用户名: 密码: 验证码:
随机时滞网络控制系统的测量建模与估计问题的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
网络控制系统是当前控制领域的研究热点.然而,由于网络带宽有限以及信息传输过程中的碰撞,不可避免地导致信息延迟、数据包丢失、数据包时序错乱以及多包传输等问题.这些问题的存在破坏了系统性能,使得网络控制系统的分析和设计变得异常复杂.本文针对网络控制系统中存在的时延、数据包乱序等问题,首先研究由随机时滞引起的不确定测量的建模问题,然后在得到的测量模型的基础上提出了几类不同估计意义下的状态估计问题.主要研究内容如下:
     1.在假设网络传输没有数据包丢失的前提下,针对随机时滞和数据包乱序的不确定测量建立两种测量模型.在每个时刻通过对收到的所有测量数据进行排列组合,给出一种不带时间戳的测量建模.另一种测量建模则是对已有文献中的带有时间戳的测量模型进行改进,保证每个测量输出仅被收到一次,且允许一次可以收到多个数据包,建立了一种更适合网络通信协议的测量模型.
     2.利用不带时间戳的测量模型,研究一步滞后随机时滞的不稳定网络控制系统的最优状态估计问题.首先讨论同时收到两个测量数据出现乱序的情况,分别在两种不同的估计条件下设计最优估计器.这两种条件的主要区别在于是否保证估计误差协方差一致有界,通过证明得到在这两种估计条件下均能得到相同的估计器形式,即估计器端利用的测量值是收到的两个测量数据的平均值.最后根据收到测量数据的各种情况,给出最大随机时滞界为1时的最优状态估计器.
     3.进一步分别研究最大随机时滞界N>1时不稳定和稳定的网络控制系统的最优状态估计问题.针对最大随机时滞界N>1时测量乱序会变得更加复杂的情况,首先利用FIFO原则限定突发乱序的测量,在误差协方差一致有界条件下得到估计器端利用的测量是所有测量数据的平均值的结果,从而得到不稳定系统的最优状态估计器;然后研究了去掉FIFO条件时,根据收到数据包个数和发生时滞的数据包个数之间的关系设计不稳定系统的最优状态估计器;最后将FIFO的结论推广到稳定系统中,即仅在保证无偏估计的意义下设计了有界随机时滞稳定系统的最优状态估计问题.
     4.在假设随机时滞发生概率已知时,利用带有时间戳的测量模型,分别研究了网络控制系统的最优状态估计和H∞估计问题.将得到的随机时滞测量重组成无时滞的测量,利用新息重组的方法,给出了系统的最小方差估计;根据测量建模的特点,每一时刻的测量可以分为确定性和不确定性两部分,然后先设计基于确定性测量的估计,在此基础上再设计不确定测量的估计,最后得到H∞滤波器,并且保证闭环系统是指数均方稳定的.
     5.针对带有有界随机时滞的网络控制系统,分别研究了最大时滞界为1和大于1两种情况下的基于观测器的H∞控制问题.首先利用带有时间戳的测量模型,得到每个时刻可能收到的测量值,依据确定性和不确定性测量数据依次设计状态观测器.最后通过求解线性矩阵不等式得到基于状态估计的控制器,使得闭环系统是指数均方稳定的,且满足设计的H∞控制性能γ.
Networked control system has attracted much attention in the current control field. However, as a direct consequence of finite bandwidth as well as the colli-sion in the process of information transmission, random delays, packet losses, out-of-sequence measurements and multiple-packet transmission are inevitable in net-worked systems. These problems destroy the performance of the system, even lead to system instability. The analysis and design of networked control system will become more complex. This paper proposes the random uncertain measurement model when there are random time delay and out-of-order measurements in net-worked transmission. Furthermore, the problems of state estimation are studied in some various senses for networked control system. The main contents of this paper are listed as follows:
     1. Under the assumption of no packet loss, two measurement models are pre-sented for random delay and out-of-order measurement, respectively. By a set of permutations for all measurements at each time, the model is given without using time stamps; while the second model improves the pre-existing model with time stamp, it guarantees each packet must be received and only once, and it also allows to receive multiple packets once time. It is more suitable for network communication protocol.
     2. The state estimation problem is studied for the unstable networked con-trol systems subject to one-step random delay by using measurements without time stamps. Firstly, we consider the case that two measurements are received at the same time with out-of-sequence, and design the optimal estimation under two different es-timate conditions. The primary difference between these two conditions is whether to guarantee estimation error covariance is uniformly bounded or not. The same es-timator form is obtained based on the average of all received measurements at each time. Finally, the estimator gains can be derived for one-step random delay.
     3. The state estimation problem is further studied for the unstable and stable networked control systems subject to bounded random delay N>1, respectively. The problem of out-of-order measurement becomes more complex with bounded random delay N>1. With the assumption of FIFO principle, we then study the so-called unbiased, uniformly bounded linear state estimators and show that the es-timator structure is given based on the average of all received measurements at each time. Without the FIFO assumption, the optimal estimation is obtained for unstable system by analyzing the relation of the number of the received packets and delay packets. Finally, we generalize the results to stable system with FIFO, and get the optimal estimation only in the sense of unbiased.
     4. With the given probability distribution of the random delays, the optimal estimation and H∞filtering are considered by the measurement model with time stamp, respectively. The measurement model with delays is written as an equiv-alent the measurement with delay free. Then the optimal estimator is derived by adopting a re-organized innovation analysis approach. For the measurements can be divided into certain and uncertain, we firstly design the estimator based on the certain measurement, then give the estimator by the uncertain part. Finally, H∞filtering is obtained and can be guaranteed the exponentially mean-square stability of the closed-loop system.
     5. The observer-based H∞control problem is considered for networked control system subject to bounded random delay N=1and N>1, respectively. By the measurement model with time stamp, the state estimator is designed by certain mea-surement and uncertain measurement. Then the observer-based controller is obtained by solving linear matrix inequality, which guarantees the exponentially mean-square stability of the closed-loop system and satisfies the prescribed H∞performance.
引文
[1]G. C. Walsh, H. Ye, L. Bushnell, Stability analysis of networked control sys-tems[C], Proceedings of the 1999 American Control Conference, Piscataway, NJ, USA,1999,2876-2880.
    [2]H. Chan, U. Ozguner, Closed-loop control of systems over a communication network with queues[J], International Journal of Control,1995,62(3):493-510.
    [3]L. A. Montestruque, P. J. Antsaklis, On the model-based control of networked control systems[J], Automatiea,2003,39(10):1537-1543.
    [4]G. C. Walsh, O. Beldiman, L. Bushnell, Error encoding algorithms for net-worked control system[C], Proceedings of the 38th Conference on Decision and Control, Phoenex,1999,4933-4938.
    [5]S. S. Hu, Q. X. Zhu, Stochastic optimal control and analysis of stability of network control systems with long delay [J], Automatica,2003,39:1877-1884.
    [6]朱其新,胡寿松,刘亚,无限时间长时延网络控制系统的随机最优控制[J],控制理论与应用,2004,21(3):321-326.
    [7]X. H. Guo, Design of the output feedback controller for wireless networked control system[J], Journal of Mechanical and Electrical Engineering Maga-zine,2008,25(9):96-99.
    [8]X. H. Liu, A. Goldsmith, Wireless network design for distributed control[C], Proceedings of the 43th IEEE Conference on Decision and Control, Atlantis Paradise Island Bahamas,2004,2823-2829.
    [9]A. Tzes, G. Nikolakopoulos, I. Koutroulis, Development and experimental verification of a mobile client-centric networked controlled system [J], Euro-pean Journal of Control,2005,11(3):229-254.
    [10]G. Nikolakopoulos, A. Panousopoulou, Multi-hopping induced gain schedul-ing for wireless networked controlled systems[C], Proceedings of the 44th IEEE Conference on Decision and Control, Seville,2005,470-475.
    [11]N. Wiener, Extrapolation interpolation, and smoothing of stationary time se-ries[M], New York:Wiley,1950.
    [12]R. E. Kalman, A new approach to linear filtering and prediction[J], Transac-tions of ASME-Journal of Basic Engineering,1960,82(1):34-45.
    [13]邓自立,最优估计理论及其应用:建模、滤波、信息融合估计[M],哈尔滨:哈尔滨工业大学出版社,2005.
    [14]S. Sangsuk-Iam, T. E. Bulloek, Analysis of discrete-time Kalman filtering under incorrect noise covariance[J], IEEE Transactions on Automatic Control, 1990,35(12):1304-1309.
    [15]C. D. Souza, M. Gevers, G. Goodwin, Riccati equations in optimal fitering of nonstabilizable systems having singular state transition matrices [J], IEEE Transactions on Automatic Control,1986,31(9):531-535.
    [16]J. C. Spall, The kantorovich inequality for error analysis of the Kalman filter with unkown noise distributions [J], Automatica,1995,31(10):1513-1517.
    [17]H. S. Zhang, G. Feng, C. Y. Han, Linear estimation for random delay sys-tems[J], Systems & Control Letters,2011,60:450-459.
    [18]D. A. Castanon, D. Tenekzis, Distributed estimation algorithm for nonlinear systems[J], IEEE Transactions on Automatic Control,1985,30(5):418-425.
    [19]M. Simon, G. Neil, A tutorial on particle filters for on-line nonlinear/non-Gaussian Bayesian tracking [J], IEEE Transactions on Signal Proeessing, 2002,50(2):174-188.
    [20]杨春玲,刘国岁,余英林,非线性系统中多传感器目标跟踪融合算法研究[J],航空学报,2000,21(6):512-515.
    [21]L. H. Xie, Y. C. Soh, C. E. Souza, Robust Kalman filtering for uncertain sys-tems[J], IEEE Transactions on Automatic Control,1994,39(6):1310-1314.
    [22]U. Shaked, C. E. Souza, Robust minimum variance filtering[J], IEEE Trans-actions on Signal Processing,1995,43(11):2474-2483.
    [23]X. Zhu, Y. C. Soh, L. H. Xie, Design and analysis of discrete-time robust Kalman filters[J], Automatica,2002,38:1069-1077.
    [24]Z. D. Wang, B. Huang, Robust H2/H∞ filtering for linear systems with error variance constraints[J], IEEE Transactions on Signal Processing,2000,48(8): 2463-2467.
    [25]H. Zhang, G. Feng, G. Duan, X. Lu, H∞ filtering for multiple-time-delay mea-surements [J], IEEE Transactions on Signal Processing,2006,54(5):1681-1688.
    [26]解学书,钟宜生,H∞控制理论[M],北京:清华大学出版社,1994.
    [27]S. Xu, T. Chen, An LMI approach to the H∞ filter design for uncertain sys-tems with distributed delays[J], IEEE Transactions on Circuits and Systems II:Express Briefs,2004,51(4):195-201.
    [28]高会军,王常虹,李艳辉,时滞不确定离散系统的鲁棒l2-l∞滤波[J],自动化学报,2003,29(5):666-672.
    [29]俞立,鲁棒控制—线性矩阵不等式处理方法[M],北京:清华大学出版社,2002.
    [30]Z. S. Duan, J. X. Zhang, C. S. Zhang, Robust H2 and H∞ filtering for uncer-tain linear systems[J], Automatica,2006,42(11):1919-1926.
    [31]黄细凤,吴钦章,顺序更新式无序量测处理算法[J],传感技术学报,2010,25(2):224-228.
    [32]J. K. Yook, D. M. Tilbury, N. R. Soparkar, Trading computation for band-width:reducing communication in distributed control systems using state es-timators [J], IEEE Transactions on Control Systems Technology,2002,10(4): 503-518.
    [33]L. Schenato, Kalman filtering for networked control systems with random delay and packet loss[C], Proceedings of the 17th International Symposium on Mathematical Theory of Networks and Syatems, Japan,2006,1509-1517.
    [34]H. J. Gao, J. L. Wu, P. Shi, Robust sampled-data H∞ control with stochastic sampling[J], Automatica,2009,45(7):1729-1736.
    [35]于之训,陈辉堂,王月娟,基于Markov延迟特性的闭环网络控制系统研究[J],控制理论与应用,2002,19(2):263-267.
    [36]N. E. Nahi, Optimal recursive estimation with uncertain observation[J], IEEE Transactions on Information Theory,1969,15(4):457-462.
    [37]W. N. Nacara, E. Yaz, Recursive estimator for linear and nonlinear systems with uncertain observations[J], Signal Processing,1997,62:215-228.
    [38]N. Seiichi, C. A. Raquel, H. C. Aurora, L. P. Josefa, Linear recursive discrete-time estimators using covariance information under uncertain observations [J], Signal Processing,2003,83:1553-1559.
    [39]S. Smith, P. Seiler, Estimation with lossy measurements:Jump estimators for jump systems[J], IEEE Transactions on Automatic Control,2003,48(12): 2163-2171.
    [40]A. V. Sakvin, I. R. Petersen, S. O. R. Moheimani, Model validation and state estimation for uncertain continuous-time systems with missing discrete-continuous data[J], Computers & Electrical Engineering,1999,25:29-43.
    [41]M. Moayedi, Y. C. Soh, Y. K. Foo, Optimal Kalman filtering with random sensor delays, packet dropouts and missing measurements[C], Proceedings of the 2009 American Control Conference, St. Louis, MO, USA,2009,3405-3410.
    [42]M. Maryam, F. K. Yung, C. S. Yeng, Adaptive Kalman filtering in net-worked systems with random sensor delays, multiple packet dropouts and missing measurements [J], IEEE Transactions on Signal Processing,2010, 58(3):1577-1588.
    [43]C. Goodwin, J. C. Aguero, A. Feuer, State estimation for systems having random measurement delays using errors in variables [C], The 15th Triennial World Congress, Barcelona, Spain,2002.
    [44]S. L. Sun, L. H. Xie, W. D. Xiao, Y. C. Soh, Optimal linear estimation for systems with multiple packet dropouts[J], Automatica,2008,44:1333-1342.
    [45]S. L. Sun, L. H. Xie, W. D. Xiao, Optimal filtering for systems with multiple packet dropouts [J]. IEEE Transactions on Circuits and Systems-II:Express Briefs,2008,55(7):695-699.
    [46]S. L. Sun, L. H. Xie, W. D. Xiao, Optimal full-order and reduced-order es-timators for discrete-time systems with multiple packet dropouts[J], IEEE Transactions on Signal Processing,2008,56(8):4031-4038.
    [47]孙书利,具有一步随机滞后和多丢包的网络系统的最优线性估计[J],自动化学报,2012,38(3):349-356.
    [48]S. L. Sun, L. H. Xie, Optimal full-order filtering for discrete-time systems with random measurement delays and multiple packet dropouts[J], Journal of Control Theory Applications,2010,8(1):105-110.
    [49]E. Yaz, A. Ray, Linear unbiased state estimation under randomly varying bounded sensor delay[C], Proceedings of the 35th IEEE Conference on Deci-sion and Control, Kobe, Japan, December,1996,47-52.
    [50]J. S. Evans, V. Krishnamurthy, Hidden Markov model state estimation with randomly delayed observations [J], IEEE Transactions on Signal Processing, 1999,47(8):2157-2166.
    [51]M. V. Basin, R. M. Zuniga, Optimal linear filtering over observations with multiple delays [J], International Journal Robust and Nonlinear Control,2004, 4:685-696.
    [52]J. Nilsson, B. Bernhardsson, B. Wittenmark, Stochastic analysis and control of real-time systems with random time delays[J], Automatica,1998,34(1): 57-64.
    [53]Z. Shu, J. Lam, S. Y. Xu, Robust stabilization of Markovian delay systems with delay-dependent exponential estimates[J], Automatica,2006,42:2001-2008.
    [54]X. Lu, H. S. Zhang, W. Wang, K. L. Teo, Kalman filtering for multiple time-delay systems[J], Automatica,2005,41(8):1455-1461.
    [55]E. Yaz, A. Ray, Linear unbiased state estimation under randomly varying bounded sensor delay[J], Applied Mathematics Letters,1998,11(4):27-32.
    [56]H. J. Gao, T. W. Chen, J. Lams, A new delay system approach to network-based control[J], Automatica,2008,44:39-52.
    [57]A. S. Matveev, A. V. Savkin, The problem of state estimation via asyn-chronous communication channels with irregular transmission times[J], IEEE Transactions on Automatic Control,2003,48:670-676.
    [58]S. Nakamori, R. Caballero-Aguila, A. Hermoso-Carazo, J. Linares-Perez, Re-cursive estimators of signals from measurements with stochastic delays us-ing covariance information[J], Applied Mathematics and Computation,2005, 162:65-79.
    [59]O. Costa, M. Fragoso, R. Marques, Discrete-time Markov jump linear sys-tems[M], Springer,2005.
    [60]L. Shi, L. H. Xie, R. M. Murray, Kalman filtering over a packet-delaying network:A probabilistic approach[J], Automatica,2009,45:2134-2140.
    [61]H. Zhang, L. Xie, D. Zhang, Y. C. Soh, A reorganized innovation approach to linear estimation[J], IEEE Transaction on Automatic Control,2004,49(10): 1810-1814.
    [62]H. Zhang, L. Xie, Control and estimation of systems with input/output de-lays[M], Berlin Heidelberg:Springer-Verlag,2007.
    [63]H. Zhang, X. Lu, D. Cheng, Optimal estimation for continuous-time sys-tems with delayed measurements[J], IEEE Transactions on Automatic Con-trol,2006,51(5):823-827.
    [64]H. Zhang, L. Xie, W. Wang, Optimal estimation for systems with time-varying delay[J], IET Control Theory and Applications,2010,4(8):1391-1398.
    [65]Z. P. Jin, V. Gupta, B. Hassibi, State estimation utilizing multiple description coding over lossy networks [M], Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference, Seville, Spain, 2005,872-878.
    [66]Z. D. Wang, W. C. Ho, X. H. Liu, Variance-constrained filtering for uncer-tain stochastic systems with missing measurements[J], IEEE Transactions on Automatic Control,2003,48(7):1254-1258.
    [67]V. Gupta, A. F. Dana, J. P. Hespanha, R. M. Murray, B. Hassibi, Data trans-mission over networks for estimation and control[J], IEEE Transactions on Automatic Control,2009,54(8):1807-1819.
    [68]A. K. Fletcher, S. Rangan, V. K. Goyal, Estimation from lossy sensor data: jump linear modeling and Kalman filtering[C], Proceedings of the 3rd In-ternational Symposium on Information Processing in Sensor Networks, New York, USA,2004,251-258.
    [69]X. H. Liu, A. Goldsmith, Kalman filtering with partial observation losses[C], Proceeding of the 43th IEEE Conference on Decision and Control, Atlantis, Bahamas,2004,4180-4186.
    [70]N. Elia, Remote stabilization over fading channels[J], Systems and Control Letters,2005,54(3):237-249.
    [71]J. Ma, S. L. Sun, Information fusion estimators for systems with multiple sensors of different packet dropout rates[J], Information Fusion,2011,12(3): 213-222.
    [72]Y. Liang, T. W. Chen, Q. Pan, Optimal linear state estimator with multiple packet dropouts[J], IEEE Transactions on Automatic Control,2010,55(6): 1428-1433.
    [73]L. Shi, M. Epstein, R. M. Murray, Kalman filtering over a packet-dropping network:A probabilistic perspective[J], IEEE Transactions on Automatic Control,2010,55(3):594-604.
    [74]M. Y. Huang, S. Dey, Kalman filtering with Markovian packet losses and stability criteria[C], Proceeding of the 45th IEEE Conference on Decision and Control, San Diego, CA, USA,2006,5621-5626.
    [75]M. Y. Huang, S. Dey, Stability of Kalman filtering with Markovian packet losses[J], Automatica,2007,43(4):598-607.
    [76]N. Xiao, L. H. Xie, M. Y. Fu, Kalman filtering over unreliable communication networks with bounded Markovian packet dropouts[J], International Journal of Robust and Nonlinear Control,2009,19:1770-1786.
    [77]B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla, M. Jordan and S. S. Sastry, Kalman Filtering with Intermittent Observations [J], IEEE Transac-tions on Automatic Control,2004,49(9):1453-1464.
    [78]L. Schenato, Optimal estimation in networked control systems subject to ran-dom delay and packet loss[C], Proceeding of the 45th IEEE Conference on Decision and Control, San Diego, CA, USA,2006,5615-5620.
    [79]X. B. Wan, H. J. Fang, S. Fu, Observer-based fault detection for networked discrete-time infinite-distributed delay systems with packets dropouts[J], Ap-plied Methematical Modelling,2012,36:270-278.
    [80]X. Qi, C. Zhang, J. Gu, Robust fault detection filter for nonlinear state-delay networked control system[J], International Journal of Automation and Con-trol,2012,6(3):215-230.
    [81]H. B. Li, M. Y. Chow, Z. Q. Sun, Optimal stabilizing gain selection for net-worked control systems with time delays and packet losses[J], IEEE Transac-tions on Control Systems Technology,2009,17(5):1154-1162.
    [82]L. Schenato, Optimal estimation in networked control systems subject to ran-dom delay and packet drop[J], IEEE Transaction on Automatic Control,2008, 53(5):1311-1317.
    [83]G. L. Wei, Z. D. Wang, H. S. Shu, Robust filtering with stochastic nonlinear-ities and multiple missing measurements [J], Automatica,2009,45:836-841.
    [84]W. A. Zhang, L. Yu, Modelling and control of networked control systems with both network-induced delay and packet-dropout[J], Automatica,2008, 44:3206-3210.
    [85]王宝凤,郭戈,具有Markovian时延与丢包的离散系统的状态估计[J],控制理论与应用,2009,26(12):1331-1336.
    [86]S. L. Sun, Linear minimum variance estimators for systems with bounded random measurement delays and packet dropouts[J], Signal Processing,2009, 89(7):1457-1466.
    [87]王武,林琼斌,杨富文,具有随机通讯时延的离散网络化系统的H∞滤波器设计[J],控制理论与应用,2007,24(3):366-379.
    [88]J. C. Geromel, J. Bernussou, G. Garcia, M. C. Oliveria, H2 and H∞ robust filtering for discrete-time linear systems[J], SIAM Journal Control Optimal, 2000,38(5):1353-1368.
    [89]H. B. Song, L. Yu, W. A. Zhang, H∞ filtering of network-based systems with random delay[J], Signal Processing,2009,89:615-622.
    [90]蔡云泽,潘宁,许晓鸣,具有长时延及丢包的网络控制系统的H∞鲁棒滤波[J],控制与决策,2010,25(12):1826-1830.
    [91]K. M. Nagpal, P. P. Khargonekar, Filtering and smoothing in an H∞ setting[J], IEEE Transactions on Automatic Control,1991,36(2):152-166.
    [92]D. Yue, Q. L. Han, Robust H∞ filter design of uncertain descriptor systems with discrete and distributed delays[J], IEEE Transactions on Signal Process, 2004,52(11):3200-3212.
    [93]E. Fridman, U. Shaked, L. Xie, Robust H2 filtering of linear systems with time delays [J], International Journal of Robust and Nonlinear Control,2003, 13:983-1010.
    [94]M. Sahebsara, T. Chen, S. L. Shah, Optimal H2 filtering with random sen-sor delay, multiple packet dropout and uncertain observations [J], International Journal of Control,2007,80(2):292-301.
    [95]M. Sahebsara, T. W. Chen, S. L. Shah, Optimal H∞, filtering in networked control systems with multiple packet dropouts[J], Systems & Control Letters, 2008,57:696-702.
    [96]郭戈,王宝凤,多丢包不确定离散系统的鲁棒Kalman滤波[J],自动化学报,2010,36(5):767-772.
    [97]D. Yue, Q. L. Han, Network-based robust H∞ filtering for uncertain linear systems[J], IEEE Transactions on Signal Process,2006,54(11):4293-4301.
    [98]Z. Wang, F. Yang, W. C. Ho, X. Liu, Robust H∞ filtering for stochastic time-delay systems with missing measurements [J], IEEE Transactions on Signal Processing,2006,54:2579-2587.
    [99]C. Lin, Z. D. Wang, F. W. Yang, Observer-based networked control for continuous-time systems with random sensor delays[J], Automatica,2009, 45:578-584.
    [100]J. G. Li, J. Q. Yuan, J. G. Lu, Observer-based H∞ control for networked non-linear systems with random packet losses[J], ISA Transactions,2010,49(1): 39-46.
    [101]F. W. Yang, W. Wamg, Y. N. Niu, Y. M. Li, Observer-based H∞ control for networked systems with consecutive packet delays and losses [J], International Journal of Control Automation and Systems,2010,8(4):769-775.
    [102]S. S. Zhou, G. Feng, H∞ filtering for discrete-time systems with randomly varying sensor delays[J], Automatica,2008,44:1918-1922.
    [103]F. W. Yang, Z. D. Wang, Y. S. Hung, M. Gani, H∞ control for networked sys-tems with random communication delays [J], IEEE Transactions on Automatic Control,2006,51(3):511-518.
    [104]F. Yang, Z. Wang, D. W. C. Ho, M. Gani, Robust H∞ control with missing measurements and time-delays[J], IEEE Transactions on Automatic Control, 2007,52(9):1666-1672.
    [105]D. Yue, Q. L. Han, J. Lam, Network-based robust H∞ control of systems with uncertainty[J], Automatica,2005,41:999-1007.
    [106]B. D. O. Anderson, J. B. Moore, Optimal filtering[M], Englewood Cliffs, NJ: Prentice-hall,1979.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700