用户名: 密码: 验证码:
褪黑素与西拉普利干预高血压大鼠基底前脑和海马细胞凋亡及学习记忆的比较研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的探讨褪黑素及西拉普利对肾性高血压模型大鼠学习记忆障碍及基底前脑(Meynert基核、斜角带核垂直支)和海马两个亚区(CA1、CA3)细胞凋亡以及凋亡相关基因Bax与Bcl-2蛋白表达的影响模式。
     方法将成年健康雄性SD大鼠随机分为四个组:假手术组、高血压组、褪黑素组和西拉普利组,在建立肾性高血压模型及进行相应处理方式后,定期测量大鼠的血压、用Morris水迷宫测定大鼠的学习记忆能力、免疫组织化学检验方法观察Bax及Bcl-2阳性细胞数的变化、TUNEL原位分子杂交技术检测发生凋亡的趋势。
     结果高血压组大鼠与假手术组大鼠相比较,基底前脑及海马各亚区TUNEL阳性细胞数和Bax阳性细胞数显著上升,而Bcl-2/Bax比值明显下降,学习记忆能力也明显下降(p<0.05)。西拉普利组大鼠较高血压组大鼠的血压明显下降(p<0.05),Bax阳性细胞数明显减少,Bcl-2/Bax比值上升,TUNEL阳性细胞数减少,学习记忆能力得以明显提高(p<0.05);褪黑素组大鼠与高血压组大鼠比较血压稍下降(p>0.05),与西拉普利组大鼠的血压值比较明显升高(p<0.05),褪黑素组大鼠与高血压组比较Bax阳性细胞数无明显减少(p>0.05),Bcl-2的阳性细胞数显著增加(p<0.05), Bcl-2/Bax明显升高,TUNEL阳性细胞数也明显减少(p<0.05),并且学习记忆能力也有明显改善(p<0.05)。
     结论应用西拉普利治疗可调整肾性高血压模型大鼠血压至正常水平,阻止Meynert基底核、斜角带核垂直支及海马CA1、CA3区抗凋亡基因Bcl-2蛋白质和凋亡基因Bax表达水平比例失常而引发的细胞凋亡过度,改善学习记忆能力;褪黑素干预后,血压下降不明显,但是能调节Bax和Bcl-2蛋白表达,纠正细胞凋亡过度,改善学习记忆障碍。提示联合应用西拉普利与褪黑素可能是早期防治高血压及其脑并发症的一种具有潜力的药物配伍干预方案。
Objective:To investigate the effects of melatonin and cilazapril on the change in memory, Bax/Bcl-2 protein and cellular apoptosis in basal forebrain(nucleus basalis of Meynert ; vertical limb of diagonal band of Broca,vDB)and hippocampal subdivisions(CA1、CA3)of renal hypertensive rats.
     Methods: Healthy adult Sprague-Dawley rats were randomly divided into following four groups with ten rats in each group: sham, renovascular hypertensive plus vehicle treatment, renovaseular hypertensive plus melatonin treatment, renovaseular hypertensive plus cilazapril treatment. After the renal hypertension model was established, the four group rats received corresponding treatments, and blood pressure was measured accordingly. Learning and memory were detected in Morris water maze. Bcl-2/Bax protein or apoptotic cells in the above brain areas were examined by immunohistochemistoy or by TUNEL technique.
     Results: The number of Bax immunoreactive (Bax-IR)cells and apoptotic cells in basal forebrain and hippocampal subdivisions increased significantly (p<0.05),but the ratio of Bcl-2/ Bax and the ability of learning and memory significantly decreased in renovascular hypertensive group rats, compared with those of sham operation group (p<0.05). Comparing with those of renovascular hypertensive plus vehicle treatment, the blood pressure and the number of Bax-IR cells and apoptotic cells significantly decreased (p<0.05), the ratio of Bcl-2/ Bax and the ability of learning and memory also significantly increased (p<0.05) in renovaseular hypertensive plus cilazapril treatment. Compared with those of renovascular hypertensive plus vechicle treatments rats, the blood pressure decreased slightly in melatonin-treated group, but was significantly higher than that of renovascular hypertensive plus vichicle or cilazapril treatment rats (p<0.05), the number of Bax-IR cells of metatonin group was not significantly different from that of renovascular hypertensive group(p>0.05). However, the number of Bcl-2-IR cells and the ratio of Bcl-2/ Bax in cilazapril-treated group significantly increased, while the number of apoptotic cells was significantly decreased, but the ability of learning and memory of the cilazapril group increased (p<0.05).
     Conclusions:The blood pressure may be adjusted to normal level,and the imbalance of the ratio of Bcl-2/ Bax is corrected by cilazapril, which leads to lowering the number of apoptosis cells, improving the impaired ability of learning and memory. Blood pressure slightly is affected, and the protein expression of Bax and Bcl-2, is regulated by melatonin,which results in proventing excessive apoptosis, and retifying impaired of learning and memory of hypertensive rats.
引文
1.Van Bilsen M, Smeets PJ, Gilde AJ, et al. Metabolic remodeling of the failing heart: the cardiac burn-out syndrome. Cardiovasc Res, 2004,61(5):218-226.
    2.祝之明.高血压代谢危险性的评估与控制. South China Journal of Cardiovascular Diseases,2008,14(2):80-81.
    3.The 20th American Society of Hypertension Annual Meeting,China Medical News, 2005, 20(11):51-54.
    4.Suzuki M, Tsutsumi Y, Uchiyama S, et al. Carotid ultrasonographic appearance of the rupture of an unstable atheromatous plaque in apatient with acute ischemic stroke. Intern Med, 2005, 44 (12): 1320-1321.
    5.吴旭斌.炎症在高血压病患者肾功能损害中的作用.高血压杂志, 2003,23(11):16-18.
    6.许曼音,陆广华,陈名道.糖尿病学.第一版,上海科学技术出版社, 2003, 472- 478.
    7.Ricceri L, Minghetti L, MolesA, et al. Cognitive and neurological deficits induced by early and prolonged basal forebrain cholinergic hypofunction in rats.Exp Neuro, 2004, 189 (1): 162~172.
    8.Hamman RF, Mayer EJ, Mooyoung GA, et al. Prevalence and risk factors of diabetic retinopathy in non- Hispanic white and Hispanic with NIDDM. Diabetes, 2009, 18(3): 1231-1237.
    9.Tzourio C, Anderson C, ChapmanN, et al. Effects ofblood pressure lowering with perindopril and indapamide therapy on dementia and cognitive decline in patientswith cerebrovascular disease. Arch Intern Med, 2003, 163(4): 1069-1075.
    10.Erkinjuntti T,Inzitari D,Pantoni L, et a1. Research criteda for subcorticalvascular dementia in clinicaltrials. J Neural Transm Suppl,2000. 59(5): 23-30.
    11.Erkinjuntti T, Rockwood K. Vascular dementia. Semin Clin Neuro-psychiatry,2003 ,8 (1):37-45.
    12.Holsinger RM, Schnarr J, Henry P, et al. Quantitation of BDNF mRNA in human parietal cortex by competitive reverse transcription polymerase chain reaction: decreased levels in Alzheimer's disease. Brain Res, 2000, 76(2):347-354.
    13.Amaral DG, Kurz J. An analysis of the origins of the cholinergic and noncholinergic septal projections the hippocampal formation of the rat. Neurol, 2005, 240(1):37-59.
    14.Sekhon LHS, Morgan MK, Spence I, et al. Normal perfusion pressure breakthrough: the role of capillaries. J Neurosurg,2007, 86(3): 519-524.
    15.Wilcock G, Mobius HJ, Stoffler A. A double-blind, place bocontrolled multicentre study of memantine in mild to moderate vascular dementia(MMM500). Int Clin Psychopharnnaco, 2002, 17(3): 297-305.
    16.Sarangi S, San Pedro EC, Mount JM. Antrior choroidal artery infarction presenting as a proressive cognitive deficit. Clin Nucl Med, 2000, 25(3): 187-190.
    17.Lojkowaka W, Ryglewic ZD, Jedrzejczak T, et al. SPECT as a diagnosticestint in the investigation of dementia. Neurol Sc,2002, 15(5): 215-219.
    18.Yang DW,Kim BS, Park JK, et al. Analysis of cerebral blood flow of subcortical vascular dementiawith single photon emission computered tomography: adaptation of statistical parametricmapping. Neurol Sc, 2002, 15(3): 199-205.
    19.Müller MB, Toschi N, Kresse AE, et al. Long-term repetitive transcranial magnetic stimulation increases the expression of brain-derived neurotrophic factor and cholecystokinin mRNA, but not neuropeptide tyrosine mRNA in specific areas of rat brain[J]. Neuropsychopharmacology, 2000, 23(2):205-215.
    20.Ogiuekeda M, Kawato S, Ueno S. Acquisition of ischemic tolerance by repetitive transcranial magnetic stimulation in the rat hippocampus. Brain Res, 2005,1037(4):7-11.
    21.磨洁琳,褪黑素对成年高血压大鼠脑细胞的影响及其与学习记忆的关系,[学位论文],中国优秀硕士学位论文全文数据库,广西医科大学,2005年05期.
    22 . Niwa K , Carlson GA , andIadeeola C. ExogenousA reproduces Cerebrovaseulara lteration sresulting from amyloid preeursor protein over expression in mice. J Cereb Blood Flow Metab,2000,20(12):1659-1668.
    23.Niwa K,Haensel C,Ross ME,and Iadecola C. Cyeloo xygenase participates in selected vasodilator responses of the cerebral circulation. Circ Res,2001,88(6):600一608.
    24.Lucassen PJ, Chung WCJ, Kamphorst MW, et al. DNA damage distribution in the human brain as show byin situend labeling:area-specific differences in aging and Alzheimer disease in the absence of apoptotic morphology. J Neuropathol Exp Neurol, 1997, 56(5) : 887-900.
    25.Gavrieli Y, Sherman Y, Ben-Sasson SA. Identification of programmed cell deathin situvia specific labeling of nuclear DNA fragmentation. J Cell Biol, 1992, 119(3): 493-501.
    26.Yankner BA. Mechanism of neuronal degeneration in Alzheimer’s disease[J]. Neuron, 1996, 16(4) : 921-932.
    27.Geula G, Wu CK, Saroff D, et al. Aging renders the brain vulnerable to amyloidβ-protein neurotoxicity. Nature Med, 1998, 4(2): 827-831.
    28.Yan SD, Chen X, Fu J, et al. RAGE and amyloid-βpeptide neurotoxicity in Alzheimer’s disease[J]. Nature, 1996, 382(6) : 685-691.
    29.Lorenzo A . Amyloid-βinteracts with the amyloid precursor protein: a potential toxic mechanism in Alzheimer’s disease[J]. Nature Neurosci, 2000, 3(4) : 460-464.
    30.Giulian D, Lanny J, Haverkarp JH, et al. Specific domains of beta-amyloid from Alzheimer plaque elicit neuron killing in human microglia[J]. J Neurosci, 1996, 16(8): 6 021-6 037.
    31.Fujisawa T , Ikegami H , Ono M, et al. Combination of half doses of agiotensin type 1 receptor antagonist and angiotensin-converting enzyme ihibitor in diabetic nephropathy. Am J H ypertens, 2005, 18( 1) : 13-18.
    32.玉洪荣,王薇,郭灵,等.Ⅰ型糖尿病脑病模型大鼠空间学习记忆以及海马齿状回细胞凋亡和Bax与Bcl-2蛋白表达的变化.解剖学研究, 2009, 31(3):43-45.
    33.磨洁琳,郭灵,邓祥发,等.外源性褪黑素对成年高血压大鼠神经发生的影响及其与学习记忆的关系.四川解剖学杂志,2009,17(4):13-16.
    34.戴勇,彭武建,徐卓佳,等.“双肾一夹”肾性高血压大鼠模型的改进,实验动物科学与管理,2006,23(2):60-62.
    35.Morris RG,Gamid P,Rawlins JN,et al. Place navigation impaired in rats with hippocampal lesions [J]. Nature,1982,297(5868):681-683.
    36.林丹,邓祥发,郭灵.影响成年齿状回神经干细胞增殖和分化的因素.解剖学杂志,2005,27(2):144-147.
    37.诸葛启钏(主译).大鼠脑立体定位图谱.北京:人民卫出版社,第1版,2005.
    38.袁永辉,吴人亮,王曦,等.原位细胞凋亡TUNEL法的改进及其应用.陕西医学杂志,2004, 33(7):579-581.
    39.黄如训,曾进胜,苏镇培,等.易卒中型肾血管性高血压大鼠模型.中国神经精神科杂志,1991, 17(2):257-260
    40.魏国,张立德.肾血管性高血压大鼠实验模型简易制作方法的比较研究.山西中医.2009,25(2):47-48.
    41.Roh J, Chang CL, Bhalla A, et al. Intermedin is a calcitonin gene- related peptide family peptide acting through the calciton in receptor- like receptor/ receptor activity- modifying protein receptor complexes . J Biol Chem, 2004, 279( 8) : 7264- 7274.
    42.Hall CE, Grotta JC. Newera for management of primary hypertensive intracerebral hemorrhage. Curr Neurl Neruosci Rep,2005,5(1) : 29-35.
    43.Iadecola C. Neurovascular regulation in the normal brain and in Alzheimer’s disease. Nat Rev Neurosei, 2004, 5(5):347-360.
    44.Wang XC, Zhang J, Yu X, et al. Prevention of isoproterenolinduced tau hyperphosphorylation by melatonininthe rat. Acta Physiol Sin, 2005, 57(1) :7-12.
    45.Olakowska E, Marcol W, Kotulska K, et al. The role of melatonin in neurodegenerative diseases. Bratisl Iek Listy, 2006, 106(5) :171- 174.
    46.Cheung ZH, Gong K, Ip NY. Cyclin-dependent kinase5 supports neuronal survival through phosphorylation of Bcl-2. J Neurosci, 2008, 28(19):4872- 4877.
    47.王卫东,陈正堂. Bcl-2/Bax比率与细胞“命运”.中国肿瘤生物治疗杂志,2007,14(4):393-396.
    48.Talebm, Brandon C S, Leef S, et al. Hsp70 inhibits aminoglycoside- induced hearing loss and cochlear hair cell death. Cell Stress Chaperones, 2009, 14(4): 427-437.
    49.Zoltan NO,Stanley JK. Check pelints of dueling diemers foil death wishes. Cell, 2009, 79(2):189-196.
    50.Farkas E,Luiten PG,Bari F. Permanent, bilateral common carotidartery occlusion in the rat: a model for chronic cerebral hypoperfusion-related neurodegenerative diseases. Brain Res Rev,2007,54(3):162-180
    51.Suk K, Paek JH, Lee WH. Neuroptide PACAP inhibits activation of Brain microglial a protective mechamism against microglial neurotoxicity in ischemia. Brain Res, 2004, 1026(8): 151-156.
    52.吴士文,杨光,金民,等.脑梗死患者血清褪黑素节律改变与卒中后日间过度倦睡.中风与神经疾病杂志,2004,21(6):538-540.
    53.Sewerynek E. Melatonin and the cardiovascular system. Neuroendocrinol Lett, 2002,23(Suppl 1):79-83.
    54.Beloosesky Y, Grinblat J, Laudon M, et al. Melatonin rhythm in stroke patients. Neurosci Lett, 2002,319(2):103-106.
    55.Borlongan CV, Yamamoto M, Takei N, et al. Glial cell survival is enhanced during melatonin-induced neuroprotection against cerebral ischemia. FASEB J, 2000, 14(10):1307-1317.
    56.Kagiyama T,Kagiyama S,Phillip MI. Expression of angiotensin type l and 2 receptors in brain after transient middle cerebral artery occlusion inrats. Regulatory Peptides, 2003, 110(2): 241- 246.
    57.Phillips MI,Kagiyalna S. Angiotensin II as proinflammatory mediator. Curr Opin Investig Drugs,2002, 3(6): 569- 573.
    58.韦挺荣.赖诺普利治疗高血压病及逆转左室肥厚的疗效观察.中西医结合心脑血管病杂志, 2005 , 3 ( 4 ) : 291- 292.
    59.Guideliness Committee. 2003 European Society of Hypertension European Society of Cardiology guidelines for the management of arterial hypertension. Journal of Hypertension, 2003 , 21(6):1011- 1053.
    60.Smith ML, Booze RM. Cholinergic and GABA ergic neurons in the nucleus basalis region of young and aged rats. Neurosc, 1995, 67 (3) : 679-688.
    61.Sun MK, Alkon DL. Perspectives on the cell biology underlying Alzheimer’s disease and the potential for therapy. Int Arch Biosci, 2001, 21(4):1075-1086.
    62.Hernandez CM, Hoifodt H, Pharm C, et al. Spontaneosly hypertensive rats: further evaluation of age-related memory performance and cholinergic marker experession. J Psychiatry Neurosci, 2003, 28(3):197-209.
    [1] Paravicini TM, Touyz RM. Redox signaling in hypertension. Cardiovasc Res, 2006, 71(2):247–258.
    [2] Forbes JM, Coughlan MT, Cooper ME. Oxidative stress as a major culprit in kidney disease in diabetes. Diabetes, 2008, 57(6):1446–1454.
    [3] Huang PL. eNOS, metabolic syndrome and cardiovascular disease. Trends Endocrinol Metab, 2009, 20(4):295–302.
    [4] Haddad JJ. Antioxidant and prooxidant mechanisms in the regulation of redox(y)-sensitive transcription factors. Cell Signal, 2002, 14(3):879–897.
    [5] Ardanaz N, Pagano PJ. Hydrogen peroxide as a paracrine vascular mediator: regulation and signaling leading to dysfunction. Exp Biol Med, 2006, 231(3):237–251.
    [6] Liochev SI, Fridovich I. The effects of superoxide dismutase on H2O2 formation. Free Radic Biol Med, 2007, 42(3):1465–1469.
    [7] Suvorava T, Kojda G. Reactive oxygen species as cardiovascular mediators: lessons from endothelial-specific protein over expression mouse models. Biochem Biophys Acta, 2009, 1787(2):802–810.
    [8] Brown DI, Griendling KK. Nox proteins in signal transduction. Free Radic Biol Med, 2009, 47(1):1239–1253.
    [9] Gillespie MN, Pastukh V, Ruchko MV. Oxidative DNA modifications in hypoxic signaling. Ann N Y Acad Sci, 2009,1177(3): 140–150.
    [10] Guzik TJ, Korbut R, Adamek-Guzik T. Nitric oxide and superoxide in inflammation and immune regulation. J Physiol Pharmacol, 2003, 54(3):469–487.
    [11] Haddad JJ. Antioxidant and prooxidant mechanisms in the regulation of redox(y)-sensitive transcription factors. Cell Signal, 2002, 14(1):879–897.
    [12] Ebrahimian T, Touyz RM. Thioredoxin in vascular biology: role in hypertension. Antioxid Redox Signal, 2008, 10(2):1127–1136.
    [13] Ralf P, Brandes, Kreuzer J. Vascular NADPH oxidases:molecular mechanisms ofactivation. Cardiovasc Res, 2005,65(2):16-27.
    [14] Vaziri ND, Ni Z. Expression of NOX-I, gp91phox, p47phox and P67phox in the aorta segments above and below coarctation. Biochim Biophys Acta,2005, 1723(1-3):321-327.
    [15] Fortuno A, Jose GS, Moreno MU, et al. Oxidative stress and vascular remodeling. Exp Physiol,2005,90(4):457-462.
    [16]杨万松.高血压与动脉粥样硬化.见:张鸿修,黄体钢主编.实用冠心病学.第4版.天津:天津科技翻译出版公司,2005.181-185.
    [17] Annu KM, Zilmer M, Fellstrom B. Endothelium-dependent vasodilation and oxidative stress in chronic renal failure:Impact on cardiovascular disease. Kidney Int Suppl,2003,84(3):50-53.
    [18] Harrison DG, Gongora MC. Oxidative stress and hypertension. Med Clin North Am, 2009, 93(5):621–635.
    [19] Vaziri ND. Roles of oxidative stress and antioxidant therapy in chronic kidney disease and hypertension. Curr Opin Nephrol Hypertens, 2004, 13(2):93–99.
    [20] Addabbo F, Montagnani M, Goligorsky MS: Mitochondria and reactive oxygen species. Hypertension, 2009, 53(7):885–892.
    [21] Peterson JR, Sharma RV, Davisson RL. Reactive oxygen species in the neuropathogenesis of hypertension. Curr Hypertens Rep, 2006, 8(3):232–241.
    [22] Ponnuchamy B, Khalil RA. Cellular mediators of renal vasculardysfunction in hypertension. Am J Physiol Regul Integr Comp Physiol, 2009, 296(2):R1001–R1018.
    [23] Alp NJ, Paolocci N, Champion HC, Kass DA. Reversal of cardiac hypertrophy and fibrosis from pressure overload by tetrahydrobiopterin: efficacy of recoupling nitric oxide synthase as a therapeutic strategy. Circulation, 2008, 117(3):2626–2636.
    [24] Hulsmans M, Holvoet P. The vicious circle between oxidative stress and inflammation in atherosclerosis. J Cell Mol Med, 2009, Nov 28 (Epub ahead of print). This is an up-to-date review on the association between ROS and inflammation, 2006,103(4):113-119.
    [25] Castro MM, Rizzi E, Rodrigues GJ, et al. Antioxidant treatment reduces matrix metalloproteinase-2-induced vascular changes in renovascular hypertension. Free Radic Biol Med, 2009, 46(2):1298–1307.
    [26] Tabet F, Savoia C, Schiffrin EL, Touyz RM. Differential calcium regulation by hydrogen peroxide and superoxide in vascular smooth muscle cells from spontaneously hypertensive rats. Cardiovasc Pharmacol, 2004, 44(1):200–208.
    [27] Touyz RM, Chen X, Tabet F, et al. Expression of a functionally active gp91phox-containing neutrophil-type NAD(P)H oxidase in smooth muscle cells from human resistance arteries: regulation by angiotensin II. Circ Res, 2002, 90(2):1205–1213.
    [28] Yang G, Wu L, Jiang B, et al. H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine gamma-lyase. Science, 2008, 322(1):587–590.
    [29] Callera GE, Tostes RC, Yogi A, et al. Endothelin-1-induced oxidative stress in DOCA-salt hypertension involves NADPH-oxidase-independent mechanisms [J].Clin Sci(Lond), 2006, 110(2): 243-253.
    [30]Orie NN, Zidek W, Tepel M. Reactive oxygen species in essential hypertension and non-insulin-dependent diabetes mellitus. Am J Hypertens, 1999, 12(12): 1169-1174.
    [31]Redon J, Oliva MR, Tormos C, et al. Antioxidant activities and oxidative stressbyproducts in human hypertension[J].Hypertension, 2003, 41(5): 1096-1101.
    [32]Saez GT, TormosC, Giner V, et al. Factors related to the impactofantihypertensive treatment in antioxidantactivities and oxidative stress by-products in human hypertension[J].Am J Hypertens, 2004, 17(9): 809-816.
    [33]Simic DV, Mimic-Oka J, Pljesa-Ercegovac M, et al. Byproducts of oxidative protein damage and antioxidantenzyme activities in plasma ofpatientswith different degrees of essential hypertension. JHum Hypertens, 2006, 20(2): 149-155.
    [34]Zhang GX, Kimura S,Nishiyama A, et al. ROS during the acute phase ofAngⅡh ypertension participates in cardiovascularMAPK activation butnotvasoconstriction. Hypertension, 2004, 43(1): 117-124.
    [35]Elmarakby AA, Loomis ED, Pollock JS, et al. NADPH oxidase inhibition attenuates oxidative stress butnothypertension produced by chronic ET-1.Hypertension, 2005, 45(2): 283-287.
    [36]Banday AA, Lokhandwala MF. Oxidative stress-induced renal angiotensinAT1 receptorupregulation causes increased stimulation of sodium transporters and hypertension.Am J Physiol Renal Physiol, 2008, 295(3):F698-F706.
    [37]Lacy F, Kailasam MT, O′Connor DT, et al. Plasma hydrogen peroxide production in human essential hypertension: role of heredity, gender, and ethnicity[J].Hypertension, 2000, 36(5): 878-884.
    [38]Zalba G, San JoséG, Moreno MU, et al. NADPH oxidase-mediated oxidative stress: genetic studies of the p22 (phox) gene in hypertension. Antioxid Redox Signal, 2005, 7(9-10): 1327-1336.
    [39]Genius J, Grau AJ, Lichy C. The C242T polymorphism of the NAD(P)H oxidase p22phox subunit is associated with an enhanced risk for cerebrovascular disease ata young age. Cerebrovasc Dis, 2008, 26(4): 430-433.
    [40] Nambiar S, Viswanathan S, Zachariah B, et al. Oxidative stress in prehypertension: rationale for antioxidant clinical trials. Angiology, 2009, 60(3):221–234.
    [41] Nabha L, Garbern JC, Buller CL, et al. Vascular oxidative stress precedes high blood pressure in spontaneously hypertensive rats. Clin Exp Hypertens, 2005(4), 27:71–82.
    [42] Sathiyapriya V, Selvaraj N, Nandeesha H, et al. Association between protein bound sialic acid and high sensitivity C-reactive protein in prehypertension: a possible indication of underlying cardiovascular risk. Clin Exp Hypertens, 2008(2), 30:367–374.
    [43] Callera GE, Touyz RM, Teixeira SA, et al. ETA receptor blockade decreases vascular superoxide generation in DOCA-salt hypertension. Hypertension, 2003, 42(1):811–817.
    [44] Chen X, Touyz RM, Park JB, et al. Antioxidant effects of vitamins C and E are associated with altered activation of vascular NADPH oxidase and superoxide dismutase in stroke-prone SHR. Hypertension, 2001, 38(1):606–611.
    [45] Ardanaz N, Yang XP, Cifuentes ME, et al. Lack of glutathione peroxidase 1 accelerates cardiac-specific hypertrophy and dysfunction in angiotensin II hypertension. Hypertension, 2009,55(5):116–123.
    [46] Ward NC, Hodgson JM, Puddey IB, et al. Oxidative stress in humanhypertension: association with antihypertensive treatment, gender, nutrition, and lifestyle. Free Radic Biol Med, 2004, 36(4):226–232.
    [47] Touyz RM, Schiffrin EL. Increased generation of superoxide by angiotensin II in smooth muscle cells from resistance arteries of hypertensive patients: role of phospholipase D-dependent NAD(P)H oxidase-sensitive pathways. J Hypertens, 2001, 19(4):1245–1254.
    [48] Moreno MU, San Jose G, Orbe J, et al. Preliminary characterisation of the promoter of the human p22(phox) gene: identification of a new polymorphism associated with hypertension. FEBS Lett, 2003, 542(1):27–31.
    [49] Holowatz LA, Kenney WL. Local ascorbate administration augments NO- and non-NO-dependent reflex cutaneous vasodilation in hypertensive humans. Am J Physiol Heart Circ Physiol, 2007, 293(2):H1090–H1096.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700