用户名: 密码: 验证码:
PAC-PDMDAAC杂化絮凝剂的制备、表征及絮凝性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混凝是重要的水处理工艺之一,混凝剂的开发是混凝工艺的核心技术,混凝剂的优劣是决定混凝效果甚至整个水处理效果的关键因素。随着水和废水处理规模的迅猛发展,对混凝剂的质量和品种需求也越来越大。开发新型高效低耗、安全无害的混凝剂以提高水处理效果、降低成本一直是水处理领域的研究重点。
     聚合氯化铝-聚二甲基二烯丙基氯化铵(PAC-PDMDAAC)杂化絮凝剂是基于聚合氯化铝较强的电中和作用和聚二甲基二烯丙基氯化铵有机高分子絮凝剂优异的吸附架桥能力的协同作用而开发的新型高效絮凝剂。与传统的无机絮凝剂相比,它具有絮体形成快,颗粒密度大,沉降速度快等特点,且无二次污染,高效低耗,适用范围广,可取代价格昂贵的有机高分子絮凝剂。PAC-PDMDAAC杂化高分子絮凝剂有着良好的发展和应用前景,可以用于饮用水处理和纺织、印染废水等处理工艺中。
     论文的主要研究内容和结论如下:
     (1)采用原位聚合法以聚合氯化铝、二甲基二烯丙基氯化铵为原料,以过硫酸铵为引发剂制备了离子型PAC-PDMDAAC杂化絮凝剂,并进行Box-Behnken中心组合实验和响应面分析,得出最佳制备条件:DMDAAC质量分数为37%,引发剂质量分数为0.6%,反应温度为75℃,反应时间为5h。在对絮凝剂结构表征分析中,FT-IR及TGA测试结果表明杂化絮凝剂有机-无机组分间是由PDMDAAC链端(-SO42-)与带正电荷的羟基铝粒子以离子键性质键合。SEM结果显示,杂化絮凝剂PAC-PDMDAAC颗粒尺寸和比表面积均比其复合型絮凝剂更大。
     (2)采用溶胶-凝胶法以硅烷偶联剂KH570为无机改性剂,以聚合氯化铝、二甲基二烯丙基氯化铵为原料,以过硫酸铵为引发剂制备了共价型PAC-PDMDAAC杂化絮凝剂,并用响应面设计预测并根据实际情况得到最优制备条件为:DMDAAC质量分数为33%,引发剂质量分数为0.6%,反应温度为64℃,反应时间为3h。在对絮凝剂结构表征分析中,电导测试、FT-IR、13C-NMR及TGA结果表明PAC-PDMDAAC杂化絮凝剂的有机-无机组分间以共价键形式键合,性质稳定;其SEM照片显示其结构疏松,粒度较大。
     (3)分别通过高岭土模拟水的混凝烧杯实验和硅藻土模拟水的量筒沉降实验,考察了PAC和自制两种杂化絮凝剂的电中和能力和絮凝性能。高岭土模拟水的混凝烧杯实验结果表明,两种PAC-PDMDAAC杂化絮凝剂的电中和能力突出。硅藻土模拟水的量筒沉降实验结果表明,两种PAC-PDMDAAC杂化絮凝剂的絮体粒度和沉降速度明显高于PAC,絮凝性能优异。对重庆嘉陵江和长江原水的混凝效果表明,两种杂化型絮凝剂对浊度、UV254和CODMn均表现出优异的去除效果。
     (4)使用激光粒度分析仪对杂化絮凝剂处理高岭土模拟水样进行混凝动态过程研究,采用两种杂化絮凝剂时,随投加量的增加,pH越接近中性,形成的絮体粒径越大。相比PAC,形成稳定絮体所需时间短。两种杂化絮凝剂絮体抗剪切强度高于PAC,且在相同条件下恢复能力强。随破碎时间的延长,杂化絮凝剂形成絮体的强度因子和恢复因子均呈下降趋势。
     (5)应用扫描电子显微镜对杂化絮凝剂絮凝后絮体进行观察,将絮体分为絮粒、絮团和絮网三个不同的生长阶段,通过假设颗粒结合位置符合正四面体,建立了絮体结构模型,在一定程度上能够反映杂化高分子絮凝剂絮凝高岭土颗粒生成的絮体结构。
Coagulation process has already become one of the most important part in watertreatment. The core technology of coagulation process is the development of flocculants,which determined not only the flocculation effect but also the entire water treatmenteffect. Currently, because of the continuous decrease of water resources and theincreasing discharge scale of wastewater, the composition of contaminants in water ismore complex and the harm to the environment is increasing. Development of newefficient quality flocculants to improve flocculation effect in water treatment, reducecosts and expand new application fields, has already become the focus of research inwater treatment field.
     Polyaluminum chloride-poly diallyl dimethyl ammonium chloride (PAC-PDMDAAC) hybrid flocculant is a new efficient flocculant which is developed basedon the strong electric neutralization capacity of PAC and the excellent adsorptionbridging capacity of PDMDAAC. Compared with traditional inorganic flocculant, it hascharacteristics of fast floc formation, high particle density and fast settling velocity. Inaddition, this new hybrid flocculant has no secondary pollution, high efficiency withlow cost, and can replace expensive organic polymer flocculant. PAC-PDMDAAChybrid flocculant has excellent prospects for development and application. It will playan important role in drinking water, textile wastewater and dyeing wastewater treatmentprocesses.
     The main contents and conclusions in this study are as follows:
     (1) The ionic bond PAC-PDMDAAC hybrid flocculant was prepared by usingpolyaluminum chloride and diallyl dimethyl ammonium chloride as raw materials,ammonium persulfate as the initiator in situ hybridization method. The Box-Behnkenmathematical relational model was established and response surface analysis wasintroduced. The optimum preparation conditions were: DMDAAC mass fraction37%,initiator mass fraction0.6%, reaction temperature75℃and reaction time5h. FT-IRand TGA test results showed that the organic and inorganic components were connectedby ionic bond between the chain end of PDMDAAC (-SO42-) and hydroxy aluminumparticles which had positive charges. SEM results showed the particle size and specificsurface area of PAC-PDMDAAC hybrid flocculant were larger than PAC-PDMDAACcomposite flocculant.
     (2) The covalent bond PAC-PDMDAAC hybrid flocculant was prepared by usingKH570as modifying agent, polyaluminum chloride and diallyl dimethyl ammoniumchloride as raw materials, ammonium persulfate as the initiator in sol-gel method. Theresponse surface analysis was introduced. The optimum preparation conditions were:DMDAAC mass fraction33%, initiator mass fraction0.6%, reaction temperature64℃and reaction time3h. In the flocculant structural characterization analyzes,conductivity, FT-IR,13C-NMR and TGA results showed there was covalent bondbetween organic and inorganic components in PAC-PDMDAAC hybrid products. ItsSEM photograph showed the hybrid flocculant had loose structure and large particlesize.
     (3) Through coagulation experiment of kaolin simulated water and sedimentationexperiment of diatomite simulated water, the charge neutralization and flocculatingperformance of PAC and two kinds of hybrid flocculants were investigated. The kaolincoagulation experiment showed that the charge neutralization capacity of ionic bondPAC-PDMDAAC hybrid flocculant was the strongest. While charge neutralizationcapacity of covalent bond hybrid flocculant was also more prominent. In thesedimentation experiment of diatomite simulated water, these two kinds of hybridflocculant had larger floc size and higher sedimentation rate than PAC, which playedexcellent flocculating performance. In coagulation tests of Chongqing Jialing River andthe Yangtze River, the two hybrid flocculants showed excellent removal efficiencies onturbidity, UV254and CODMn.
     (4) Coagulation dynamic process of kaolin simulated water was studied by usinglaser particle size analyzer. The floc size was larger with the increase of dosage and thepH close to neutral when these two hybrid flocculants were used. Compared with PAC,the stable floc formation time was shorter in hybrid flocculants. In the same shear forces,these two kinds of hybrid flocculants had stronger shear resistances and recoverycapabilities than PAC. As the extension of broken time, the strength factors andrecovery factors of the two kinds of hybrid flocculants decreased.
     (5) The flocs of hybrid flocculants after flocculation were observed by scanningelectron microscope. Flocs could be divided into three different stages. By assumingthat the particle-bond location met regular tetrahedron, floc structure model wasestablished, which to some extent reflected the floc structure of kaolin particles byhybrid flocculants.
引文
[1]李继清,张玉山,李安强,纪昌明.水资源系统安全研究现状及发展趋势[J].中国水利,2007,5:11-13
    [2] Zheng Huaili, Sun Xiuping, He Qiang, Liang Kun, Zhang Peng. Synthesis and trappingproperties of dithiocarbamate macromolecule heavy-metal flocculants[J]. Journal of AppliedPolymer Science,2008,110(4):2464~2466.
    [3] Yang Fang, Li Gang, He Yangang, Ren FengXia, Wang Guixiang. Synthesis, characterization,and applied properties of carboxymethyl cellulose and polyacrylamide graft copolymer[J].Carbohydrate Polymers,2009,1(78):60~69.
    [4] Wang Yuanfang, Gao Baoyu, Yue Qinyan, Zhan Xiao, Si Xiaohui, Li Chunxiao. Flocculationperformance of epichlorohydrin dimethylamine polyamine in treating dyeing wastewater[J].Journal of Environmental Management,2009,2(91):423~431
    [5]刘宗源.饮用水处理中强化混凝去除有机物的试验研究[D].重庆:重庆大学,2002:10~11
    [6]宋力.混凝剂在水处理中的应用与展望[J].工业水处理,2010,36(6):4~7
    [7] Donald RF Harleman. An innovative approach to urban wastewater treatment in the developingworld[J].Water21,2001,(6):44~48.
    [8]朱宝霞,李久义,栾兆坤.城市污水混凝强化一级处理的机理探讨[J].给水排水,2001,27(7):10~14.
    [9]刘华超,王龙.混凝法强化城市污水一级处理技术的应用研究[J].环境科学与技术,2004,27:97~99.
    [10] Tiehm A, Herwig V, Neis U. Particle size analysis for improved sedimentation and filtration inwastewater treatment[J]. Wat Sci Tech,1999,39(8):99~106.
    [11] Odegaard H, Skrovseth AF. An evaluation of performance and process stability of differentprocesses for small wastewater treatment plants[J]. Wat Sci Tech,1995,35(6):119~127.
    [12]王曙光,栾兆坤,宫小燕.CEPT技术处理污染河水的研究[J].中国给水排水,2001,17(4):16~18.
    [13]吴幼权,郑怀礼,张鹏,焦世珺,杨铀.复合混凝剂CAM-CPAM的制备及污泥脱水性能研究[J].环境科学研究,2009,22(5):535~539.
    [14]郑怀礼,李凌春,蔚阳,唐雪,杨铀,张胜涛.阳离子聚丙烯酰胺污泥脱水混凝剂制备合成研究[J].化工进展,2008,27(4):564~568.
    [15] Ai Hui, Wang Furong, Yang Qiusheng, Zhu Fen, Lei Chaoliang. Preparation and biologicalactivities of chitosan from the larvae of housefly,Musca domestica[J].Carbohydrate Polymers,2008,72:419~423.
    [16] Hu Changlai, Li Ben, Guo Ruili, Wu Hong, Jiang Zhongyi. Pervaporation performance ofchitosan-poly (acrylic acid) polyelectrolyte complex membranes for dehydration of ethyleneglycol aqueous solution[J]. Separation and Purification Technology,2007,55:327-334.
    [17]陈平.混凝剂的开发进展[J].污染防治技术,2009,19(1):20~22.
    [18]张光华.水处理化学品制备与应用[M].中国石化出版社,2003.
    [19]栾兆坤,汤鸿霄.我国无机高分子絮凝剂产业发展现状与规划,工业水处理,2000,20(11):1-6
    [20]周风山,王世虎,李继勇等.含硅多核无机高分子絮凝剂研究发展,油田化学,2002,19(4):391-394
    [21]卢建杭,刘维屏.无机絮凝剂制备技术的进展[J],中国给水排水,1999,15(4):28-30
    [22]张亚文,胡东升,彭炳乾.水处理絮凝剂研究进展[J].石化技术与应用,2009,27(5):470-477
    [23] Dempsey.B.A.,et al.. Polyaluminum chloride and alum coagulation of clay-fulvic acidesuspensions,JAWWA,1985,77(3):74.
    [24] Hundt.T.R., Omelia C.R., Aluminum-fulvic acide interactions: Mechanisms and application,JAWWA.1988,80(2):85.
    [25] Exall K N, vanLoon G W. Effects of raw water conditionson solution-state aluminum speciationduring coagulant dilution[J]. Water Research,2003,37(14):3341-3350.
    [26] Wang D S, Tang H X, Gregory J. Relative importance of charge neutralization and precipitationon coagulation ofkaolin with PACI: Effect of sulfate ion[J]. Environmental Science&Technology,2002,36(8):1815-1820
    [27] Ye C, Wang D, Shi B, et al. Formation and transformation of Al13from freshly formedprecipitate in partially neutralized Al(III) solution[J]. J Sol-Gel Sci Technol,2007,41(3):257-265.
    [28] Allouche L, rardin C G, Loiseau T, et al. Al30: A Giant Aluminum Polycation[J]. Angew. Chem.Int. Ed.,2000,39(3):511-514
    [29] Rowsell J, Nazar L F. Speciation and thermal transformation in alumina sols: Structures of thepoly-hydroxyoxoaluminumcluster[Al30O8(OH)(56)(H2O)(26)](18+) and its delta-Kegginmoiete [J]. Journal of the American Chemical Society,2000,122(15):3777-3778.
    [30] Zhaoyang Chen et al. Evaluation of Al30polynuclear species in polyaluminum solutions ascoagulant for water treatment. Chemosphere64(2006)912–918
    [31] Jasmin Mertens,et al. Polyaluminum chloride with high Al30content as removal agent forarsenic-contaminated well water. Water Research.2012(46):53-62
    [32]汤鸿霄,无机高分子复合混凝剂研究趋向[J].中国给水排水,2009,15(2):2
    [33]何文杰,李伟光等人.安全饮用水水质保障技术[M]中国建筑工业出版2006
    [34] Moussas P A, Zouboulis A L. A study in the properties and coagulation behaviour of modifiedinorganic polymeric coagulant-poly-ferric silicate sulphate (PFSiS)[J]. Separation andPurification Technology,2008,63(2):475-483
    [35]周庆,余锡宾,吴红娥,刘婕妤.复合絮凝剂聚硅酸铁锌(PSZF)的絮凝性能[J].上海师范大学学报:自然科学版,2008,37(3):286–290
    [36] Zhen Yang, Bo Yuan, Xin Huang, Junyu Zhou, et al. Evaluation of the flocculation performanceof carboxymethyl chitosan-graft-polyacrylamide, a novel amphoteric chemically bondedcomposite flocculant, Water Research,46(2012):107-114
    [37] Solberg D, Wagberg L. Adsorption and flocculation behavior of cationic polyacrylamide andcolloidal silica [J]. Colloids and Surfaces A: Physicochem. Eng. Aspects,2003,219:161–172
    [38] Jones F, Farrow J B, Bronswijk W. An infrared study of a polyacrylate flocculant adsorbed onhematite [J]. Langmuir,1998,14:6512–6517
    [39] Owen A T, Fawell P D, Swift J D. The preparation and aging of acrylamide/acrylate copolymerflocculant solutions [D]. Int. J. Miner. Process.,2007,84:3–14
    [40]曹建苹,张胜,韩宝丽.阳离子型聚丙烯酰胺絮凝剂的合成及表征[J].北京化工大学学报(自然科学版),2011,38(4):52–57
    [41]刘炳选,张亚通,李立,王晓承,靳悦淼.乳液法合成阳离子聚丙烯酰胺污水絮凝剂的研究[J].河北工业科技,2011,28(3):173–176
    [42]岳钦艳,李春晓,高宝玉,等.疏水缔合阳离子型聚丙烯酰胺絮凝剂的制备及其对含油废水的除油效果[J].石油化工,2009,38(2):169–173
    [43] Chen L, Pelton R. PEO flocculation of polystyrene–core poly (vinylphenol)–shell latex: anexample of ideal bridging [J]. Langmuir2001,17:7770–7776
    [44] Yu Y, Zhuang Y Y, Li Y, Qiu M Q. Effect of dye structure on the interaction between organicflocculant PAN–DCD and dye [J]. Ind. Eng. Chem. Res.,2002,41:1589–1596
    [45]朱胜庆,李小瑞,李培枝.氟碳型两性聚丙烯酰胺絮凝剂的制备及性能[J].石油化工,2009,38(11):1219–1224
    [46]张文俊,胡保安,张艳,宿辉,肖敏.高分散聚合法制备新型两性包被絮凝剂[J].化学工程,2009,37(2):67–70
    [47] D. O. Krentz, C. Lohmann, S. Schwarz, S. Bratskaya, T. Liebert, J. Laube, T. Heinze, W. M.Kulicke. Properties and flocculation Efficiency of highly cationized starch derivatives[J].Starch/Stake,2006,58:161–169
    [48] Krishnamoorthi S, Singh R P. Synthesis, characterization, flocculation, and archeologicalcharacteristics of hydrolyzed and unhydrolyzed polyacrylamide–grafted poly(vinyl alcohol)[J].Journal of Applied Polymer Science,2006,101(5):2109-2122
    [49]饶金星,淀粉类延伸无絮凝剂的研究及其应用进展[J].化工职业技术教育,2007,2,33–35
    [50] Krentz D O, Lohmann C, Schwarz S, Bratskaya S, Liebert T, Laube J, Heinze T, Kulicke W M.Properties and flocculation efficiency of highly cationized starch derivatives. Starch/Starke,2006,58:161–169
    [51] Schwarz S, Liebert T, Heinze T. Starch derivatives of high degree of functionalization20.Flocculation of kaolin dispersions [J]. Colloids and Surface A: Physicochem. Eng. Aspects,2005,254:75–80
    [52] Jiraprasertkul W, Nuisin R, Jinsart W, Kiatkamjornwong S. Synthesis and characterization ofcassava starch graft poly(acrylic acid) and poly[(acrylic acid)–co–Acrylamide] and polymerflocculants for wastewater treatment [J]. Journal of Applied Polymer Science,2006,102:2915–2928
    [53]杨爱丽,高伟,魏文韫,蒋文举.新型木质素季铵盐絮凝剂的合成与絮凝性能[J].中国造纸学报,2008,23(2):60–63
    [54]罗渊,李云雁,赵军涛,颜涛.木质素基阳离子型絮凝剂的制备与性能研究[J].武汉工业学院学报,2009,28(4):55–59
    [55] Ho Y C, Norli I, Alkarkhi A F M, Morad N. Characterization of biopolymer flocculant (pectin)and organic synthetic flocculant (PAM): A comparative study on treatment and optimization inkaolin suspension [J]. Bioresource Technology,2010,101:1166–1174
    [56] Mishra A, Yadav A, Agarwal M, Bajpai M.Fenugreek mueilage for solid removal fromtannery effluent [J].Reactive and Functional Polymers,2004,59(1):99–104
    [57]吴涓,倪晓宇.生物混凝剂的混凝活性及失活动力学的研究[J].中国环境科学,2008,28(12):1088-1093.
    [58]余荣升,徐龙君.微生物絮凝剂的现状与前景分析[J].环境污染与防治,2003,25(2):77–79
    [59] Butterfield C T. Studies of sewage purification Ⅱa zooloeaforming bacterium isolated fromactivated sludge [J]. United Sates Public Health Reports,1935,50:671–681
    [60]张晶.微生物絮凝剂的研究及应用前景[J].环境保护科学,2006,35(4):17–20
    [61] Bernard F, Daele V, Mellouki A,et al. Studies of the gas phase reactions of linalool,6-methyl-5-hepten-2-ol and3-methyl-1-penten-3-ol with o(3) and OH radicals [J]. Journal ofphysical chemistry A,2012,116(24):6113-6126
    [62] Lian B, Chen Y, Zhao J, Teng H H, Zhu L J, Yuan S. Microbial flocculantion by bacillusmucilaginosus: applications and mechanisms [J]. Bioresource Technology,2008,99(11):4825–4831
    [63]程金平,郑敏,张兰英.微生物混凝剂产生菌的筛选及产混凝剂的周期研究[J].环境科学与技术,2001,2:12~15.
    [64]陶明煊,吕丽爽.微生物混凝剂应用现状[J].环境监测管理与技术,2005,17(2):14~15.
    [65] Lofrano G.,Belglorrno V.,Gallo M.,Raimo A.,Meric S.. Toxicity reduction in leather tanningwastewater by improved coagulation flocculation process[J]. Global NEST Journal,2006,8(2):151-158.
    [66] Gao B.Y.,Yue Q.Y., Wang B.J.. The chemical species distribution and transformation ofpolyaluminum silicate chloride coagulant[J]. Chemosphere,2002,46(6):809-813.
    [67] Jiang J.Q.. Development of coagulation theory and pre-polymerized coagulants for watertreatment [J]. Sep Purif Rev,2001,30(1):127-141.
    [68] Gao B.Y., Yue Q.Y., Wang B.J.. Coagulation Efficiency and Residual Aluminum Content ofpolyaluminum Silicate Chloride in Water Treatment[J]. Acta Hydroch Hydrob,2004,32(2):125-130.
    [69]胡勇有.聚磷氯化铝溶液形态分布及转化规律[J].环境科学学报,1995,15(2):224-231
    [70] Zheng H.L.,Zhu G.C., Jiang S.J.,Tshukudu T., Xiang X.Y., Zhang P. Investigations ofcoagulation-flocculation process by performance optimization, model prediction and fractalstructure of floes [J].Desalination,2011,269(2);148-156.
    [71] Shi J.,Zhang Y, Zou K.Y.,Xiao F.. Speciation characterization and coagulation ofpoly-silica-ferric-chloride: The role of hydrolyzed Fe(III) and silica interaction [J]. J EnvironSci,2011,23(5);749-756.
    [72]Gregory J, Duan J.M.. Hydrolyzing metal salts as coagulants[J], Pure Appl Chem,2001,73(12):2017-2026.
    [73] Wang Y, Gao B Y, Yue Q.Y., Wei J C., Li Q. The characterization and flocculation efficiency ofcomposite flocculant iron salts-polydimethyldiallylammonium chloride[J]. Water Res,2008,142(2):175-181.
    [74] Wei J.C., Gao B Y., Yue Q.Y, Wang Y, Li W., Zhu X. Comparison of coagulation behavior andfloc structure characteristic of different polyferric-cationic polymer dual-coagulants in humicacid solution [J]. Water Res,2009,43(3);724-732.
    [75]黄曼君,李明玉,任刚,曹刚,宋琳.PFS-PDM复合絮凝剂对微污染河水的强化混凝处理[J].中国环境科学,2011,31(3):384-389.
    [76] Pinotti A.,Zaritzky N.. Effect of aluminum sulfate and cationic polyelectrolytes on thedestabilization of emulsified wastes[J]. Waste Management,2001,21(6):535-542.
    [77] Yan M.,Wang D., Ni J., Qu J., Ni W. Enhanced coagulation for high alkalinity andmicro-polluted water: The third way through coagulant optimization[J]. Water Res,2008,42(8):2278-2286.
    [78] Yan M.Q., Wang D.,Shi B.Y., Wang M., Yan Y. Effect of Pre-ozonation on OptimizedCoagulation of a Typical North-China Source Water [J]. Chemosphere2007,69(11);1695-1702.
    [79] Gao B.Y.,Hahn H.H.,Hoffmann E. Evaluation of aluminum-silicate polymer composite as acoagulant for water treatment [J]. Water Res,2002,36(14):3573-3581.
    [80] Okada A.,Usuki A.,The chemistry of polymer-clay hybrids[J],Mater. Sci. Eng.2005,C3,109-115
    [81] Kagan C.,Mitzi D. B.,Dimitrakopoulos C.D.,Organic-inorganic hybrid materials assemiconducting channels in thin-film field-effect transistors[J],Science,1999,286:945-947
    [82] Lee S S,Kim J.,Preparation of the Polyme-clay nanocomposites in exfoliated state byinterface stabilization[J], J. Polym. Sci. PartB: Polym. Phys.,2004,42(2):246-252.
    [83] Wei L M, Tang T, Huang B T,Synthesis and characterization of polyethylene/clay-silicananocomposites: A montmorillonite/silica-hybrid-supported catalyst and in situpolymerization[J],J. Poylm. Sci. PartB: Polym. Chem.,2004,42(4):941-949.
    [84] Mascia L, Kioul A. Influence of siloxane composition and morphology on properties ofpolyimide-silica hybrids[J], Polymer,1995,36(19):3649-3659.
    [85] Christine J T L, Bradley K C, In-situ polymerization of tetraethoxysilane in polymers:enhanced nature of the interactions[J], Polymer,2002,33(7):1496-1506.
    [86]钟顺和,李传峰,孙宏伟,等,负载型TiO2-聚丙烯疏水复合膜的制备与表征[J],膜科学与技术,2002,22(4):21-25.
    [87]陶小军,周静芳,表面修饰LaF3纳米微粒的制备及表征[J],化学研究,2000,11(3):8-11
    [88]乔放,李强,聚酰胺/粘土纳米复合材料的制备、结构表征及性能研究[J],高分子通报,1997,14(3):135-143.
    [89]吴秋菊,薛志坚,具有伸展链构象聚苯胺/蒙脱土混杂纳米复合物的合成与表征[J],高分子学报,1999,5:551-556.
    [90]焦宁宁,王建明,聚合物纳米复合材料研究进展[J],石化技术与应用,2001,19(2):121-125
    [91] Nussbaumer R J, et al. Synthesis and characterization of surface-modified rutile nanoparticlesand transparent polymer composites[J], Journal of Nanoparticle Research,2002,4:314-319.
    [92] Tsubokawa N, Ishida H, Hashimoto K, Effect of initiating groups introduced onto ultrafinesilica on the molecular weight polystyrene grafted onto the surface[J], Polymer Bull.,1993,31:457-464.
    [93]羊海棠,杨瑞成,冯辉霞,等.纳米二氧化硅粒子增韧聚丙烯的研究[J].甘肃工业大学学报,2003,29(2):36一36.
    [94]邹小平,张良莹.溶胶-凝胶法有机-无机精细复合材料P(VDF/TeFE)-SiO2的制备与显微结构功能材料[J].1998,29(3):327-329.
    [95]孙阁彪,吴刚,徐瑞芬等.纳米TiO2的表面处理及聚丙烯/TiO2复合体系的研究[J].中国塑料,2002,16(12):47-50.
    [96]任显诚,白兰英,王贵恒.(60)Co-γ辐照改性法制备高熔体强度聚丙烯[J].中国塑料,2000,14(1):22-26
    [97] Novak B M., Hybrid nanocomposite materials-between inorganic glasses and organicpolymers,Adv. Mater.2003,5:422-433
    [98] Ogoshi T, Chujo Y,Synthesis of organic-inorganic polymer hybrids by means of host-guestinteraction utilizing cyclodextrin,Macromolecules2003,36:654-660.
    [99]张玲,曾兆华,杨建文等.光固化环氧丙烯酸酯树脂有机-无机杂化体系[J].应用化学,2011,18(11):873一876.
    [100]赵竹第,高宗明.苯乙烯-马来酸酐共聚物/聚硅氧烷纳米尺度复合材料的研究[J].高分子学报,2006,2:228一233.
    [101]解孝林,何平,李伯耿等,填料/单体原位聚合对PVC复合材料的影响,华中理工大学学报,2009,27(4):49-51
    [102]丁小斌,孙宗华,万国祥,热敏性高分子包裹的磁性微球的合成,高分子学报,1998,No.5:628-631
    [103] Lee J,Senna M,Preparation of monodispersed polystyrene microsphere uniformly coated bymagnetite via heterogeneous polymerization,Colloid Polym. Sci.,2005,273:76-82
    [104] Furusawa K,Nagashima K,Anzai C.,Synthetic process to control the total size andcomponent distribution of multilayers magnetic composite particles,Colloid Polym. Sci.,2004,272:1104-1110.
    [105]刘洪波,微波诱导等离子体合成有机膜包裹的TiO2纳米粉体,化学通报,1997,10:44-46.
    [106] Zhou H S, Wada T, Sasabe H, Synthesis and optical properties of nanocompositesilver-polydiacetylene,Synthetic Metal.,2006,81:129-132.
    [107] LeBaron P C, Wang Z, Pinnavaia T J, Polymer-layered silicate nanocomposites: An overview,Appl. Clay Sci.,1999,15:11-29·
    [108] Alexandre M, Dubois P, Polymer-layered silicate nanocomposite: preparation, properties anduses of a new class of materials, Mater. Sci. Eng., R: Reports2000,28:1-63
    [109] Ogata N, Jimenez G, Kawai H, Ogihara T, Structure and thermal/mechanical properties ofpoly(L-lactide)-clay blend, J. Polym. Sci., Part B: Polym. Phys.,1997,35:389-396
    [110] Jeon H G, Jung H T, Lee S W, Hudson S D, Morphology of polymer silicate nanocomposites.High density polyethylene and a nitrtile, Polym. Bull.1998,41:107-113.
    [111] Solomon D H, Loft B C, Reactions catalyzed by minerals. Part Ⅲ. The mechanism ofspontaneous interlamellar polymerizations in aluminosilicates, J. Appl. Polym. Sci.,1968,12:1253-1262
    [112]刘立敏,朱晓光,漆宗能,尼龙6/蒙脱土纳米复合材料的等温结晶动力学研究,高分子学报,2009,3:274-279.
    [113] HahnHH,StummW:Kineties of Coagulation with Hydrolyzed Aluminum[J]. Colloid andInterSei,1968,28:133~142
    [114] R.F.Packham.Some STudies of The CoagulaTion of Dispersed Clays with HydrolyzedSalTs[J].Colloid Sci,1965,20:81~85
    [115]卢佳.不同拓扑空间下聚合氯化铁-腐殖酸(PFC-HA)絮体的分形维数及其动态变化特征[D].北京林业大学,2008.5:1~3.
    [116] Madej Katarzyna, Koscielniak Pawel. Review of analytical methods for identification anddetermination of PAHs and tricyclic antidepressants[J]. Critical reviews in analytical chemistry,2008,38(2):50~66.
    [117] Vold M J. Computer simulation of floc formation in a colloidal suspension. J. Coll.&Inter. Sci,.1993,18:684-695
    [118] Sutherland D N. Comments on Vold's simulation of floc formation. J. Coll.&Inter. Sci,.1996,22:300-303
    [119] Witten T A, Sander L M. Diffusion-limited aggregation, a kinetic critical phenomenon.Physical Review Letters,2001,47(19):1400-1403
    [120] Goodarz-Nia I. Floc simulation: Protate spheroidal particles. JC&IS,1990,70(2):306-319
    [121] Francois R J, Van Haute A A, Structure of hydroxide flocs. Water Research,2005,19(30):1249-1254
    [122] Firth B A, Hunter R J. Flow properties of coagulated colloidal suspensions, JC&IS,2006,57(2):248-265
    [123] Langvankar A L, Gemmell R S. A size-density relationship for flocs. JAWWA,1988,9:1041-1046
    [124] Tanbo N, Watanabe Y. Physical characterstics of flocs-the floc density function and aluminumfloc. Water Research,1979,13:409-419
    [125] Bache D H, Johnson C,McGilligan J F, et al. A Conceptual View of Floc Structure in theSweep Floc Domain[J]. Water Sci. Technol,2007,36(4):49-56.
    [126] D. R. Burke, J. Anderson, P. C. Gilcrease, T. J. Menkhaus. Enhanced solid-liquid clarificationof lignocellulosic slurries using polyelectrolyte flocculating agents[J]. Biomass and Bioenergy,2011,35(1):391-401.
    [127]伴繁雄,水处理用无机凝集剂[M],大明化学工业株式会社,1971
    [128] Tsubokwa N,Functionalization of carbon black by surface grafting of polymers,Prog. Polym.Sci,1992,17:417-422.
    [129] Tsubokawa N, Kobayashi K, Sone Y, Grafting, Poylm. Bull,1995,13:215-222.
    [130] Tsubokawa N, Kobayashi K, SoneY, Grafting onto carbon black by the reactive carbon blackhaving masked isocyanate or acyl group with functional polymers. J Polym Sci, Polym ChemEd.1998,26:223-230
    [131]符连社,张洪杰,邵华等,溶胶-凝胶法制备无机/有机杂化材料研究进展[J],材料科学与工程,2009,17(1):84-88
    [132] Wei Y,et al.,Thermal stability and hardness of new Polyacrylate-SiO2hybrid Sol-gelmaterials[J],Mater Lett,2012,13(4):261-266.
    [133] Wei Y,et al., Synthesis,characterization and properties of new polystyrene-SiO2hybrid sol-gelmaterials[J],J Mater Res,2003,8(5):1143-1148.
    [134] Espiard P, et al., Poly(ethyl acrylate) latexes encapsulating nanoparticles of silica:2processonto silica[J], Grafting Polymer,2005,36(23):4391-4397
    [135] Thmoas B, et al., Graft polymerization of vinyl acetate onto silica[J], Journal of Appliedpolymer Science,2002,44:671-678.
    [136]王华林,余锡宾等,PDMS/SiO2杂化材料研究进展[J],高分子材料科学与工程,2000,16(5):5-8
    [137] Yang W Y, Qian J W and Shen Z Q, A novel flocculant of Al(OH)3-polyacrylamide ionichybrid[J], Journal of Colloid and Interface Science,2004,273:400-405
    [138] Zhu G C, Zheng H L, Zhang Z, Tshukudu T, Zhang P, Xiang X Y. Characterization andcoagulation-flocculation behavior of polymeric alumicun ferric sulfate (PAFS)[J]. ChemicalEngineering Journal,2011,178:50-59
    [139]2008年重庆市环境状况公报,重庆市环境保护局.
    [140]2009年重庆市环境状况公报,重庆市环境保护局.
    [141]2010年重庆市环境状况公报,重庆市环境保护局.
    [142] Yukselen M A, Gregory J. The reversibility of floc breakage[J]. Int. J. MinerProcess,2004,73(2-4):251-259
    [143] Bache D H, Rasool E, Moffatt D, McGilligan F G. On the strength and character ofalumino-humic flocs[J]. Water Science&Technology,1999,40:81-88
    [144] Boller M, Blaser S, Particles under Stress[J], Water Science&Technology,1998,37(10):9-29
    [145] Chu Y B, Gao B Y, Yue Q Y, Wang Y. The effect of cycle shear and suifate on dynamiccoagulation of alum coagulants[J]. Science in China Series B: Chemistry,2007,37:440-445
    [146] Kan C, Huang C, Pan J R. Time requirement for rapid mixing in coagulation[J]. Colloids andSurfaces A: Physicochemical and Engineering Aspects,2002,203:1-9

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700