用户名: 密码: 验证码:
脂肪来源干细胞移植治疗心肌梗死大鼠的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
[目的]研究脂肪来源干细胞移植治疗心肌梗死的可行性。
     [方法]1、脂肪来源干细胞的培养和诱导分化:由SD大鼠的肠系膜脂肪获得脂肪来源间充质干细胞,培养后用10μmol·-1浓度的5氮杂胞苷(5-azacytidine)诱导,经透射电镜、扫描电镜、免疫组化等检测诱导后细胞的变化。2、脂肪来源干细胞的标记:超小超顺磁性氧化铁(ultrasmall superparamagnetic iron oxide, USPIO)40μg Fe/ml、多聚赖氨酸(poly-1-lysine, PLL)1.5μg/ml与ADSCs共孵育培养,普鲁士蓝染色和透射电镜验证标记有效性,细胞培养液检测VEGF浓度。3、心梗模型的建立及细胞移植术:采取结扎前降支的办法建立SD大鼠心肌梗死模型,经Micro-PET及MRI确认心梗。采取经胸心外膜注射法将ADMSCs移植于心肌梗死区。4、脂肪来源干细胞在心肌梗死区的存活及对实验动物心功能的影响。通过Micro-PET了解心梗后梗塞灶大小的变化;1.5T MR扫描仪对实验组(n=10)和空白对照组(n=10)以及心梗组大鼠(n=10)行磁共振成像,观察心肌信号、计算并比较两组大鼠的左室舒张末容积(left-ventricular end-diastolic volume, LVEDV).左室收缩末容积(left-ventricular end-systolic volume, LVESV)及左室射血分数(left-ventricular ejection fraction, LVEF),来了解移植前后心功能变化。病理组织学检查观察心肌结构和标记ADSCs的分布。
     [结果]1、脂肪来源干细胞经10μmol·-1浓度的5氮杂胞苷(5-azacytidine)诱导后,透射电镜可见到明显肌丝,扫描电镜可看到细胞呈现心肌细胞样外观变化,免疫组化可见到诱导后细胞为肌红蛋白抗体所着染。2、普鲁士蓝染色显示USPIO标记脂肪来源干细胞的阳性率>99%,透射电镜下可见黑色氧化铁颗粒位于细胞溶酶体内,细胞培养液可以检测到VEGF。3、开胸结扎冠脉前降支成功构建心梗模型,实验组大鼠心脏于Micro-PET下行18F-FDG及68Ga-RGD显像显示心尖部无血流灌注,无心肌存活;移植细胞后梗塞区面积减小,有血管再生。MR检查显示FIESTA和FSPGR序列图像上可见左室前壁内发现信号降低和室壁运动异常,并于2D MDE序列图像上发现实验组心肌内出现延迟强化。心梗组LVEDV为:0.62±0.37ml, LVESV为0.28±0.36ml, LVEF为40.57±3.03%,移植USPIO标记的ADSCs细胞组LVEDV为:0.51±0.31ml, LVESV为0.27±0.38ml,LVEF为50.94±59%,以上数据除LVESV外心梗组均低于移植细胞组,有显著差异(P<0.05),而两组之间LVESV无明显差异(P>0.05)。空白对照组的LVEDV为:0.44±0.30ml, LVESV为0.20±0.23ml, LVEF为62.84±3.65%,与移植USPIO标记的ADSCs细胞组相比,移植USPIO标记的ADSCs细胞组的以上数据均低于空白对照组,有显著差异(P<0.05)。空白对照组的数据与心梗组的数据相比较,心梗组的数据均低于空白对照组,有显著差异(P<0.05)。4、病理组织学检查于梗死心肌周边发现局灶性氧化铁颗粒沉积。
     [结论]脂肪来源干细胞可经5-氮杂胞苷诱导转化为心肌样细胞,移植后可存活于心肌梗死区并能改善实验动物的心功能。
[Objective] To investigate the feasibility inducing adipose-derived stem cells into myogenic cells in vitro and a potential treatment of ischemic heart disease with transplantation of adipose-derived stem cells.
     [Methods]1Adipose-derived stem cells are taken from Sprague Dawley (SD)rat's mesenteric adipose tissue and cultured, third-passaged cells were exposed to10μmol·1-1dilutions of5-azacytidine for24hours. Transmission Electron microscopy, Scanning Electron microscopy, immunohistochemistry were used to demonstrate the characteristics of the cells.2ADSCs were incubated with culture medium containing40μg/ml USPIO and1.5μg/ml poly-1-lysine (PLL) for24h. The distribution of iron particles in cells was determined by Prussian blue staining and transmission electron microscopy (TEM).3A model myocardial infarction was created by ligation of the distal left anterior descending artery in SD rat. The labeled ADSCs were injected transthoracic into the myocardium. In vivo.4The infraction area was assessed by Micro-PET and MR. MR imaging was performed with FIESTA Cine, FSPGR Cine and2D MDE sequences for all groups. The left-ventricular end-diastolic volume (LVEDV), left-ventricular end-systolic volume (LVESV) and left-ventricular ejection fraction (LVEF) were calculated on Report Card Workstastion to assess the cardiac function. Postmortal study was carried out to determine the distribution of USPIO particles in the myocadium with Prussian blue stain.
     [Results] The myofiber in adipose-derived stem cells was demonstrated by transmission electron microscopy after ADSCs exposed to5-aza, which was stained by immunohistochemistry of anti-myoglobin antibody. The cardiac function of the Sprague Dawley rat was improved and the infraction area was reduced after the transplantation of adipose-derived stem cells.
     [Conclusion] Adipose-derived stem cells can differentiate into myogenic cells in vitro after5-azacytidine exposure. Transplantation adipose-derived stem cells may improve cardiac function of ischemic heart disease and shrink the infraction area of the heart in Sprague Dawley rat.
引文
1. Wakitani S, Saito T, Caplan AI. Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine [J]. Muscle and Nerve,1995;18:1417-1426.
    2. Zuk PA, Zhu M, Mizuno H, et al. Mulitilineage cells from human adipose tissue:implications for cell-based therapies. Tissue Eng,2001; 7:211-228.
    3. Zuk PA, Zhu M, Ashjian P, et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cells,2002; 13(12):4279-4295.
    4. Rangappa S, Fen C, Lee EH, Bongso A, Sim EK. Transformation of adult mesenchymal stem cells isolated from the fatty tissue into cardiomyocytes. Ann Thorac Surg.2003; 75:775-779.
    5. He G, Zhang H, Wei H, et al. In vivo imaging of bone marrow meseuchymal stem cells transplanted into myocardium using magnetic resonance imaging: A novel method to trace the transplanted cells. International Journal of Cardiology,2007; 114 (14):4-10.
    6. Xuetao P. Stem Cell Experiment Protocol[M]. Beijing:Science press, 2006:83-100."
    7. Lee RH, Kim B, Choi I, et al. Characterization and expression analysis of mesenchymal stem cells from human bone marrow and adiposetissue[J]. Cell Physiol Biochem,2004; 14(4):311-324.
    8. Strem BM, Hicok KC, Zhu, et al. Multipotential differentiation of adipose tissue derived stem cells[J]. Keio J Med,2005; 54(3):132-141.1
    9. Cheryl TG, Karen JL. Stem cells and adipose tissue engineering[J]. Biomaterials,2006; 27(9):6052-6063.-
    10. de Girolamo L, Sartori MF, Albisetti W, et al. Osteogenic differentiation of human adipose derived stem cells:comparison of two different inductive media [J]. J Tissue Eng Regen Med,2007; 1 (2):154-157.
    11. ZHANG Shengli, DENG Zhansheng, LI Baojun, et al. Osteogenic differentiation of rat adipose derived mesenchymal stem cells[J]. Journal of Clinical Rehabilitative Tissue Engineering Research,2007; 11(6):1022-1024.
    12. LI Bingong, ZENG Qiutang, WANG Hongxiang, et al. Study of cardiomyogenic cells differentiation from adipose tissue stromal cells under the induction of myocardial cell lysate[J]. Chin J Crit Care Me,2006; 26(4):280-282.
    13.杨佩荪,高进.心肌细胞发育及细胞间闰盘样连接形成的扫描电镜观察.解剖学报,1987;18(1):87-90.
    14.柏树令,李吉,何维为.鼠正常心肌细胞表面的扫描电镜观察.中国医科大学学报,1991:20(4):241-244.
    15. Zhang DZ, Gai LY, Liu HW, et al. Transformation of adipose derived stem cells into cardiomyocytes. Chin Heart J (Chin) 2005; 17:405-408.
    16. Planat-Benard V, Menard C, Andre M, et al. Spontaneous cardiomyocyte differentiation from adipose tissue stroma cells[J]. Circ Res,2004; 94 (2):223-229.
    17. Werner S, Grose R. Regulation ofwound healing by growth factors and cytokines [J]. Physiol Rev,2003,83:835-870.
    18. TakahashiM, Sheng LT, Suzuki R,et al. Cytokines produced from bone marrow cells can contribute to functional improvement of the infracted heart by protecting cardiomoycytes against ischemic injury and inducing therapeutic angiogenesis [J]. Circulation,2005:258-265.
    19. Nakagami H, Morishita R, Maeda K, et al. Adipose tissue-derived stromal cells as a novel option for regenerative cell therapy. J Atheroscler Thromb. 2006 Apr;13(2):77-81.
    20. Amos PJ, Shang H, Bailey AM, Taylor A, Katz AJ, Peirce SM. IFATS Series: the role of human adipose-derived stromal cells in inflammatory microvascular remodeling and evidence of a perivascular phenotype. Stem Cells.2008; 26:2682-2690.
    21. Crisan M, Yap S, Casteilla L, et al. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell.2008; 3:301-313.
    22. San Roman JA, Fernandez-Aviles F. The role of noninvasive imaging techniques in the assessment of stem cell therapy after acute myocardial infarction. Nat Clin Pract Cardiovasc Med.2006; 3 Suppl 1:S38-41.
    23.马国涛,任华,张超纪,等。骨髓间充质干细胞体外分化为肌细胞实验研究。基础医学与临床,2005,25(1);66—69。
    24.马国涛,任华,朱朝晖,等。骨髓间质干细胞移植治疗兔缺血性心脏病。基础医学与临床,2009,29(3);273—276。
    25. Strem BM, Zhu M, Alfonso Z, et al. Expression of cardiomyocytic markers on adipose tissue-derived cells in a murine model of acute myocardial injury. Cytotherapy.2005;7(3):282-91.
    26. Yamada Y, Wang XD, Yokoyama S et al. Cardiac progenitor cells in brown adipose tissue repaired damaged myocardium.Biochem Biophys Res Commun.2006 Apr 7;342(2):662-670.
    27. ZHANG Duan-zhen, GAI Lu-yue, LIU Hong-wei et al. Transplantation of autologous adipose-derived stem cells ameliorates cardiac function in rabbits with myocardial infarction. Chinese Medical Journal,2007;120(4):300-307.
    28. Manuel Mazo, Valerie Planat-Benard, Gloria Abizanda, et al. Transplantation of adipose derived stromal cells is associated with functional improvement in a rat model of chronic myocardial infarction. European Journal of Heart Failure 10 (2008) 454-462.
    29. Rehman J, Traktuev D, Li J, et al. Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation,2004;109:1292-1298.
    1. Van Meter CH, Claycomb WC, Delcarpio JB et al. Myoblast transplantation in the procine model:a potential technique for myocardial repair. J thorac Cardiovasc Surg,1995; 110:1442-1448.
    2. Dorman J, Duong M, Zibaitis A et al. Myocardial tissue engineering with autologous myoblast implantation. J Thorac Cardiovasc Surg, 1998;116:733-751.
    3. Chiu RC-J,Zibaitis A,Kao RL.Cellular cardiomyoplasty:myocardial regeneration with satellite cell implantation. Ann Thorac Surg, 1995;60:12-18.
    4. Menasche P,Hagege A A, Scorsin M et al. Myoblast transplantation for heart failure. THE LANCET,2001;357:279-280.
    5. Friedenstein A J, Petrakova AL,Kurolesova AL.et al. Heterotopic transplants of bone marrow, Analysis of precursor cells,for osteogenic and hematopotic tissues.Transplantation,1968;6:230-247.
    6. Wakitani S, Saito T, Caplan AI. Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine. Muscle and Nerve,1995;18:1417-1426.
    7. Makino S, Fukuda K, Miyoshi S et al. Cardiomyocyte can be generated from marrow stomal cell in vitro. J Clin Invest,1999; 103:697-705.
    8. Hakuno D,Fukuda K, Makino S et al.Bone marrow-derived regenerated cadiomyocytes express functional aderenergic and muscarinic receptors. Circulation,2002;105:380-386.
    9. Tomita S, Li RK, Weisel RD et al. Autologous transplantation of bone marrow cells improves damaged heart function. Circulation,1999 Nov 9;100(Suppl Ⅱ):Ⅱ-247-256.
    10. Tomita S, Mickle DAG, Weisel RD, Jia ZQ et al.Improved heart function with myogenesis and angiogenesis after autologous porcine bone marrow stromal cell transplantation. J Thorac Cardiovasc Surg, 2002;123:1132-1140.
    11. Wang JS,Shum-Tim D,Chedrawy E et al.The coronary delivery of marrow stromal cells for myocardial regeneration:pathophysiologic and therapeutic implications. J Thorac Cardiovasc Surg,2001;122:699-705
    12. Fuchs S,Baffour R,Zhou YF et al.Transendocardial delivery of autologous bone marrow enhances collateral perfusion and regional function in pigs with chronic experimental myocardial ischemia. J Am Coll Cardiol, 2001;37:1726-1732.
    13. Kamihata H,Matsubara H,Nishiue T et al.Implantation of bone marrow mononuclear cells into ischemic myocardium enhances collateral perfusion and regional function via side supply of angioblasts,angiogenic ligands,and cytokines. Circulation,2001;104:1046-1052.
    14. Shake JG,Gruber PJ,Baumgartner WA et al.Mesenchymal stem cell implantation in a swine myocardial infarct model:engraftment and functional effects. Ann Thorac Surg,2002;73:1919-1926.
    15. Strauer BE,Brehm M,Zeus T et al.Repair of infracted myocardium by autologous intracoronary mononuclear bone morrow cell transplantation inhumans. Circulation,2002;106:1913-1918.
    16. Zuk PA, Zhu M, Mizuno H, et al. Mulitilineage cells from human adipose tissue:implications for cell-based therapies. Tissue Eng,2001; 7:211-228.
    17. Zuk PA, Zhu M, Ashjian P, et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cells,2002; 13(12):4279-4295.
    18. Lee RH, Kim B, Choi I, et al. Characterization and expression analysis of mesenchymal stem cells from human bone marrow and adiposetissue [J] Cell Physiol Biochem,2004; 14(4):311-324.
    19. Strem BM, Hicok KC, Zhu, et al. Multipotential differentiation of adipose tissue derived stem cells[J]. Keio J Med,2005; 54(3):132-141.1
    20. Cheryl TG, Karen JL. Stem cells and adipose tissue engineering[J]. Biomaterials,2006; 27(9):6052-6063.-
    21. Rehman J, Considine RV, Bovenkerk JEet al. Obesity is associated with increased levels of circulating hepatocyte growth factor. J Am Coll Cardiol.2003 Apr 16;41(8):1408-1413.
    22. Rehman J, Traktuev D, Li J et al. Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells.Circulation.2004 Mar 16; 109(10):1292-1298.
    23. Nakagami H, Morishita R, Maeda K, et al. Adipose tissue-derived stromal cells as a novel option for regenerative cell therapy. J Atheroscler Thromb. 2006 Apr;13(2):77-81.
    24. Katz AJ, Tholpady A, Tholpady SS et al. Cell surface and transcriptional characterization of human adipose-derived adherent stromal (hADAS) cells.Stem Cells.2005 Mar;23(3):412-423.
    25. Planat-Benard V, Silvestre JS, Cousin B, et al. Plasticity of human adipose lineage cells toward endothelial cells:physiological and therapeutic perspectives.Circulation.2004 Feb 10;109(5):656-663.
    26. de Girolamo L, Sartori MF, Albisetti W, et al. Osteogenic differentiation of human adipose derived stem cells:comparison of two different inductive media [J]. J Tissue Eng Regen Med,2007; 1 (2):154-157.
    27. ZHANG Shengli, DENG Zhansheng, LI Baojun, et al. Osteogenic differentiation of rat adipose derived mesenchymal stem cells[J]. Journal of Clinical Rehabilitative Tissue Engineering Research,2007; 11 (6):1022-1024.
    28. Rangappa S, Fen C, Lee EH, Bongso A, Sim EK. Transformation of adult mesenchymal stem cells isolated from the fatty tissue into cardiomyocytes. Ann Thorac Surg.2003; 75:775-779.
    29. LI Bingong, ZENG Qiutang, WANG Hongxiang, et al. Study of cardiomyogenic cells differentiation from adipose tissue stromal cells under the induction of myocardial cell lysate[J]. Chin J Crit Care Me,2006; 26(4):280-282.
    30. Makhluf HA, Mueller SM, Mizuno S, et al. Age-related decline in osteoprotegerin expression by human bone marrow cells cultured in three-dimensional collagen sponges.Biochem Biophys Res Commun.2000 Feb 24;268(3):669-672.
    31. Planat-Benard V, Menard C, Andre M, et al. Spontaneous cardiomyocyte differentiation from adipose tissue stroma cells[J]. Circ Res,2004; 94 (2):223-229.
    32. Gaustad KG, Boquest AC, Anderson BE,et al. Differentiation of human adipose tissue stem cells using extracts of rat cardiomyocytes [J] Biochemical and Biophysical Research Communications,2004,314(2):420 427.
    33. Song YH, Gehmert S, Sadat S, et al. VEGF is critical for spontaneous differentiation of stem cells into cardiomyocytes. Biochem Biophys Res Commun.2007 Mar 23;354(4):999-1003. Epub 2007 Jan 25.
    34. Choi YS, Dusting GJ, Stubbs S,Differentiation of human adipose-derived stem cells into beating cardiomyocytes. J Cell Mol Med.2010 Apr;14(4):878-89. Epub 2010 Jan 11.
    35. Strem BM, Zhu M, Alfonso Z, et al. Expression of cardiomyocytic markers on adipose tissue-derived cells in a murine model of acute myocardial injury. Cytotherapy.2005;7(3):282-91.
    36. Yamada Y, Wang XD, Yokoyama S et al. Cardiac progenitor cells in brown adipose tissue repaired damaged myocardium. Biochem Biophys Res Commun.2006 Apr 7;342(2):662-670.
    37. ZHANG Duan-zhen, GAI Lu-yue, LIU Hong-wei et al. Transplantation of autologous adipose-derived stem cells ameliorates cardiac function in rabbits with myocardial infarction. Chinese Medical Journal,2007;120(4):300-307.
    38. Manuel Mazo, Valerie Planat-Benard, Gloria Abizanda, et al. Transplantation of adipose derived stromal cells is associated with functional improvement in a rat model of chronic myocardial infarction. European Journal of Heart Failure 10 (2008) 454-462.
    39. Pasumarthi KB, Field LJ. Cell cycle regulation to repair the infarcted myocardium.Heart Fail Rev.2003 Jul;8(3):293-303.
    40. Shimizu T, Sekine H, Yamato M, et al. Cell sheet-based myocardial tissue engineering:new hope for damaged heart rescue. Curr Pharm Des.2009;15(24):2807-14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700