding sites and sodium and potassium contents in rat skeletal muscle. Br J Nutr, 1986, 56: 519-532
    133Nishida K, Ohara T, Johnson J, et al. Na~+/K~+-ATPase activity and itsαII subunit gene expression in rat skeletal muscle: influence of diabetes, fasting, and refeeding. Metabolism, 1992. 41: 56-63
    134Kjeldsen K, Br?ndgaard H, Sidenius P, et al. Diabetes decreases Na~+-K~+ pump concentration in skeletal muscles, heart ventricular muscle, andperipheral nerves of rat. Diabetes, 1987, 36: 842-848
    135Schmidt TA, Hasselbalch S, Farrell PA, et al. Human and rodent muscle Na(~+)-K(~+)-ATPase in diabetes related to insulin, starvation, and training. J Appl Physiol, 1994, 76: 2140-2146
    136Schmitz O, Alberti KGMM, Hreidarsson AB, Let al. Suppression of the night increase in serum TSH during development of ketosis in diabetic patients. J Endocrinol Invest, 1981, 4: 403-407
    137Zhang L, Parratt JR, Beastall GH, et al. Streptozotocin diabetes protects against arrhythmias in rat isolated hearts: role of hypothyroidism. Eur J Pharmacol, 2002, 435: 269-276
    138Pollack LR, Tate EH, and Cook JS. Na~+,K~+-ATPase in HeLa cells after prolonged growth in low K~+ or ouabain. J Cell Physiol, 1981, 106: 85-97
    139N?rgaard A, Kjeldsen K, and Clausen T. Potassium depletion decreases the number of 3H-ouabain binding sites and the active Na-K transport in skeletal muscle. Nature, 1981, 293: 739-741
    140Sadre M, Sheng HP, Fiorotto M, et al. Electrolyte composition changes of chronically K-depleted rats after K loading. J Appl Physiol, 1987, 63: 765-769
    141Hsu YM and Guidotti G. Effects of hypokalemia on the properties and expression of the (Na~+,K~+)-ATPase of rat skeletal muscle. J Biol Chem, 1991, 266: 427-433
    142Azuma KK, Hensley CB, Putnam DS, et al. Hypokalemia decreases Na~+-K~+-ATPaseα2- but notα1-isoform abundance in heart, muscle, and brain. Am J Physiol Cell Physiol, 1991, 260: C958-C964
    143Ng YC. Hypokalemia downregulates cardiacα1 and skeletal muscleα2 isoforms of Na~+-K~+-ATPase in ferrets. Biochem Biophys Res Commun, 1993, 196: 39-46
    144Crambert G, Fuzesi M, Garty Karlish S, et al. Phospholemman (FXYD1) associates with Na,K-ATPase and regulates its transport properties. Proc Natl Acad Sci USA, 2002, 99: 11476-11481
    145D?rup I , Skajaa K , and Thybo NK . Oral magnesium supplementationrestores the concentrations of magnesium, potassium and sodium-potassium pumps in skeletal muscle of patients receiving diuretic treatment . J Int Med , 1993, 233: 117-123
    146Blachley JD, Crider BP, and Johnsson JH. Extrarenal potassium adaptation: role of skeletal muscle. Am J Physiol Renal Fluid Electrolyte Physiol, 1986, 251: F313-F318
    147Bundgaard H, Schmidt TA, Larsen JS, et al. K~+ supplementation increases muscle [Na~+-K~+-ATPase] and improves extrarenal K~+ homeostasis in rats. J Appl Physiol, 1997, 82: 1136-1144
    148Green HJ, Roy B, Grant S, et al. Downregulation in muscle Na(~+)-K(~+)- ATPase following a 21-day expedition to 6, 194 m. J Appl Physiol, 2000. 88: 634-640
    149陈主初,主编:病理生理学.北京:人民卫生出版社,2001,114-117
    150石毓澍.临床心律学[M].天津科学技术出版社.1994:594-595
    151程蕴琳,桂鸣,鲁翔,等.低血钾性恶性心律失常的心室晚电位研究.起搏与心脏,1999,6(2),71-73
    152池田信男,向培斌.日本医学介绍, 1985, 6(6): 284
    153王志东,王风琴,等.急性心肌梗塞早期血钾含量与心律失常的关系.山西医科大学学报,1998, 29(增刊):60-61
    154陈良细.急性心肌梗死低钾血症与心律失常的关系.心功能杂志,1999,11(2):122, 124
    155吴霄迪,刘崇新,刘迎年,等.急性心肌梗塞发生24小时血清钾的观察.中国危重病急救医学,1994,6(5):291
    156韦耿泽,王波,金振晓,等.低钾加重大鼠心肌细胞再灌注损伤的机制.第四军医大学学报,2006,27(23): 2128-2130
    157Shapiro,Joseph I,Anirban B,et al. Acute and chronic hypokalemia sensitize the isolated heart to hypoxic injury. Am J Physiol Heart Circ Physiol, 1998, 274: 1598-1604
    158Knochel JP . Hypokalemia.Adv Intern Med, 1984, 30: 317-335
    159Hoerter JA, Miceli MV, Renlund DG, ea al. A phosphorus-31 nuclear magnetic resonance study of the metabolic, contractile, and ionicconsequences of induced calcium alterations in the isovolumic heart. Circ Res, 1986, 58: 539-551
    160Peterson EW, Chen KG, Elkins N,et al. NMR spectroscopy studies of severe hypokalemia in the isolated rat heart. Am J Physiol, 1995, 269 (Heart Circ Physiol 38):H1981-H1987
    161Langer GA. Calcium and the heart:exchange at the tissue, cell, and organelle levels.FASEB J 1992, 6:893-902
    162Koretsune Y, Marban E. Relative roles of Ca2~+-dependent and Ca2~+-independent mechanisms in hypoxic contractile dysfunction. Circulation, 1990, 82:528-535
    163Marban E, Koretsune Y, Corretti M, et al. Calcium and its role in myocardial cell injury during ischemia and reperfusion. Circulation, 1989, 80:IV17-IV22
    164Koike K, Moore EE, Moore FA, et al. Phospholipase A2 inhibition decouples lung injury from gut ischemia-reperfusion. Surgery, 1992, 12: 173-180
    165谭宁.钾对心血管保护作用及其机制的研究进展.岭南心血管病杂志,1997,(3):52-55
    166Clausen T. Regulation of active Na~+-K~+ transport in skeletal muscle. Physiol Rev, 1986, 66:542-580
    167Wang P and Clausen T. Treatment of attacks in hyperkalaemic familial periodic paralysis by inhalation of salbutamol. Lancet, 1976, 1: 221
    168Clausen T. Clinical and therapeutic significanceof the Na~+,K~+ pump*. Clinical Science, 1998, 95: 3-17
    169Clausen T and Flatman JA. The effect of catecholamines on Na-K transport and membrane potential in rat soleus muscle. J Physiol, 1977, (London)270: 383-414
    170Li KX and Sperelakis N. Isoproterenol- and insulin-induced hyperpolarization in rat skeletal muscle. J Cell Physiol, 1993, 157: 631-636
    171Lear S, Cohen BJ, Silva P, et al. cAMP activates the sodium pump incultured cells of the elasmobranch rectal gland. J Am Soc Nephrol, 1992, 2: 1523-1528
    172Desilets M and Baumgarten CM. Isoproterenol directly stimulates the Na~+–K~+ pump in isolated cardiac myocytes. Am J Physiol, 1986, 251, H218-H225
    173Schwinger R, Wang JN, Konrad F, et al. Reduced Sodium Pumpα1,α3,andβ1-Isoform Protein Levels and Na~+,K~+-ATPase Activity but Unchanged Na~+-Ca2~+ Exchanger Protein Levels in Human Heart Failure . Circulation, 1999, 99:2105-2112
    174Ericsson F, Carlmark B, Jogestrand T, et al. Effect of digoxin upon intracellular potassium in man.Scand J Clin Lab Invest, 1981, 41:457-463
    175Brennan JF,McCans JL,Chiong MA,et al.Effects of ouabain on myocardial potassium and sodium balance in man.Circulation,1972,45:107–113
    176Rasmussen HH, Okita GT, Hartz RS, et al. Inhibition of electrogenic Na~+-pumping in isolated atrial tissue from patients treated with digoxin. J Pharmacol Exp Ther, 1990, 252:60-64
    177Jogestrand T. Digoxin concentration in right atrial myocardium, skeletal muscle and serum in man: influence of atrial rhythm. Eur J Clin Pharmacol, 1980, 17:243-250
    178Schmidt TA, Allen PD, Colucci WS, et al. No adaptation to digitalization as evaluated by digitalis receptor (Na,K-ATPase) quantification in explanted hearts from donors without heart disease and from digitalized recipients with end-stage heart failure.Am J Cardiol, 1993, 71:110-114
    179Armstrong PW and Moe GW. Medical advances in the treatment of congestive heart failure. Circulation, 1993, 88:2941-2952
    180Slatton ML, Irani WN, Hall SA, et al. Does digoxin provide additional hemodynamic and autonomic benefit at higher doses in patients with mild to moderate heart failure and normal sinus rhythm? J Am Coll Cardiol, 1997, 29:1206-1213
    181Adams Jr KF, Gheorghiade M, Uretsky BF, et al. Patients with mild heart failure worsen during withdrawal from digoxin. J Am Coll Cardiol, 1997,30:42-48
    182The Digitalis Investigation Group. The effect of digoxin on mortality and morbidity in patients with heart failure. N Engl J Med, 1997, 336:525-533
    183Rodrigo A,Elisa TM.Nongenomic effect of aldosterone on Na~+ ,K~+-ATPase in arterial vessels.Endocrinology, 144(4):1266-1272
    184Oguchi A, Ikeda U, Kanbe T, et a1. Regulation of Na~+,K~+-ATPase gene expression by aldosterone in Vascular smooth muscle cells. Am J Physiol 1993, 265:H1167-H172
    185Ramirez-Gil JF,TrouVe P,Mougenot N,et a1.Modifications of myocardial Na~+,K~+-ATPase isoforms and Na~+/Ca2~+ exchanger in aldosterone /salt-induced hypertension in guinea pigs. Cardiovasc Res, 1998, 38(2): 451-462
    186Norgaard A, Bjerregaard P, Baandrup U, et al. The concentration of the Na,K-pump in skeletal and heart muscle in congestive heart failure. Int J Cardiol, 1990, 26:185-190
    187Barlow CW, Qayyum MS, Davey PP, et al. Effect of physical training on exercise-induced hyperkalemia in chronic heart failure. Relation with ventilation and catecholamines. Circulation, 1994, 89:1144-1152
    188Pickar JG, Mattson JP, Lloyd S, et al. Decreased [3H]-ouabain binding sites in skeletal muscle of rats with chronic heart failure. J Appl Physiol, 1997, 83:323-329
    189Kim DH, Akera T, Kennedy RH. Ischemia-induced enhancement of digitalis sensitivity in isolated guinea-pig heart, 1983 Aug, 226(2):335-42
    190Bundgaard H, Schmidt TA, Larsen JS, et al. K supplementation increases muscle Na,K-ATPase and improves extrarenal K homeostasis in rats. J Appl Physiol, 1997, 2:1136-44
    191Bundgaard H, Enevoldsen MT, Kjeldsen K. Chronic supplementation decreases myocardial Na,K-ATPase and net uptake capacity in rodents. J Moll Cell Cardiol, 1998, 30:2037-46
    192Bundgaard H, Kjeldsen K. Potassium depletion increases potassium clearance capacity in skeletal muscles in vivo during acute repletion. Am JPhysiol, 2002, 283:1163-70
    193Mohler PJ, Schott JJ, Gramolini AO, et al. Ankyrin-B mutation causes type 4 long-QT cardiac arrhythmia and sudden cardiac death. Nature, 2003, 421: 634-639
    194Kjeldsen K. Myocardial Na,K-ATPase:Clinical aspects. Exp Clin Cardiol, 2004, 8(3):131-133
    195Norgaard A,Kjeldsen K,Clausen T.Potassium depletion decreases the number of 3H-ouabain binding sites and the active Na–K transport in skeletal muscle,Nature (London),1981,293: 739-741
    196Clausen T, Kjeldsen K. Effects of potassium deficiency on Na,K homeostasis and Na~+,K~+-ATPase in muscle. Curr Topics Membranes Transport, 1987, 28:403-419
    197McDonough AA, Thompson CB. Role of skeletal muscle sodium pumps in the adaptation to potassium deprivation. Acta Physiol Scand, 1996, 156: 295-304
    198Surawicz B. Factors affecting tolerance to digitalis. J Am Coll Cardiol, 1985, 5:69A-81A
    199Clausen T, Hansen O, Kjeldsen K, et al. Effect of age, potassium depletion and denervation on specific displaceable [3H]ouabain binding in rat skeletal muscle in vivo. J Physiol, (London)1982, 333: 367-81

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700