用户名: 密码: 验证码:
可卡因对中枢神经系统敏感性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本实验采用行为学、电生理学、形态学等方法,探讨可卡因对机体敏感性的影响以及可卡因对以缰核为代表的中枢神经系统的作用及其机理,同时也阐述了应激促进成瘾性药物作用的部分机制,为进一步了解可卡因等成瘾性药物作用的中枢机制提供新的科学理论依据。
    本实验开展了如下的工作:①在恐惧条件反射的实验中,观察到可卡因可增加动物的焦虑行为,提高机体对条件刺激的敏感性。②连续的可卡因对缰核的传出纤维——后屈束有独特的神经毒作用,可导致后屈束产生退行性病变。③整体和离体的电生理实验表明,可卡因可直接和间接地提高外侧缰核痛兴奋神经元的兴奋性,其机制是由于药物作用于缰核神经元细胞膜上延迟整流钾离子通道,使通道电流减小造成的。④急性给予可卡因诱导的缰核c-fos 蛋白表达具有区域特异性,即药物可明显增加外侧缰核的Fos-like神经元数量。⑤糖皮质激素可增加外侧缰核的fos 蛋白表达,增强外侧缰核神经元的电活动。⑥用电生理学方法证明了可卡因引起伏隔核电活动增加的反应中,丘脑室旁核的调节作用。
The project of drug abuse is the focused the point for attention to the contemporary society due to the high addictive property, easy relapse and serious hazard to society. It is shown that drug abuse facilitates the release of dopamine, inhibits the reuptake of DA and increases the extracellular levels of DA in mesolimbic dopaminergic reward system, especially, in the nucleus accumbens and ventral tegmental area. The hebenula is innervated by dopaminergic nerve cell and sends projections to the ventral tegmental area. Moreover, there are DA receptor, opiate receptor and DA transporter in the Hb (especially LHb). It is reported that the Hb played an important role in the actions of addictive drug. The aim of this report is to further investigate the effects and mechanism of cocaine on the sensitivity of central nervous system, especially the Hb by the techniques of electrophysiology, morphology and immunohistochemistry as well as the primary observation of the stimulative action of the glucocorticoid on Hb. The main data are described in the following:
    1、Effects of cocaine on the startle responses of the rats
    The startle responses were induced by conditioned stimulus (CS), and the blood pressure was measured in fear conditioning. The studies showed that the blood pressure was remarkably increased by the conditioned stimulus after 3 days
    training. The fear-related behavior was evaluated by measuring freezing time during CS presentation and the freezing response increased obviously after fear conditioning.
    Autonomic responses and freezing behavior changed when cocaine was injected into the rats before training everyday. The arterial blood pressure of the cocaine rats was higher than that of the control rats by CS and the freezing behavior of the cocaine rats decreased. The studies suggest that cocaine can increase the excitability of nervous system as well as the sensitivity to CS.
    2、The degeneration of fasciculus retroflexus (FR) from LHb induced by continuous cocaine injected.
    Although the total volume of cocaine injected is equal, but the pattern of injection is different, the effect of the cocaine injected is also different. The body weight of rats are lessened and the degeneration of FR is induced only by the situation of sustained lower cocaine level, but the interrupted higher cocaine level does not induce any changes in same respect. This tract appeared to be a `weak link' for binge-like intake of dopaminergic stimulants, and this suggested that degeneration in FR might underlie, in part, the progressive effects which develop with repeated binges.
    3、Effects of cocaine on the discharge of Hb neurons
    After i.v. of cocaine, spontaneous discharges of pain excitation unit of LHb are increased and excitation response to noxious stimulation are increased; however spontaneous discharges of pain inhibition unit of LHb are reduced and inhibition response to noxious stimulation are reduced. Effect of cocaine is not transparent on pain excitatory neuron and pain inhibitory neuron of MHb. It suggest that LHb is highly sensitive to cocaine.
    When iontophoresis of cocaine into LHb, spontaneous discharges and excitation response to noxious stimulation of pain excitation unit of LHb are increased; spontaneous discharges and inhibition response to noxious stimulation of pain inhibition unit of LHb are reduced . When the volume of cocaine iontophoresis into same neuron of LHb is obviously increased, the excitation of neuron was more increased. It suggest that cocaine can directly increase the excitation level of LHb neuron.
    4、Effects of cocaine on pain threshold in rats
    The pain threshold was measured in response to the subcutaneous injection of cocaine by radiant heat-tail method. Lower cocaine levels reduces the pain threshold and higher cocaine levels increases the pain threshold. The finding about interrelation between pain tolerance and drug abuse suggests that drug dependence and pain perception share common neuroanatomical and neurophysiological substrates.
    5、Effect of cocaine on delayed rectifier potassium ion channels in Hb
    To ensure whether the effects of cocaine on excitability of neuron are related to the permeability of ion channels in LHb or not, the effects of cocaine on delayed rectifier potassium ion channels in Hb is observed by using whole-cell configuration of patch-clamp technique. It is found that cocaine can inhibit the activities of delayed rectifier potassium ion channels and decrease the current of K+ in Hb. It is probably the part of the mechanisms of the cocaine increasing excitability of neuron in LHb.
    6、Cocaine-inducted expression of the Fos protein in hebenula
    The c-fos is a kind of immediate-early gene and has been used widely as a
引文
1. 包新民. 大鼠缰核的传入投射-WGA-HRP 法研究. 解剖学报,1986,17:386.
    2. 曹晓杰博士论文,大鼠缰核对痛觉调制的不同作用及机制的研究,1998,6.
    3. 富继义、付庆功、王绍,尾核与隔区对外侧缰核的抑制作用,生理学报,1982,34:400
    4. 付庆功、富继义、王绍等,外侧缰核神经元对伤害性刺激的反应形式——痛抑制单位放电特征性的研究,白求恩医科大学学报,1983,9:9~13.
    5. 高云玲、王绍,阻断蓝斑、臂旁核后,缰核内注入谷氨酸对大鼠血压、心率的影响,中国应用生理学杂志,1988,4:82
    6. 考长青、王绍,伏核内注射钠络酮对电针影响外侧缰核痛放电的翻转作用,生理学报,1985,37:24
    7. 李宽娅,周敬修,大鼠缰核的传入性联系,解剖学通报,1984,7(增刊):186
    8. 李素民,任燕华,郑继旺,多巴胺D3受体在中枢神经兴奋剂成瘾中的作用,中国药物依赖性杂志,2001,10(2):86-88.
    9. 吕证宝,倪力、安林. 大白鼠缰核传出纤维的放射性同位素自显影研究. 解剖学报,1983,3:47
    10. 刘闯. G 蛋白-cAMP 系统与阿片类依赖. 中国药物依赖性通报,1996,5(4),201-205.
    11. 刘闯,郑继旺. 药物渴求,中国药物依赖性杂志,1999,8(1):19-22
    12. 刘国军、王绍,中缝大核、蓝斑核在缰核下行调节痛阈和针刺镇痛中的作用,中国药理学报,1988,9,18
    13. 刘伟民、王绍,刺激杏仁基底外侧核对外侧缰核神经元单位放电的影响,生理学报,1987,39,373
    14. 刘伟民、王绍,大鼠扣带回前部对外侧缰核单位放电的抑制作用,动物学报,1988,34:343
    15. 刘忠华,张开镐. 药物的条件性位置偏爱效应及其神经生化机制. 中国药物依赖性通报,1998,5(4):19-196.
    16. 梁建辉,潘励山,郑继旺. CAMP 反应元件结合蛋白与吗啡依赖.中国药物依赖性杂志,2000,9(3),161-165.
    17. 沙,黄品杰,丁伟. 电刺激猫杏仁中央核对丘脑后核内脏大神经单位诱发放电的影响. 中国医科大学学报. 1991,20(6),340-342.
    18. 宋岳涛. 解剖学杂志,1994,17(6):538-540.
    19. 宋岳涛. 山西医科大学学报,1997,28(2):81-83.
    20. 唐竹吴,中枢神经系统解剖学,上海科学技术出版社,1986,206.
    21. 王绍、江岩、肖家思等,缰核的自发放电及其对中缝大核的抑制作用,科学通报, 1980,1:36~39.
    22. 王绍、高云龄、刘国军等,缰核、弓状核对大鼠痛阈和针刺镇痛的影响,中国应用生理学杂志,1987,3:333
    23. 王玢、罗非、韩济生. 阿片成瘾机制研究进展及治疗展望. 生理科学进展,1998,29(4):295-300.
    24. 王丽文,彭霞. 电刺激杏仁核对海马单位放电的影响. 大连医科大学学报,1999,21(4),297-298.
    25. 许惠源,周敬修. 大白鼠脚间核的传入性联系. 解剖学报1985;16:42
    26. 谢俊霞,刘彤,雌激素对电刺激诱发杏仁核多巴胺释放的影响,生理学报,2001,53(3):170-174
    27. 杨绍年、王绍,大鼠缰核与下丘脑外侧区在调节心血管活动方面的机能联系,生理学报,1992,42:82
    28. 杨绍年、王绍,缰核内微量注射利多卡因对电刺激杏仁核内侧引起的升压反应的影响,中国应用生理学杂志,1990,6:178
    29. 杨绍年、王绍,电刺激大鼠隔后部对血压、心率的影响及其下行通路,中国应用生理学杂志,1991,7:186
    30. 杨绍年、王绍,延髓腹外侧结构在刺激缰核诱发升血压反应中的作用,生理学报,1988,40:283
    31. 杨绍年,王绍。缰核内微量注射利多卡因对电刺激杏仁核内侧引起的升压反应的影响。中国应用生理学杂志, 1990, 6:177-179.
    32. 杨国栋,周文华. 阿片成瘾的机制及其治疗. 中华内科杂志,1997,36(3):209-211.
    33. 姚宗兴,周敬修. 杏仁复合体的传入性联系——HRP 法对大白鼠杏仁中央核和内侧核的研究. 解剖学报,1983,14(4),365-373.
    34. 殷彬,臧德磬. 阿片类药物对神经递质的影响. 国外医学神经病学分册,1997,24(2):85-88.
    35. 姚泰,《生理学》第六版,人民卫生出版社,2003
    36. 赵华、王绍,分别兴奋大鼠内侧和外侧缰核引起痛阈的不同改变,生理学报,1995,47:292~296.
    37. 赵玲辉. 大白鼠缰核传入联系的HRP 法研究. 解剖学通报,1984,7(增刊):186.
    38. Akagi K and Powell EW. Differential projections of habenular nuclei. J Comp Neurol. 1968,132(2):263-274.
    39. Aghajanian GK and Wang RY. Habenular and other midbrain rahe afferents demonstrated by a modified retrograde tracing thchnique. Brain Res. 1977, 122(2):229-242.
    40. Badiani, A., Morano, M.J., Akil, H., Robinson, T.E. Circulating adrenal hormones are not necessary for the development of sensitization to the psychomotor activating effects of amphetamine. Brain Res. 1995,673:13-24.
    41. Beckstead RM, Domesick VB and Nauta WJ. Efferent connections of the substantia nigra and ventral tegmental area in the rat. Brain Res. 1979,175(2):191-217.
    42. Bell D. Comparison of amphetamine psychosis and schizophrenia. Am. Psychiatry. 1965,111 : 701–707.
    43. Bellgwan PS, Helmstetter FJ. The role of mu and kappa opiuid receptors whthin the periaqueductal gray in the expression of conditional hypoalgesia. Brain Res, 1998,791:83-89.
    44. Benabid A. and Jeaugey L. Cells of the rat lateral habenula respond to high-threshold somatosensory inputs. Neurosci. Lett. 1989,96 : 289–294.
    45. Blander A. and Wise R., Anatomical mapping of brain stimulation reward sites in the anterior hypothalamic area: special attention to the stria medullaris. Brain Res. 1989,27:12–16.
    46. Biron, D., Dauphin, C. and Di Paolo, T. Neuroendocrinology 1992,55: 468-476.
    47. Boyd E. and Gardner LC. Am J Physiol. 1967,213:1044.
    48. Boyd E. and Celso M., Effect of some brain lesions on septal self-stimulation in the rat. Am. J. Physiol. 219 (1970), pp. 734–741.
    49. Bozarth, MA. Physical dependence produced by central morphine infusions: an anatomical mapping study. Neurosci Biobehav, 1994, 18: 373-383.
    50. Brackenbury R,Thiery JP,Rutishauser U,Edelman GM.Adhesion among neural cells of the chick embryo.I An immunological assay for molecules involved in cell-cell binding. J.Biol.Chem., 1997,252:6835-6840
    51. Brown, L. and Wolfson, L., A dopamine-sensitive striatal efferent system mapped with 14C deoxyglucose in the rat, Brain Res.,261(1983)213-229.
    52. Carol A, Murphy, et al. Prenatal cocaine produces signs of neurodegeneration in the lateral habenula. Brain Research,1999,851(18): 175-182.
    53. Carlson J, Armstrong B, Robert C et al. Selective neurotoxic effects of nicotine on axons in fasciculus retroflexus further support evidence that this a weak link in brain across multiple drugs of abuse.Neuropharmacology. 2000,39(13):2792-2798.
    54. Chaouloff,et al. Effects of adrenalectomy and corticosterone replacement on diurnal [3H]citalopram binding in rat midbrain. Neurosci Lett, 1997, 222(2): 127-131.
    55. Cheryl D. Young and Ariel Y. Deutch. The Effects of Thalamic Paraventricular Nucleus Lesions on Cocaine-Induced Locomotor Activity and Sensitization. Pharmacology Biochemistry and Behavior, 1998,60(3):753-758.
    56. Chiriboga, C. A., Pranzatelli, M. R. and De Vivo, D. C. Chronic ACTH treatment increases striatal dopamine D-2 receptor binding in developing rat brain. Brain Dev. 1989,11(3): 197 –200.
    57. Christie MJ, Summers RJ, Stephenson JA,et al. Excitatory amino acid projections to the nucleus accumbens septi in the rat: a retrograde transport study utilizing D[3H]aspartate and [3H]GABA. Neuroscience 1987, 22:425-439.
    58. Compton MA. Cold-pressor pain tolerance in opiate and cocaine abusers: correlates of drug type and use status. J Pain Symptom Manage. 1994, 9(7): 462-73.
    59. Connell P. Amphetamine Psychosis. Monographs No. 5, Oxford University Press, London (1958).
    60. Contestabile A. Flumerfelt BA. Afferent connections of the interpedu-ncular nucleus and the topographic organization of the habenulo-interpedu-ncular pathway:An HRP study in the rat. J Comp Neurol. 1981,196(2):253-270.
    61. Contestabile A,et al neuruscience 1987,21:253
    62. Clemrnte CD, Gray’s Anatomy 30 th ed.Philadelphia: Lea and Febiger, 1985: 1027.
    63. Crossin KL, Krushel LA. Cellular signaling by neural cell adhesion molecullllles of the immunooglobulin superfaamilly. Dev.Dyn., 2000, 218: 260-279.
    64. Curt Freed, Randall Revay, et al. Dopamine transpoter immunoreactivity in rat brain. The Journal of Comparative Neurology. 1995,395:340-349.
    65. Davis M, Rainnie D,Cassell M. Neurotransmission in the rat amygdala related to fear and anxiety. Trends Neurosci, 1994,17:208-214.
    66. Davis M. Are different parts of the extended amygdala involved in fear versus anxiety? Biol Psychiatry, 1998, 44:1239-1247.
    67. De Kloet, ER and Reul, JM. Feedback action and tonic influence of corticosteroids on brain function: a concept arising from the heterogeneity of brain receptor systems. Psychoneuroendocrinology, 1987,12(2):83-105.
    68. Deutch AY, Bubser M, and Young CD. Psychostimulant-induced Fos protein expression in the thalamic paraventricular nucleus. The Journal of Neuroscience, 1998, 18(24):10680-10687.
    69. Di Chiara G, Imperato A. Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc Natl Acad Sci USA, 1988,85:5274-5278.
    70. Deroche Véronique, Marinelli Michela, et al. Glucocorticoids and Behavioral Effects of Psychostimulants. II: Cocaine Intravenous Self-administration
    and Reinstatement Depend on Glucocorticoid Levels. 1997,281:1401-1407.
    71. Dunn AJ, Gildersleeve NB and Gray HE. Mouse brain tyrosine hydroxylase and glutamic acid decarboxylase following treatment with adrenocorticotrophic hormone, vasopressin or corticosterone. J. Neurochem. 1978,31(4): 977 –982.
    72. Ellinwood EH, Jr, Amphetamine psychosis: I. Description of the individuals and the process. J. Nerv. Ment. Dis. 1967, 144:273–283.
    73. Ellison G., M. Eison, H. Huberman and F. Daniel , Long-term changes in dopaminergic innervation of caudate nucleus after continuous amphetamine administration. Science 1978,201: 276–278.
    74. Ellison G., Stimulant-induced psychosis, the dopamine theory, and the habenula. Brain Res. Rev. 1994,19: 223–239.
    75. Ellison G., Irwin S., Keys A., Noguchi K. and Sulur G. , The neurotoxic effects of continuous cocaine and amphetamine in habenula: implications for the substrates of psychosis. NIDA Res. Monogr. 1996,163:117–145.
    76. Ellison G.. Neural degeneration following chronic stimulant abuse reveals a weak link in brain, fasciculus retroflexus, implying the loss of forebrain control circuitry. European Neuropsychopharmacology 2002,12(4):287-297
    77. Ekstrom P.Ebbesson SOE. The left habenular nucleus contains a discrete serotonin-immunoreactive substan in the cohosalmon. Neurosci lett. 1988, 91(2): 121-125.
    78. Everitt BJ, Morris KA, O’Brien A et al. The basolateral amygdala-ventral striatal system and conditioned place preference: further evidence of limbic-striatal interactions underlying reward-related processes. Neuroscience, 1991,42:1-18.
    79. Fendt M , Fanselow M.S. The neuroanatomical and neurochemical basis of conditioned fear. Neurosci. Biobehav. Rev., 1999,23:743-760.
    80. Ferraro TN, Golden GT, et al. Cocaine intake by rats correlates with cocaine-induced dopamine changes in the nucleus accumbens shell. Pharmacol Biochem Behav, 2000,66:397-401.
    81. Fields JZ, Reis TD and Yamamura HI. Biochemical demonstration of dopaminergic receptors in rat and human brain using [3H]spiroperidol. Brain Res. 1977,136:578-584.
    82. Fuller TA, Russchen FT, Price JL. Sources of presumptive glutamatergic/ aspartergic afferents to the rat ventral striatopallidal region. J Comp Neurol,1987,258:317-338.
    83. Gallistel, C., Gomita,Y., Yadin, E.,and Campbell, K., Forebrain origins and terminations of the medial forebrain bundle metabolically activated by rewarding stimulation or by reward-blocking doses of pimozide, J. Neurosci., 1985,5: 1246-1261.
    84. Gilad G.M., Rabey JM.and Gilad VH. Presynaptic effects of glucocorticoids on dopaminergic and cholinergic synaptosomes. Implications for rapid endocrine-neural interactions in stress. Life Sci. 1987,40(25):2401-2408.
    85. Gottesfeld Z.Origin and distribution of noradrenergic in nervation in the habenula:Anenrochemical study. Brain Res. 1983,275(2):299-304.
    86. Halbach M and Henning U. Abnormal glucocorticoid dependent increase of spiperone binding sites on lymphocytes from schizophrenics in vitro. Pharmacopsychiatry. 1989,22(5):169-173.
    87. Hall RC, Popkin MK, Stickney SK and Gardner ER. Presentation of the steroid psychoses. J. Nerv. Ment. Dis. 1979,167(4):229-236.
    88. H?rfstrand A., Fuxe K., Cintra A., et al. Glucocorticoid receptor immunoreactivity in monoaminergic neurons of rat brain. Proc. Natl. Acad. Sci. USA. 1986, 83(24): 9779 –9783.
    89. Harfstrand A, Adem A, Fuxe K, et al., Distribution of nicotinic cholinergic receptors in the rat tel-and diencephalon: a quantitative receptor autoradiographical study using [3H]-acetylcholine, [alpha-125I] bungarotoxin and [3H]nicotine. Acta Physiol Scand 1988, 132(1): 1-14.
    90. Herkenham,M. and Nauta,W., Afferent connections of the habenular nuclei in the rat. J. Comp. Neurol., 1977,173(1):123-146.
    91. Herkenham,M. and Nauta,W., Efferent connections of the habenular nuclei in the rat. J. Comp. Neurol., 1979,187:19-48.
    92. Hoffman S, Sorkin BC,White PC,Brackenbury R,Mailhammer R,Rutishauser U,Cunningham BA,Edelman GM. Chemical characterization of a neural cell adhesion molecule purified from embryonic brain membranes. J.Biol. Chem., 1982,257: 7720-7729.
    93. Hoogland PV. Brainstem afferenta to the thalamus in a lizard, Varanus exanthematicus. J Comp Neurol, 1982; 210(2):152-162.
    94. Horkfelt T, In Bjorklund A, Horkfeltn T. eds. Handbook of Chemical Neuroanatomy Vol 2. Amsterdam: Elsevier, 1983, 277.
    95. Horn A.S. Dopamine uptake: a review of progress in the last decade. Prg. Neurobiol. 1990,34:397-400.
    96. Iuvone PM., Morasco J and Dunn AJ. Effect of corticosterone on the synthesis of [3H]catecholamines in the brains of CD-1 mice. Brain Res. 1977,120(3): 571-576.
    97. Joels M., de Kloet E.R., Mineralocorticoid and glucocorticoid receptors in the brain. Implications for ion permeability and transmitter systems, Prog. Neurobiol. 1994, 43:1-36
    98. Janice Carlson, Brian Armstrong, Robert C. Switzer III and Gaylord Ellison. Selective neurotoxic effects of nicotine on axons in fasciculus retroflexus further support evidence that this a weak link in brain across multiple drugs of abuse. Neuropharmacology, 2000,39(13): 2792-2798.
    99. Joels M and de Kloet ER. Corticosteroid actions on amino acid-mediated t ransmission in rat CA1 hippocampal cells.J. Neurosci. 1993,13(9):4082-4090.
    100. Kalivas PW, Stewart J, Dopamine transmission in the initiation and expression of drug-and stress-induced sensitization of locomotor activity. Brain Res Rev 1991,16:223-244.
    101. Kalivas PW. Interactions between dopamine and excitatory amino acids in behavioral sensitization to psychostimulants. Drug Alcohol Depend, 1995, 37: 95-100.
    102. Keys A. and Ellison G. , Autoradiographic analysis of enduring receptor and dopamine transporter alterations following continuous cocaine. Pharmacol. Toxicol. 1999, 85:144–150.
    103. Kiyatkin EA, Rebec GV. Activity of resumed dopamine neurons in the ventral tegmental area during heroin self-administrtion. Neuroreport, 1997, 8: 2581-2585.
    104. Kizer JS, Palkovits M and Brownstein MJ. The projections of the A8, A9 and A10 Dopaminergic all bodies: Evidence for a nigrath hypothalamic-median eminence dopaminergic pathway. Brain Res. 1976,108(2):363-370.
    105. Kaltwasser MT. Acoustic startle induced ultrasonic vocalization in the rat: a novel animal model of anxiety. Behav Brain Res, 1991,43:133–137.
    106. Koob, G. and Bloom, F., Cellular and molecular mechanisms of drug dependence. Science, 1988,242:715-723.
    107. Koob GF. Drug of abuse: anatomy, pharmacology and function of reward path-way. TIPS, 1992,13:177-184.
    108. Koob GF. Drug addiction: the yin and yang of hedonic homeostasis. Neuron, 1996, 16:893-896.
    109. Lang PJ, Bradley MM and Cuthbert BN. Emotions, attention, and the startle reflex. Psychol. Rev. 1990,97: 377-395.
    110. Le Moal M and Simon H. Mesocorticolimbic dopaminergic network: functional and regulatory roles. Physiol. Rev. 1991,71(1):155-234.
    111. LeDoux JE, Cicchetti P, Xagoraris A et al. The lateral amygdaloid nucleus, sensory interface of the amygdala in fear conditioning. J Neurosci, 1990b, 10:1062-1069.
    112. LeDoux j. Fear and the brain: where have we been, and where are we going? Biol psychiatry, 1998,44:1229-1238.
    113. LeDoux, J. E. Emotional memory systems in the brain. Behav. Brain Res. 1993, 58: 69-79.
    114. Levant B, Grigoriadis DE, DeSouza EB. [3H]Quinpirole binding to putative D2 and D3 dopamine receptors in rat brain and pituitary gland: a quantitative autoradiographic study. J Pharmacol Exp Ther 1993,264:991-1001.
    115. Lewis DA and Smith RE. Steroid-induced psychiatric syndromes. A report of 14 cases and a review of the literature. J. Affect Disord. 1983,5: 319-332.
    116. Li, Y.Q., Takada, M. Shinonaga, Y. and Mizuno, N. The sites of origin of dopaminergic afferent fibers to the lateral habenular nucleus in the rat, J. Comp. Neurol., 1993, 333:118–133.
    117. Lindvall O. The adrenergic inneration of the rat thalamus as revealecl by the glyoxylic acid fluorescence method. J. Comp. Neurol.1974,154:317-
    118. Ling MH, Perry PJ and Tsuang MT. Side effects of corticosteroid therapy. Psychiatric aspects.Arch Gen Psychiatry. Arch. Gen. Psychiatry 1981, 38(4): 471-477.
    119. London E.D., Waller S.B. and Wamsley J.K. Autoradiographic localization of [3H]nicotine binding sites in the rat brain. Neurosci. Lett. 1985, 53: 179–184.
    120. London E.D., Connolly R.J., Szikszay M., Wamsley J.K. and Dam M. , Effects of nicotine on local cerebral glucose utilization in the rat. J. Neurosci. 1988, 8:3920–3928.
    121. Mansour A, Watson SJ, Dopamine receptor expression in the CNS. In Psychopharmacology: the fourth generation of progress (Bloom F, Kupfer D, eds), New York: Raven, 1995, 207-219.
    122. Marchand , ER. Interpeduncular nucleus afferenta in the rat. Brain Res. 1980,193(2):339-352.
    123. Marinelli M, Piazza PV, Deroche V, et al. Corticosterone circadian secretion differentially facilitates dopamine-mediated psychomotor effect of cocaine and morphine. J. Neurosci. 1994,14,:2724-2731.
    124. Mary Jeanne Kreek, George F. Koob Drug dependence: stress and dysregulation of brain reward pathways. Drug and Alcohol Dependence 1998, 51: 23-47.
    125. Meshul CK., Noguchi K, Emire N and Ellison G. Cocaine-induced changes in glutamate and GABA immunolabeling within rat habenula and nucleus accumbens. Synapse 1998,30: 211–220.
    126. Meshul CK. and McGinty JF. Kappa opioid receptor immunoreactivity in the nucleus accumbens and caudate-putamen is primarily associated with synaptic vesicles in axons. Neuroscience 2000,96: 91–99.
    127. McEwen, E.R. De Kloet, W. Rostene, Adrenal steroid receptors and actions in the nervous system, Physiol. Rev. 1986,66:1121-1128.
    128. McGinty JF. Introduction to the role of excitatory amino acids in the actions of abused drugs. Drug Alcohol Depend, 1995,37:91-94.
    129. Michela Marinelli, Bruno Aouizerate, et al. Dopamine-dependent responses to morphine depend on glucocorticoid receptors. Neurobiology, 1998, 95(23): 7742-7747 .
    130. Mitchell, R. Ionnections of the habenula and the interpeduncular nucleus in the cat. J. ComP. Neurol, 1963, 121:441
    131. Mobley PL and Sulser F. Nature (London) 1980,286: 608-609.
    132. Mok AC and Mogeuson GJ. An evoked potential study of the projections to the lateral preoptic area in the rat. Brain Res. 1972,43(2):343-360.
    133. Munch PM, Guyre NJ and Holbrook. Physiological function of glucocorticoids in stress and their relation to pharmacological actions, Endocrine Rev. 1984:5:25-44.
    134. Nestler EJ, Hope BT, Widnell KL. Drug addiction: a model for the molecular basis of neural plasticity. Neuron, 1993,11: 995-1006.
    135. Nestler EJ, Aghajanian GK. Molecular and cellular basis of addiction. Scinece, 1997,278:58-63.
    136. Ohtori S, Takahashi K, Chiba T, et al. Fos expression in the rat brain and spinal cord evoked by noxious stimulation to low back muscle and skin. Spine, 2000,25:2425-2430.
    137. Olds J and Milner PM. Positive reinforcement produced by electrical stimulation of septal area and other regions of the brain. J. Comp. Physiol. Psychol. 1954,47:419-427.
    138. Ortiz J, De Caprio JL, Kosten TA. & Nestler, E. J Neuroscience 1995, 67: 383-397.
    139. Otake I, Ruggiero DA. Monoamines and nitric oxide are employed by afferents engaged in midline thalamic regulation. J Neurosci 1995,15:1891-1911.
    140. Overton PG., Tong ZY, Brain PF and Clark D. Preferential occupation of mineralocorticoid receptors by corticosterone enhances glutamate-induced burst firing in rat midbrain dopaminergic neurons. Brain Res. 1996, 737(1-2):146-154.
    141. Pare D, Collins DR. Neuronal correlates of fear in the lateral amygdala: multiple extracellular recordings in conscious cats. J Neurosci, 2000, 20: 2701-2801.
    142.Perry DC and Kellar KJ. [3H]Epibatidine labels nicotinic receptors in rat brain: an autoradiographic study. J. Pharmacol. Exp. Ther. 1995, 275: 1030–1034.
    143. Patrickson JW and Smith TE. Sympathetic projections to the epithalamus. Exp Neurol. 1987,97(2):413-417.
    144. Paul, M.L., Graybiel, A.M., David, J.C. and Robertson, H.A. D1-like and D2-like dopamine receptors synergistically activate rotation and c-fos expression in the dopamine-depleted striatum in a rat model of Parkinson’s disease, J. Neurosci., 1992, 12:3729–3742.
    145. Phillipson, O. and Pycock, C., Dopamine neurones of the ventral tegmentum project to both medial and lateral habenula. Exp. Brain Res., 1982,4589-94.
    146. Piazza PV, Maccari S, Deminière JM.,et al. Corticosterone levels determine individual vulnerability to amphetamine self-administration. Proc. Natl. Acad. Sci. USA, 1991,88(6):2088-2092.
    147. Piazza PV and Le Moal M. Pathophysiological basis of vulnerability to drug abuse: role of an interaction between stress, glucocorticoids, and dopaminergic neurons. Annu. Rev. Pharmacol. Toxicol. 1996,36;359-378.
    148. Piazza PV, Rouge-Pont F, Deroche V, et al. Glucocorticoids have state-dependent stimulant effects on the mesencephalic dopaminergic transmission. Proc. Natl. Acad. Sci. USA, 1996,93(16): 8716-8720.
    149. Piazza PV, Le Moal M. Glucocorticoids as a biological substrate of reward: physiological and pathophysilogical implications. Brain Research Reviews 1997,25: 359-372.
    150. Piazza PV, Michel Barrot, Fran?oise Rougé-Pont, Michela Marinelli, et al. Suppression of glucocorticoid secretion and antipsychotic drugs have similar effects on the mesolimbic dopaminergic transmission Proc. Natl. Acad. Sci. USA 1996,93:15445-15450.
    151. Pierce RC, Reeder DC, Hicks J, Morgan ZR, Kalivas PW. Ibotenic acid lesions of the dorsal prefrontal cortex disrupt the expression of behavioral sensitization to cocaine. Neurosci 1998,82:1103-1114.
    152. Plenge P.and Mellerup E. Non-acetylcholine displaceable [3H] epibatidine binding in the rat brain. Neurosci. Lett. 1998,22:65–67.
    153. Powell EW and Leman RB. Lonnection of the nucleus accumbens. Brain Res. 1976,105(3):389-403.
    154. Reisine TD, et al. Eviclence for a dopaminergic innervation of the cat lateral habebula: its role in controlling serotonin transmission in the basal ganglia. Brain Res. 1984,308(2):281-288.
    155. Reul, J. M. H. M. & de Kloet, E. R. Endocrinology,1985 ,117: 2505-2511.
    156. Robinson TE, Berridge KC. The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res Rev, 1993, 18: 247-291.
    157. Robbins TW, Everitt BJ Neurobehavioral mechanisms of reward and motivation. Curr Opin Neurobiol,1996,6:228-236.
    158. Rogan M.T. LTP is accompanied by commensurate enhancement of auditory-evoked response in a fear conditionig circuit. Neuron, 1995, 15: 127-136.
    159. Ronken E, Mulder AH and Schoffelmeer AN. Glucocorticoid and mineralocorticoid receptors differentially modulate cultured dopaminergic neurons of rat ventral mesencephalon. Eur. J. Pharmacol. 1994, 263 (1-2): 149-156.
    160. Saito N, Guitart X., Hayward M., et al. Corticosterone differentially regulates the expression of Gs alpha and Gi alpha messenger RNA and protein in rat cerebral cortex. Proc. Natl. Acad. Sci. USA 1989,86(10):3906-3910.
    161. Sandyk R., Relevance of the habenular complex to neuropsychiatry: a review and hypothesis. Int. J. Neurosci. 1991,61:189–219.
    162. Sasaki K, Suda H, Watanabe H and Yagi H. Involvement of the entopeduncular nucleus and the habenula in methamphetamine-induced inhibition of dopamine neurons in the substantia nigra of rats. Brain Res. Bull. 1990,25:121–127.
    163. Satel S, Shwick S and Gawin F. Clinical features of cocaine-induced paranoia. Am. J. Psychiatry ,1991,148:495–498.
    164. Seeman P. in Psychopharmacology: The Fourth Generation of Progress, eds. Bloom, F. E. & Kupfer, D. J. (Raven, New York), pp. 1995,295-302.
    165. Shafer RA, Levant B. The D3 dopamine receptor in cellular and organismal function. Psychopharmacology, 1998,135:1-16.
    166. Shi C, Davis M. Pain pathways involved in fear conditioning measured with fear-potentiated startle: lesion studies. J Neurosci, 1999,19:420-430.
    167. Sofroniew MV, et al. Neurosic Lett,1983,14:348-
    168. Spanagel R. Modulation of drug-induced sensitization processed by endogenous opioid system. Behave Brain Res, 1995,70:37-39.
    169. Sutherland RJ and Nakajma S. Self-stimulation of the habenular complex in the rat. J Comp Physiol. Psychol. 1981,95(5):781-791.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700