用户名: 密码: 验证码:
含羟基及氨基化合物抗氧化性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物抗氧化剂是物理有机化学的研究热点之一。为了更有效地开展新型生物抗氧化剂的研究工作,开发准确高效的评价体系势在必行。本论文主要工作是将化学动力学公式引入化学模拟生物体系中,并使用不同测试体系研究了多种生物抗氧化剂的抗氧化活性。本论文主要研究内容为:
     1,设计合成了16种带有不同取代基的Schiff碱,并使用多种测试体系研究了它们的抗氧化性能。对这些Schiff碱抗氧化性能研究的结果表明,随Schiff碱中的共轭体系的增大,Schiff碱的抗氧化活性能得到明显增强。
     2,开发了2,2-偶氮(2-甲基丙基脒)·二盐酸盐(AAPH)诱导的DNA氧化损伤体系,系统地研究了天然产物绿原酸的抗氧化性能。发现绿原酸作为还原剂的作用要大于其作为氢原子给体的作用,且绿原酸对DNA的保护要远比它对红细胞的保护更为有效。
     3,研究了抗炎药双氯芬酸(DaNH)及其钠盐(DaNaH)的抗氧化性能。发现二者很难给出它们N-H键上的氢原子;它们对DNA的保护作用基本相同。
     4,研究了5种三环胺化合物的抗氧化性能。发现这些三环胺在捕获二苯代苦味肼基自由基(DPPH)时的反应机理为程序电子转移(SPLET)机理,而在捕获2, 2-连氮-双-(3-乙基苯并噻唑啉-6-磺酸)二铵盐(ABTS+.)时的机理为氢原子迁移(HAT)机理;它们在AAPH引发的溶血体系中保护红细胞的作用为吩噁嗪(PozNH) >二苯胺(DpaNH) >咔唑(CazNH) >亚氨基二苯乙烯(IsbNH) >吩噻嗪(PtzNH);这5种三环胺均能保护DNA避免AAPH引发的氧化损伤,但它们在该体系中的抗氧化机理各不相同。
In recent years, the investigation of antioxidants is one of the hot spots in physical organic chemistry, the investigation of antioxidants focuses on aspects of natural antioxidants. A lot of research work focused on the type of antioxidants, while rarely focused on the methods to evaluate the activity of antioxidants.
     The current methods to evaluate the activity of antioxidants could be defined as two types: chemical systems and chemical simulation biological systems. The former methods can evaluate the activity of antioxidants in the chemical systems fast and quantitative, but the antioxidants which have good activity in the chemical systems are often not have well capacity in the biological systems, thus affecting the application of antioxidants; Simulation of biological systems did not have a quantitative criteria, could not be used to evaluate the activity of antioxidants quantificational. So, in order to carry out new research on antioxidants, the development of accurate and efficient evaluation system is imperative.
     In this thesis, the kinetic equation was introduced into chemical simulate of biological systems, which can be used in biological system to evaluate the activity of antioxidant quantificational.
     1,16 types of Schiff bases with different substituent were designed and synthesized, which antioxidant properties were also investigated in different systems.
     Firstly, the reactions between 8 Schiff bases and 2,2′-diphenyl-1-picrylhydrazyl (DPPH) or 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonate) radical cation (ABTS+?) were carried out, their capacities to scavenge ABTS+? are better than their capacities to scavenge DPPH, which are also associated with the location and electronic effects of substituent. Secondly, chemical kinetic equation was introduced into the AAPH-induced hemolysis to investigate the antioxidant activities of these Schiff bases. The results revealed that the radical-scavenging activity of the–OH attached to the para position of methylene in Schiff base was much lower than that attached to the ortho position of the N atom. The large conjugate system and low steric hindrance in the framework of Schiff base benefit the Schiff base to trap radicals. Meanwhile, since a Schiff base, even without any substituent, can also play an antioxidative role in this experimental system. Finally, six Schiff bases were used together with four familiar antioxidants, such as 6-hydroxyl-2,5,7,8-tetramethyl chroman-2-carboxylic acid (Trolox)、L-ascorbic acid (VC)、α-tocopherol (VE) and L-ascorbyl-6-laurate (VC-12) in AAPH-induced hemolysis of erythrocytes. It was found that, except for benzylidene aniline (BAN)+VC-12、2-(phenyliminomethyl)phenol (BAH)+VC-12、2-benzimidoylphenol (OBH)+VC-12、4-benzimidoylphenol (PBH)+VE、2-((o-hydroxylphenylimino) methyl)phenol (OSAP) + VC-12、2-((p-hydroxylphenylimino) methyl)phenol (PSAP) + Trolox、PSAP + VE、PSAP + VC-12, all the other combinations protected erythrocytes more perfectly than when used individually.
     2,The AAPH-induced DNA oxidative damage system was developed, and was used to investigate the antioxidant ability of the natural product chlorogenic acid (CGA) as well as several other different systems.
     Firstly, the reaction between CGA and ABTS+? or DPPH revealed that CGA was able to trap radicals by reducing radicals more than by donating its hydrogen atoms to radicals. Secondly, in the case of hemin-induced hemolysis of erythrocytes CGA is proved to be a membranestabilizer. Then, it was found that the n of CGA to protect erythrocytes was 0.77, which the n indicates the number of radical-propagation chains terminated by CGA in AAPH-induced hemolysis; furthermore, CGA facilitated a mutual protective effect with VE and VC on AAPH-induced hemolysis by increasing n of VE and VC. Finally, AAPH-induced oxidation of DNA was developed, after introduce the chemical kinetic into this system, the DNA oxidative damage could be tested quantificationally through the formation of thiobarbituric acid reactive substance(TBARS). CGA was found to be a radical scavenger to protect DNA against AAPH-induced oxidation of DNA, it could capture n=6.01 radicals in this system, this fact revealed that CGA served as an efficient antioxidant to protect DNA more than to protect erythrocytes.
     3,Two anti-inflammatory drugs, diclofenac (DaNH) and its sodium salt (DaNaH), were selected to investigate their antioxidant activity in different systems.
     Firstly, the reaction between these two drugs and ABTS+? or DPPH were investigated, they could able to effectively restore the ABTS+., in which DaNaH with a strong reduction. It was very difficult for them to scavenge DPPH, which indicated that DaNH was very difficult to give hydrogen atom from its N-H bond. Secondly, phosphate-buffered saline (PBS) and dimethylsulfoxide (DMSO) were used to investigate these two drugs’protection against the hemin-induced hemolysis. The result revealed that these two drugs’protection to red blood cell in this system was not only associated with their structure, but also associated with the solvents which dissolved these drugs. In addition, AAPH-induced hemolysis system was used to study the antioxidant activity of these two drugs, it was found that DaNH(4.95) could scavenge more radicals than DaNaH(3.60). The synergistic effects between DaNH and VE、DaNH and VC-12、DaNaH and Trolox、DaNaH and VC were also investigated, it was found that DaNH could repair these four familiar antioxidants’radical. Finally, the number of peroxyl radicals trapped by DaNH and DaNaH in AAPH-induced DNA oxidative damage were nDaNH = 3.86 (±0.54) and nDaNaH = 3.56 (±0.54) respectively.
     4,Five tricyclic amines’antioxidant activities were investigated in different systems.
     Firstly, mechanisms of the reactions between tricyclic amines and ABTS+. or DPPH were studied through change the pH of the reaction system, the addition of acetic acid accelerated the reaction rate of Ar2NH to scavenge DPPH, suggesting that a sequential proton loss electron transfer (SPLET) mechanism occurred with amine-type antioxidants during the trapping of DPPH. In contrast, the addition of acetic acid or pyridine reduced the reaction rate of Ar2NH to scavenge ABTS+., suggesting that the hydrogen atom transfer (HAT) mechanism is the basis for the reaction that is occurring. Secondly, these 5 tricyclic amines were applied to protect human erythrocytes against AAPH-induced hemolysis in vitro, all of them function as efficient antioxidants in protecting human erythrocytes against AAPH-induced hemolysis, in which the activity sequence is phenoxazine (PozNH) > diphenylamine (DpaNH) > carbazole (CazNH) > iminostilbene (IsbNH) > phenothiazine (PtzNH); Moreover, they exhibit higher activities when it was used together with Trolox、VE、VC and VC-12 in this experimental system. Finally, these 5 tricyclic amines’protection against DNA were investigated in the AAPH-induced oxidation of DNA system, all of them were found to be radical scavengers to protect DNA against AAPH-induced oxidation of DNA, and they had different mechanisms protect DNA. PozNH、IsbNH and DpaNH could produce inhibition period while CazNH and PtzNH could not produce inhibition period when they protect DNA in this system.
引文
[1] Harman, D. Aging: A theory based on free radical and radical and radiation chemistry. J. Geron. 1956, 11: 298-300.
    [2] McCord, J. M., Fridovich, I. Superoxide dismutase: an enzymic function for erythrocuprein (hemocuprein). J. Biol. Chem. 1969, 244: 6049-55.
    [3] Nordberg, J., Arner, E. S. J. Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic. Biol. Med. 2001, 31: 1287–1312.
    [4] Aruoma, O. I. Nutrition and health aspects of free radicals and antioxidants. Food Chem. Toxicol. 1994, 32: 671–683.
    [5] Ambrosone, C. B. Oxidants and Antioxidants in Breast Cancer. Antioxid. Redox Signal. 2000, 2: 903-917.
    [6] Klaunig, J. E., Xu, Y., Isenberg, J. S., Bachowski, S., Kolaja, K. L., Jiang, J., Stevenson, D. E., Walborg, E. F. J. R. The Role of Oxidative Stress in Chemical Carcinogenesis. Environ. Health Perspect. 1998, 106: 289-295.
    [7] Moskovitz, J., Yim, M. B., Chock, P. B. Free radicals and disease. Arch. Biochem. Biophys. 2002, 397: 354–359.
    [8] Jayalakshmi, C. P., Sharma, J. D. Effect of butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) on rat erythrocytes. Environ. Res. 1986, 41: 235-238.
    [9]线引林.生物材料中有毒物质分析方法手册[M].北京:人民卫生出版社, 1994. 1-2.
    [10]杨惠芬,李明元,沈文.食品卫生理化检验标准手册[M].北京:中国标准出版社出版,1998. 362-369.
    [11]卫生部,中国国家标准化管理委员会.食品卫生检验方法理化部分(一)[M].北京:中国标准出版社出版,2004. 241-250.
    [12] Astadi, I. R., Astuti, M., Santoso, U., Nugraheni, P. S. In vitro antioxidant activity of anthocyanins of black soybean seed coat in human low density lipoprotein (LDL). Food Chem. 2009, 112: 659-663.
    [13] Singh, G., Kapoor, I. P. S., Singh, P., de Heluani, C. S., de lampasona, M. P., Catalan, C. A. N. Chemistry, antioxidant and antimicrobial investigations on essential oil and oleoresins of Zingiber officinale. Food Chem. Toxicol. 2008, 46: 3295-3302.
    [14] Altmann, H. J., Grunow, W., Wester, P. W., Mohr, U. Induction of forestomach lesions by butylhydroxyanisole and structurally related substances. Arch. Toxicol. Suppl. 1985, 8: 114-116.
    [15] van Esch. Toxicology of tert-butylhydroquinone (TBHQ). Food Chem. Toxicol. 1986, 24:1063-1065.
    [16] Adamic, K., Dunn, M., Ingold, K. U. Formation of diphenyl nitroxide in diphenylamine inhibited autoxidations. Can. J. Chem. 1969, 47: 287-294.
    [17] Nishiyama, T., Yamaguchi, T., Fukui, T., Tomii, K. Chain-breaking fused heterocyclic antioxidants: antioxidant activities of phenothiazines compared to related compounds. Polym. Degrad. Stab. 1999, 64: 33-38.
    [18] Chepelev, L. L., Beshara, C. S., Maclean, P. D., Hatfield, G. L., Rand, A. A., Thompson, A., Wright, J. S., Barclay, L. R. C. Polypyrroles as Antioxidants: Kinetic Studies on Reactions of Bilirubin and Biliverdin Dimethyl Esters and Synthetic Model Compounds with Peroxyl Radicals in Solution. Chemical Calculations on Selected Typical Structures. J. Org. Chem. 2006, 71: 22-30.
    [19] Maclean, P. D., Chapman, E. E., Dobrowolski, S. L., Thompson, A., Barclay, L. R. C. Pyrroles As Antioxidants: Solvent Effects and the Nature of the Attacking Radical on Antioxidant Activities and Mechanisms of Pyrroles, Dipyrrinones, and Bile Pigments. J. Org. Chem. 2008, 73: 6623-6635.
    [20] Mulder, P., Litwinienko, G., Lin, S. Q., MacLean, P. D., Barclay, L. R. C., Ingold, K. U. The L-Type Calcium Channel Blockers, Hantzsch 1,4-Dihydropyridines, Are Not Peroxyl Radical-Trapping, Chain-Breaking Antioxidants. Chem. Res. Toxicol. 2006, 19: 79-85
    [21] Yang, J. Z., Alemany, L. B., Driver, J., Hartgerink, J. D., Barron, A. R. Fullerene-Derivatized Amino Acids: Synthesis, Characterization, Antioxidant Properties, and Solid-Phase Peptide Synthesis. Chem. Eur. J. 2007, 13: 2530-2545.
    [22] Steenken, S., Sundquist, A. R., Jovanovic, S. V., Crockett, R., Sies, H. Antioxidant Activity of the Pyridoindole Stobadine. Pulse Radiolytic Characterization of One-Electron-Oxidized Stobadine and Quenching of Singlet Molecular Oxygen. Chem. Res. Toxicol. 1992, 5: 355-360.
    [23] Stefek, M., Snirc, V., Djoubissie, P. O., Majekova, M., Demopoulos, V., Rackova, L., Bezakova, Z., Karasu, C., Carbonee, V., El-Kabbanie, O. Carboxymethylated pyridoindole antioxidants as aldose reductase inhibitors: Synthesis, activity, partitioning, and molecular modeling. Bioorg. Med. Chem. 2008, 16: 4908-4920.
    [24] Battin, E. E., Brumaghim, J. L. Metal specificity in DNA damage prevention by sulfur antioxidants. J. Inorg. Biochem. 2008, 102: 2036-2042.
    [25] Zahran, M. A. H., Salem, T. A. R., Samaka, R. M., Agwa, H. S., Awad, A. R. Design, synthesis and antitumor evaluation of novel thalidomide dithiocarbamate and dithioate analogs against Ehrlich ascites carcinoma-induced solid tumor in Swiss albino mice. Bioorg. Med. Chem. 2008, 16: 9708-9718.
    [26] Gadyshev, V. N., Kryukov, G. V., Fomenko, D. E., Hatfield, D. L. Identification of traceelement-containing proteins in genomic databases. Annu. Rev. Nutr. 2004, 24: 579-596.
    [27] Mills, G. C. Hemoglobin catabolism. i. glutathione peroxidase, an erythrocyte enzyme which protects hemoglobin from oxidative breakdown. J. Biol. Chem. 1957, 229: 189-197.
    [28] Sies, H. Ebselen, a selenoorganic compound as glutathione peroxidase mimic.. Free Radic. Biol. Med. 1993, 14: 313-323.
    [29] Kumar, S., Johansson, H., Kanda, T., Engman, L., Muller, T., Jonnson, M., Pedulli, G. F., Petrucci, S., Valginigli, L. Catalytic Chain-Breaking Pyridinol Antioxidants. Org. Lett. 2008, 10: 4895-4898.
    [30] Bowry, V. W., Stocker, R. Tocopherol-Mediated Peroxidation. The Prooxidant Effect of Vitamin E on the Radical-Initiated Oxidation of Human Low-Density Lipoprotein. J. Am. Chem. Soc. 1993, 115: 6029-6044.
    [31] Liu, Z. Q. The“unexpected role”of vitamin E in free-radical-induced hemolysis of human erythrocytes: alpha-tocopherol-mediated peroxidation. Cell Biochem. Biophys. 2006, 44: 233-239.
    [32] Zahir, A., Jossang, A., Bodo, B., Provost, J., Cosson, J. P., Se′venet, T. Five New Flavone 5-O-Glycosides from Lethedon tannaensis: Lethedosides and Lethediosides. J. Nat. Prod. 1999, 62: 241-243.
    [33] Zou, J. H., Yang, J. S., Zhou, L. Acylated Flavone C-Glycosides from Trollius ledebouri. J. Nat. Prod. 2004, 67: 664-667.
    [34] Hertog, M. G. L., Feskens, E. J. M., Kromhout, D., Hertog, M. G. L., Hollman, P. C. H., Hertog, M. G. L., Katan, M. B. Dietary antioxidant flavonoids and risk of coronary heart disease: the Zutphen Elderly Study. The Lancet 1993, 342: 1007-1011.
    [35] Seelinger, G., Merfort, I., Schempp, C. M. Anti-Oxidant, Anti-inflammatory and Anti-Allergic Activities of Luteolin. Planta Med. 2008, 74: 1667-1677.
    [36] Pietta, P. G. Flavonoids as Antioxidants. J. Nat. Prod. 2000, 63: 1035-1042.
    [37] Cai, Y. Z., Sun, M., Xing, J., Luo, Q., Corke, H. Structure–radical scavenging activity relationships of phenolic compounds from traditional Chinese medicinal plants. Life Sci. 2006, 78: 2872-2888.
    [38] Lokhande, P. D., Sakate, S. S., Taksande, K. N., Navghare, B. Dimethylsulfoxide-iodine catalysed deprotection of 2’-allyloxychalcones: synthesis of flavones. Tetrahedron Lett. 2005, 46: 1573-1574.
    [39] Maloney, D. J., Hecht, S. M. Synthesis of a Potent and Selective Inhibitor of p90 Rsk. Org. Lett. 2005, 7: 1097-1099.
    [40] Nanjo, F., Mori, M., Goto, K., Hara, Y. Radical scavenging activity of tea catechins and their related compounds. Biosci. Biotechnol. Biochem. 1999, 63: 1621–1623.
    [41] Raza, H., John, A. In vitro protection of reactive oxygen species-induced degradation oflipids, proteins and 2-deoxyribose by tea catechins. Food Chem. Toxicol. 2007, 45: 1814-1820.
    [42] Jankun, J., Selman, S. H., Swiercz, R., Skrzypczak-Jankun, E. Why drinking green tea could prevent cancer. Nature 1997, 387: 561
    [43] Kondo, K., Kurihara, M., Miyata, N., Suzuki, T., Toyoda, M. Mechanistic studies of catechins as antioxidants against radical oxidation. Arch. Biochem. Biophys. 1999, 362: 79-86.
    [44] Valcic, S., Muder, A., Jacobsen, N. E., Liebler, D. C., Timmermann, B. N. Antioxidant chemistry of green tea catechins: identification of products of (-)-epigallocatechin gallate (EGCG) reaction with peroxyl radicals. Chem. Res. Toxicol. 1999, 12: 382-386.
    [45] Zhou, B., Wu, L. M., Yang, L., Liu, Z. L. Evidence forα-tocopherol regeneration reaction of green tea polyphenols in SDS micelles. Free Radic. Biol. Med. 2005, 38: 78-84.
    [46] Wang, Y., Catana, F., Yang, Y., Roderick, R., van Breemen, R. B. An LC-MS method for analyzing total resveratrol in grape juice, cranberry juice, and in wine. J. Agric. Food Chem. 2002, 50: 431-435.
    [47] Kerem, Z., Regev-Shoshani, G., Flaishman, M. A., Sivan, L. Resveratrol and Two Monomethylated Stilbenes from Israeli Rumex bucephalophorus and Their Antioxidant Potential. J. Nat. Prod. 2003, 66: 1270-1272.
    [48] Burns, J., Yokota, T., Ashihara, H., Lean, M.E.J., Crozier, A. Plant Foods and Herbal Sources of Resveratrol. J. Agric. Food Chem. 2002, 50: 3337–3340.
    [49] Fang, J. G., Lu, M., Chen, Z. H., Li, Y., Zhu, H. H., Yang, L., Wu, L. M., Liu, Z. L. Antioxidant effects of resveratrol and its analogues against the free-radical-induced peroxidation of linoleic acid in micelles. Chem. Eur. J. 2002, 8: 4191-4198 .
    [50] Tadolini, B., Juliano, C., Piu, L., Franconi, F., Cabrini, L. Resveratrol inhibition of lipid peroxidation. Free Radic. Res. 2000, 33: 105-114.
    [51] Fabris, S., Momo, F., Ravagnan, G., Stevanato, R. Antioxidant properties of resveratrol and piceid on lipid peroxidation in micelles and monolamellar liposomes. Biophys. Chemist. 2008, 135: 76-83.
    [52] Fang, J. G., Lu, M., Ma, L. P., Yang, L., Wu, L. M., Liu, Z. L. Protective effects of resveratrol and its analogues against free radical-induced oxidative hemolysis of red blood cells. Chin. J. Chem. 2002, 20: 1313-1318.
    [53] Lee, H. J., Seo, J. W., Lee, B. H., Chung, K. H., Chi, D. Y. Syntheses and radical scavenging activities of resveratrol derivatives. Bioorg. Med. Chem. Lett. 2004, 14: 463-466.
    [54] Amorati, R., Lucarini, M., Mugnaini, V., Pedulli, G. F., Roberti, M., Pizzirani, D. Antioxidant activity of hydroxystilbene derivatives in homogeneous solution. J. Org. Chem. 2004, 69: 7101-7107.
    [55] Aruoma, O. I., Spencer, J. P. E., Warren, D., Jenner, P., Butler, J., Halliwell, B.Characterization of food antioxidants, illustrated using commercial garlic and ginger preparations. Food Chem. 1997, 60: 149-156.
    [56] Chu, Y. H., Chang, C. L., Hsu, H. F. Flavonoid content of several vegetables and their antioxidant activity. J. Sci. Food Agric. 2000, 80: 561-566.
    [57] van Acker, S. A. B. E., Tromp, M. N. J. L., Haenen, G. R. M. M., van der Vijgh, W. J. F., Bast, A. Flavonoids as Scavengers of Nitric Oxide Radical. Biochem. Biophys. Res. Commun. 1995, 214: 755-759.
    [58] Milic, B. L., Djilas, S. M., Canadanovic-Brunet, J. M. Antioxidative activity of phenolic compounds on the metal-ion breakdown of lipid peroxidation system. Food Chem. 1998, 61: 443-447.
    [59] Sharma, M. K., Buettner, G. R. Interaction of vitamin C and vitamin E during free radical stress in plasma: An ESR study. Free Radic. Biol. Med. 1993, 14: 649-653.
    [60] Halliwell, B., Gutteridge, J. M. C. Free Radicals in Biology and Medicine Oxford University Press, New York, 3rd edn., 1999.
    [61] Noda, Y., Anzai, K., Mori, A., Kohno, M., Shinmei, M., Packer, L. Hydroxyl and superoxide anion radical scavenging activities of natural source antioxidants using the computerized JES-FR30 ESR spectrometer system. Biochem. Mol. Biol. Int. 1997, 42: 35-44.
    [62] Rosen, G. M., Rauckman, E. J., Finkelstein, E. in Autoxidation in Food and Biological Systems, ed. M. S. Simic and M. Karel, Plenum Press, New York, 1980, pp. 71–87.
    [63] Krishna, M., Samuni, A. Nitroxides as antioxidants. Methods Enzymol. 1994, 234: 580-589.
    [64] Lee, D. M. Alpha-phenyl N-tert-butylnitrone as antioxidant for low density lipoproteins. Methods Enzymol. 1994, 234: 513-523.
    [65] Miller, N. J., Rice-Evans, C. A., Davies, M. J., Gopinathan, V., Milner, A. A Novel method for measuring antioxidant capacity and its application to monitoring antioxidant status in premature neonates. Clin. Sci. 1993, 84: 407-412.
    [66] Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., Rice-Evans, C. A. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26: 1231-1237.
    [67] Panel on Dietary Antioxidants and Related Compounds, Standing Committee on the Scientific Evaluation of Dietary Reference Intakes, Food and Nutrition Board Vitamin C, Vitamin E, Selenium, andα-Carotene and Other Carotenoids: Overview, Antioxidant Definition, and Relationship to Chronic Disease. In Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids; National Academy of Science: Washington, DC, 2000; pp 35-57.
    [68] Arts, M. J. T. J., Haenen, G. R. M. M., Voss, H. P., Bast, A. Antioxidant capacity of reaction products limits the applicability of the Trolox Equivalent Antioxidant Capacity (TEAC) assay.Food Chem. Toxicol. 2004, 42: 45-49.
    [69] Jime′nez-Escrig, A., Jime′nez-Jime′nez, I., Sa′nchez-Moreno, C., Saura-Calixto F. Evaluation of free radical scavenging of dietary carotenoids by the stable radical 2,2-diphenyl-1-picrylhydrazyl. J. Sci. Food Agric. 2000, 80: 1686-1690.
    [70] Bondet, V., Brand-Williams, W., Berset, C. Kinetics and mechanisms of antioxidant activity using the DPPH free radical method. Food Sci. Technol.-Leb. 1997, 30: 609-615.
    [71] Foti, M. C., Daquino, C., Geraci, C. Electron-transfer reaction of cinnamic acids and their methyl esters with the DPPH radical in alcoholic solutions. J. Org. Chem. 2004, 69: 2309-2314.
    [72] Benzie, I. F. F., Strain, J. J. The ferric reducing ability of plasma as a measure of“antioxidant power”: the FRAP assay. Anal. Biochem. 1996, 239: 70-76.
    [73] Pulido, R., Bravo, L., Saura-Calixo, F. Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. J. Agric. Food Chem. 2000, 48: 3396-3402.
    [74] Frankel, E. N., Meyer, A. S. The problems of using one-dimensional methods to evaluate multifunctional food and biological antioxidants. J. Sci. Food Agric. 2000, 80: 1925-1941.
    [75] Zhou, B., Miao, Q., Yang, L., Liu, Z. L. Antioxidative effects of flavonols and their glycosides against the free-radical-induced peroxidation of linoleic acid in solution and in micelles. Chem. Eur. J. 2005, 11: 680-691.
    [76] Liu, Z. Q. Icariin: A Special Antioxidant To Protect Linoleic Acid against Free-Radical-Induced Peroxidation in Micelles. J. Phys. Chem. A 2006, 110: 6372-6378.
    [77] Cao, G. H., Alessio, H. M., Cutler, R. G. Oxygen-radical absorbency capacity assay for antioxidants. Free Radic. Biol. Med. 1993, 14: 303-311.
    [78] Esterbauer, H., Gebicki, J., Puhl, H., Jürgens, G. The role of lipid peroxidation and antioxidants in oxidative modification of LDL. Free Radic. Biol. Med. 1992, 13: 341-390
    [79] Thuong, P. T., Su, N. D., Ngoc, T. M., Hung, T. M., Dang, N. H., Thuan, N. D., Bae, K., Oha, W. K. Antioxidant activity and principles of Vietnam bitter tea Ilex kudingcha. Food Chem. 2009, 113: 139-145.
    [80] Kishida, E., Tokumaru, S., Ishitani, Y., Yamamoto, M., Oribe, M., Iguchi, H., Kojo, S. Comparison of the formation of malondialdehyde and thiobarbituric acid-reactive substances from autoxidized fatty acids based on oxygen consumption. J. Agric. Food Chem. 1993, 41: 1598.
    [81] Antolovich, M., Prenzler, P. D., Patsalides, E., McDonald, S., Robards, K. Methods for testing antioxidant activity. Analyst 2002, 127: 183–198.
    [82] Kasai, H. Analysis of a form of oxidative DNA damage 8-hydroxy-2’-deoxy-guanosine, as a marker of cellular oxidative stress during carcinogenesis. Mutat Res. 1997, 387: 147-163.
    [83] Bruner, S. D., Norman, D. P., Verdine, G. L. Structural basis for recognition and repair of the endogenous mutagen 8-oxoguanine in DNA. Nature 2000, 403: 859-866.
    [84] Dizdaroglu, M., Jaruga, P., Birincioglu, M., Rodriguez, H. Free radical-induced damage to DNA: mechanisms and measurement. Free Radic. Biol. Med. 2002, 32: 1102-1115.
    [85] Suksomtip, M., Pongsamart, S. Protective effect against oxidation of human low-density lipoprotein and plasmid DNA strand scission of Tamarind seed coat extract in vitro. LWT-Food Sci. Technol. 2008, 41: 2002-2007.
    [86] Yen, G. C., Duh, P. D., Su, H. J. Antioxidant properties of lotus seed and its effect on DNA damage in human lymphocytes. Food Chem. 2005, 89: 379-385.
    [87] Reddy, C. S. S. S., Subramanyam, M. V. V., Vani, R., Devi, S. A. In vitro models of oxidative stress in rat erythrocytes: Effect of antioxidant supplements. Toxicol. in Vitro 2007, 21: 1355-1364.
    [88] Sato, Y., Kamo, S., Takahashi, T., Suzuki, Y. Mechanism of free radical-induced hemolysis of human erythrocytes: Hemolysis by water-soluble radical initiator. Biochemistry 1995, 34: 8940-8949.
    [89] Yamamoto, Y., Niki, E., Eguchi, J., Kamiya, Y., Shimasaki, H. Oxidation of biological membranes and its inhibition. Free radical chain oxidation of erythrocyte ghost membranes by oxygen. Biochim. Biophys. Acta 1985, 819: 29-36.
    [90] Banerjeea, A., Kunwarb, A., Mishrab, B., Priyadarsinib, K. I. Concentration dependent antioxidant/pro-oxidant activity of curcumin Studies from AAPH induced hemolysis of RBCs. Chem.-Biol. Interact. 2008, 174: 134-139.
    [91] Kumar, S. S., Shankar, B., Sainis, K. B. Effect of chlorophyllin against oxidative stree in splenic lymphocytes in vitro and in vivo. Biochim. Biophys. Acta 2004, 1672: 100-111.
    [92] Kunwar, A., Mishra, B., Barik, A., Kumbhare, L. B., Pandey, R., Jain, V. K., Priyadarsini, K. I. 3,3′-Diselenodipropionic Acid, an Efficient Peroxyl Radical Scavenger and a GPx Mimic, Protects Erythrocytes (RBCs) from AAPH-Induced Hemolysis. Chem. Res. Toxicol. 2007, 20: 1482-1487.
    [93] Schiff, H. Annis. Chem. 1864, 131: 118.
    [94] Hartung, J., Drees, S., Greb, M., Schmidt, P., Svoboda, I., Fuess, H., Murso, A., Stalke, D. (Schiff-base) vanadium (V) complex-catalyzed oxidations of substituted bis(homoallylic) alcohols-stereoselective synthesis of functionalized tetrahydrofurans. Eur. J. Org. Chem. 2003, 13: 2388-2408.
    [95] Emregul, K. C., Atakol, O. Corrosion inhibition of mild steel with Schiff base compounds in 1M HCl. Mater. Chem. Phys. 2003, 82: 188-193.
    [96] Berkesi, O., Koertvelyesi, T., Hetenyi, C., Nemeth, T., Palinko, I. Hydrogen bonding interactions of benzylidene type Schiff bases studied by vibrational spectroscopic andcomputational methods. Phys. Chem. Chem. Phys. 2003, 5: 2009-2014.
    [97] Chatterjee, D., Mukherjee, S., Roy, B. C. Oxidation of organic substrates catalyzed by novel mixed-ligand manganese(III) complexes. J. Mol. Catal. A: Chem. 2001, 169: 41-45.
    [98] Patel, K. M., Patel, K. N., Patel, N. H., Patel, M. N. Synthesis, characterization, and antimicrobial activities of some transition metal complexes with a tridentate dibasic Schiff base and bidentate 2,2’-bipyridylamine. Synth. React. Inorg. Met.-Org. Chem. 2001, 31: 239-246.
    [99] Bolzati, C., Porchia, M., Bandoli, G., Boschi, A., Malago, E., Uccelli, L. Oxo-rhenium (V) mixed-ligand complexes with bidentate functionalized phosphines and tridentate Schiff base ligands. Inorg. Chim. Acta. 2001, 315: 205-212.
    [100] Hoshino, H., Saitoh, Y., Nakano, K., Takahashi, T., Yotsuyanagi, T. Reversed-phase high-performance liquid-chromatographic determination systems specific to ultratrace hard metal ions with tridentate Schiff bases and pyridylhydrazones. Bull. Chem. Soc. Jpn. 2001, 74: 1279-1284.
    [101] Solomons, K. R. H., Lieberman, H. E., Groundwater, P. W., Hibbs, D. E., Hursthouse, M. B. Molecular modeling and biological evaluation of a series of hydroxylated benzylideneanilines and benzylamines designed as tyrosine kinase inhibitors. Anti-Cancer Drug Des. 1997, 12: 635-647.
    [102] Luo, X. Y., Zhao, J. Z., Lin, Y. J., Liu, Z. Q. Antioxidative effect of Schiff bases with o-hydroxybenzylidene group on free radical induced hemolysis of human red blood cell. Chem. Res. Chinese Univ. 2002, 18: 287-289.
    [103] Hodnett, E. M., Dunn, W. J. J. Med. Chem. 1970, 13: 768-770.
    [104] Erel, O. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin. Biochem. 2004, 37: 277-285.
    [105] Musialik, M., Litwinienko, G. Scavenging of dpph. radicals by vitamin E is accelerated by its partial ionization: the role of sequential proton loss electron transfer. Org. Lett. 2005, 7: 4951-4954.
    [106] Barclay, L. R. C. Model biomembranes: quantitative studies of peroxidation, antioxidation action, partitioning and oxidative stress. Can. J. Chem. 1993, 71: 1-16.
    [107] Cousins, R. C., Seib, P. A., Hoseney, R. C., Deyoe, C. W., Liang, Y. T., Lillard, D. W. Jr. Synthesis of 6-fatty acid esters of L-ascorbic acid. J. Am. Oil Chem. Soc. 1977, 54: 308-312.
    [108] Westland, A. D., Tarafder, M. T. H. Novel peroxo complexes of uranium containing organic ligands. Inorg. Chem. 1981, 20: 3992-3995.
    [109]王宏侠,汤有志,刘在群.含羟基取代基的Schiff碱捕获自由基性能应用化学2007, 24: 1105-1108.
    [110] Liu, Z. Q., Ma, L. P., Liu, Z. L. Making vitamin C lipophilic enhances its protective effectagainst free radical induced peroxidation of low density lipoprotein. Chem. Phys. Lipids 1998, 95: 49-57.
    [111] Padda, M. S., Picha, D. H. Phenolic composition and antioxidant capacity of different heat-processed forms of sweetpotato cv.‘Beauregard’. Int. J. Food Sci. Technol. 2008, 43: 1404-1409.
    [112] Chinnici, F., Bendini, A., Gaiani, A., Riponi, C. Radical scavenging activities of peels and pulps from cv. golden delicious apples as related to their phenolic composition. J. Agric. Food Chem. 2004, 52: 4684-4689.
    [113] Lamperi, L., Chiuminatto, U., Cincinelli, A., Galvan, P., Giordani, E., Lepri, L., Bubba, M. D. Polyphenol levels and free radical scavenging activities of four apple cultivars from integrated and organic farming in different Italian areas. J. Agric. Food Chem. 2008, 56: 6536-6546.
    [114] Bonita, J. S., Mandarano, M., Shuta, D., Vinson, J. Coffee and cardiovascular disease: in vitro, cellular, animal, and human studies. Pharmacol. Res. 2007, 55: 187-198.
    [115] Cheng, J. C., Dai, F., Zhou, B., Yang, L., Liu, Z. L. Antioxidant activity of hydroxycinnamic acid derivatives in human low density lipoprotein: mechanism and structure–activity relationship. Food Chem. 2007, 104: 132-139.
    [116] Balamurugan, A., Chen, S. M. Flow injection analysis of iodate reduction on PEDOT modified electrode. Electroanalysis 2008, 20: 1873-1877.
    [117] Dupas, C., Baglieri, A. M., Ordonaud, C., Tome, D., Maillard, M. N. Chlorogenic acid is poorly absorbed, independently of the food matrix: a Caco-2 cells and rat chronic absorption study. Mol. Nutr. Food Res. 2006, 50: 1053-1060.
    [118] Ito, H., Gonthier, M. P., Manach, C., Morand, C., Mennen, L., Remesy, C., Scalbert, A. Polyphenol levels in human urine after intake of six different polyphenol-rich beverages. Br. J. Nutr. 2005, 94: 500-509.
    [119] Ito, H., Sun, X. L., Watanabe, M., Okamoto, M., Hatano, T. Chlorogenic acid and its metabolite m-coumaric acid evoke neurite outgrowth in hippocampal neuronal cells. Biosci. Biotechnol. Biochem. 2008, 72: 885-888.
    [120] Niki, E., Komuro, E., Takahashi, M., Urano, S., Ito, E., Terao, K. Oxidative hemolysis of erythrocytes and its inhibition by free radical scavengers. J. Biol. Chem. 1988, 263: 19809-19814.
    [121] Harvey, J. W., Beutler, E. Binding of heme by glutathione stransferase: a possible role of the erythrocyte enzyme. Blood 1982, 60: 1227-1230.
    [122] Cooke, M. S., Evans, M. D., Dizdaroglu, M., Lunec, J. Oxidative DNA damage: mechanism, mutation, and disease. FASEB J. 2003, 17: 1195-1214.
    [123] Finkel, T., Holbrook, N, J. Oxidant, oxidative stress and the biology of ageing. Nature 2000, 408: 239-247.
    [124] Hussain, S. P., Hofseth, L. J., Harris, C. C. Radical cause of cancer. Nat. Rev. Cancer 2003, 3: 276-285.
    [125] Rice-Evans, C. A., Diplock, A. T. Current status of antioxidant therapy. Free Radic. Biol. Med., 1993, 15: 77-96.
    [126] Zeisel, S., Salganik, R. Antioxidants and nutrition support. Curr. Opin. Clin. Nutr. Metab. Care 1999, 2: 1-3.
    [127] Zheng, L. F., Wei, Q. Y., Cai, Y. J., Fang, J. G., Zhou, B., Yang, L., Liu, Z. L. DNA damage induced by resveratrol and its synthetic analogues in the presence of Cu (II) ions: mechanism and structure-activity relationship. Free Radic. Biol. Med. 2006, 41: 1807-1816.
    [128] Zhang, P., Omaye, S. T. DNA strand breakage and oxygen tension: effects ofβ-carotene,α-tocopherol and ascorbic acid. Food Chem. Toxicol. 2001, 39: 239-246.
    [129] Johnson, P. H., Grossman, L. I. Electrophoresis of DNA in agarose gels. Optimizing separations of conformational isomers of double- and single-stranded DNAs. Biochemistry 1977, 16: 4217-4225.
    [130] Aeschbach, R., Loliger, J., Scott, B. C., Murcia, A., Butler, J., Halliwell, B., Aruoma, O. I. Antioxidant actions of thymol, carvacrol, 6-gingerol, zingerone and hydroxytyrosol. Food Chem. Toxicol. 1994, 32: 31-36.
    [131] Li, G. X., Liu, Z. Q. The protective effects of ginsenosides on human erythrocytes against hemin-induced hemolysis. Food Chem. Toxicol. 2008, 46: 886-892.
    [132] Zhao, F., Liu, Z. Q., Wu, D. Antioxidative effect of melatonin on DNA and erythrocytes against free-radical-induced oxidation. Chem. Phys. Lipids 2008, 151: 77-84.
    [133] Liu, S. C., Zhai, S., Lawler, J., Palek, J. Hemin-induced dissociation of erythrocyte membrane skeletal proteins. J. Biol. Chem. 1985, 260: 12234-12239.
    [134] Wang, F., Wang, T., Lai, J., Li, M., Zou, C. G. Vitamin E inhibits hemolysis induced by hemin as a membrane stabilizer. Biochem. Pharm. 2006, 71: 799-805.
    [135] Liu, Z. Q., Luo, X. Y., Liu, G. Z., Liu, Q. W. Including 4-hydroxyquinoline derivatives intoβ-cyclodextrin to form complexes affects their antioxidative effect on free-radical-induced hemolysis of human erythrocytes. QSAR Comb. Sci. 2003, 22: 859-864.
    [136] Tang, Y. Z., Liu, Z. Q. Quantitative structure-activity relationship of hydroxyl-substituent Schiff bases in radical-induced hemolysis of human erythrocytes. Cell Biochem. Funct. 2008, 26: 185-191.
    [137] Zheng, L. F., Dai, F., Zhou, B., Yang, L., Liu, Z. L. Prooxidant activity of hydroxycinnamic acids on DNA damage in the presence of Cu(II) ions: mechanism and structure-activity relationship. Food Chem. Toxicol. 2008, 46: 149-156.
    [138] Small, R. E. Diclofenac sodium. Clin. Pharmacol. 1989, 8: 545-558.
    [139] Fei, X. W., Liu, L. Y., Xu, J. G., Zhang, Z. H., Mei, Y. A. The non-steroidal anti-in.ammatory drug, diclofenac, inhibits Na+ current in rat myoblasts. Biochem. Biophys. Res. Commun. 2006, 346: 1275-1283.
    [140] Bartolo, L. D., Morelli, S., Giorno, L., Campana, C., Rende, M., Salerno, S., Maida, S., Drioli,E. Polyethersulfone membrane biohybrid system using pig hepatocytes: effect of diclofenac on cell biotransformation and synthetic functions. J. Mem. Sci. 2006, 278: 133-143.
    [141] Li, L., Rossoni, G., Sparatore, A., Lee, L. C., Soldato, P. D., Moore, P. K. Anti-inflammatory and gastrointestinal effects of a novel diclofenac derivative. Free Radic. Biol. Med. 2007, 42: 706-719.
    [142] Hickey, E. J., Raje, R. R., Reid, V. E., Gross, S. M., Ray, S. D. Diclofenac induced in vivo nephrotoxicity may involve oxidative stress-mediated massive genomic DNA fragmentation and apoptotic cell death. Free Radic. Biol. Med. 2001, 31: 139-152.
    [143] Tang, Y. Z., Liu, Z. Q. Evaluation of the free-radical-scavenging activity of diclofenac acid on the free-radical-induced hemolysis of human erythrocytes. J. Pharm. Pharmacol. 2006, 58: 625-631.
    [144] Fu, J. L., Yang, Q. G., Liang, J. H. Improved synthetic technology of diclofenac sodium. Chin. J. Pharmaceut. 2000, 31: 296-297.
    [145] Gaudiano, M. C., Valvo, L., Bertocchi, P., Manna, L. RP-HPLC study of the degradation of diclofenac and piroxicam in the presence of hydroxyl radicals. J. Pharm. Biomed. Anal. 2003, 32: 151-158.
    [146] Shaklai, N., Shviro, E., Rabizadeh, E., Kirschner-Zibler, I. Accumulation and drainage of hemin in the red cell membrane. Biochim. Biophys. Acta. 1985, 821: 355-366.
    [147] Goodman Gilman, A., Rall, T. W., Nies, A. S., Taylor, P. The pharmacological Basis of Therapeutics 8th ed., Pergamon press, New York, 1990
    [148] Kumar, R., Ramachandran, U., Srinivasan, K., Ramarao, P., Raichur, S. Design, synthesis and evaluation of carbazole derivatives as PPARa/gamma dual agonists and antioxidants. Bioorg. Med. Chem. 2005, 13: 4279-4290.
    [149] Almeida, D. R. P., Gasparro, D. M., Pisterzi, L. F., Torday, L. L., Varro, A., Papp, J. G., Penke, B., Csizmadia, I. G. Molecular study on the enantiomeric relationships of carvedilol fragment A, 4-(2-hydroxypropoxy)carbazol, along with selected analogues. J. Phys. Chem. A 2003, 107: 5594-5610.
    [150] Almeida, D. R. P., Gasparro, D. M., Fulop, F., Csizmadia, I. G. Pharmacophore fragment-based prediction and gas-phase ab initio optimization of carvedilol. J. Phys. Chem. A 2004, 108: 6239-6247.
    [151] Lucarini, M., Pedrielli, P., Pedulli, G. F., Valgimigli, L., Gigmes, D., Tordo, P. Bond dissociation energies of the N-H and rate constants for the reaction with alkyl, alkoxyl, and peroxyl radicals of phenothiazines and related compounds. J. Am. Chem. Soc. 1999, 121: 11546-11553.
    [152] Tachibana, Y., Kikuzaki, H., Lajis, N. H., Nakatani, N. Comparison of antioxidative properties of carbazole alkaloids from Murraya koenigii leaves. J. Agric. Food Chem. 2003, 51: 6461-6467.
    [153] Rudell, D. R., Mattheis, J. P., Fellman, J. K. Relationship of superficial scald development andα-farnesene oxidation to reactions of diphenylamine and diphenylamine derivatives in cv. Granny Smith apple peel. J. Agric. Food Chem. 2005, 53: 8382-8389.
    [154] Eghbal, M. A., Tafazoli, S., Pennefather, P., O’Brien, P. J. Peroxidase catalysed formation of cytotoxic prooxidant phenothiazine free radicals at physiological pH. Chem. -Biol. Interact. 2004, 151: 43-51.
    [155] Moosmann, B., Skutella, T., Beyer, K., Behl, C. Protective activity of aromatic amines and imines against oxidative nerve cell death. Biol. Chem. 2001, 382: 1601-1612.
    [156] Zou, C. G., Agar, N. S., Jones, G. L. Oxidative insult to human red blood cells induced by free radical initiator AAPH and its inhibition by a commercial antioxidant mixture. Life Sci. 2001, 69: 75-86.
    [157] Abraham, M. H., Grellier, P. L., Prior, D. V., Taft, R. W., Morris, J. J., Taylor, P. J., Laurence, C., Berthelot, M., Doherty, R. M., Kamlet, M. J., Abboud, J. L. M., Sraidi, K., Guiheneuf, G. A general treatment of hydrogen bond complexation constants in tetrachloromethane. J. Am. Chem. Soc. 1988, 110: 8534–8536.
    [158] Abraham, M. H., Grellier, P. L., Prior, D. V., Duce, P. P., Morris, J. J., Taylor, P. J. Hydrogen bonding. VII. A scale of solute hydrogen-bond acidity based on log K values for complexation in tetrachloromethane. J. Chem. Soc. Perkin Trans. 1989, 2: 699–711.
    [159] May, J. M., Qu, Z. C., Mendiratta, S. Protection and recycling ofα-tocopherol in human erythrocytes by intracellular ascorbic acid. Arch. Biochem. Biophys. 1998, 349: 281-289.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700